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Announcements

® Read Chapter 5 and Appendix A
®* Homework 3 is posted, due on Thursday Oct 5

* Midterm exam Is Oct 17 In class: closed book, closed
notes, one 8.5 by 11 inch hand written notesheet
allowed: calculators allowed
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Chapter 5, Single Machine, Infinite
Bus System (SMIB T

Book introduces new variables by combining machine

values with line values B
Vie =Wd TV¥ed

Xde — Xd + Xep
Re =R + R,

etc




Introduce New Constants

wy =T (a) — g ) “Transient Speed”
T 2H Mechanical time
S T . constant
Wg
1
=" A small parameter
Ws

o




Stator Flux Differential Equations

&M
¢ Wee g 1 11450 Voo +Vs SN (5 — O, )
dt T,

d Ve
dt

= Rselq _£1+T£a)tj'7”de +Vg COS(5_9VS)

S

dWoe —R_|

Se"0




Elimination of Stator Transients

* |f we assume the stator flux equations are much faster
than the remaining equations, then letting € go to zero
allows us to replace the differential equations with
algebraic equations

0=Rgely +Wge +VsSin(J5 —0Oy)
0=Rgelq —Wge +V COS(5 —O,5)

O:Rselo
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Impact on Studies

o
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Figure 5.4 Effect of neglecting stator transients

Figure 5.3 Effect of neglecting stator transients X
on rotor angle swings

on speed deviation

Image Source: P. Kundur, Power System Stability and Control, EPRI, McGraw-Hill, 1994




Machine Variable Summary
T

3 fast dynamic states, now eliminated
Wder Waer Woe

7 not so fast dynamic states

Eq:%14,Eq Waq: 0, @0 Egg

8 algebraic states
Id ’ Iq1 I01Vd 1Vq1Vt1Wed 1Weq




Network Expressions

V= Vi 4V
Vg =Rely — Xegplg +V;sin(8—6,4)
Vg =Rl + Xglg +V€0S(5 -6,
Re Xep

o




Network Expressions

V, =R, I, =X I, +V,sin(5-6,)
V, =R, + X, |4 +V, cos(5—-6,)

ep " d
These two equations can be written as one
complex equation.

(Vd + qu)ej(5—7r/2) :(Re n jxer|d i j|q)ej(5—7z/2)

+Vsej‘9VS

o
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Stator Flux Expressions

o

(X§—Xu) o, (Xg-Xd)

Wae = —Xgelg + 75— :
- derd (Xd_xfs) ! (Xd_xzs)

Y14
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Subtransient Algebraic Circuit

o
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Network Reference Frame

Al
* In transient stability the initial generator values are set
from a power flow solution, which has the terminal

voltage and power injection
— Current injection is just conjugate of Power/Voltage

® These values are on the network reference frame, with
the angle given by the slack bus angle
V=V, +jV;; InbookV, =V + jV,

® Voltages at bus j converted to d-g reference by
Vaj | _[sing —coss ||V, ;[ |Vej| | sind  cosd ||V
Vq,j - COS5 Sin5 Vi,j Vi,j - _C055 Sin5 Vq,j

‘Similar for current; see book 7.24,7.25 1




Network Reference Frame

o

Issue of calculating o, which is key, will be considered
for each model

Starting point is the per unit stator voltages (3.215 and
3.216 from the book)

Vi =—w,0—-Rl,

V, =v0o—Rl,

Equivalently, (V,+jV, )+R, (14%il,) = o(-w, + jv,)
Sometimes the scaling of the flux by the speed is
neglected, but this can have a major solution impact

In per unit the initial speed Is unity

14




Simplified Machine Models
T
* Often more simplified models were used to represent
synchronous machines

® These simplifications are becoming much less common
but they are still used in some situations and can be
helpful for understanding generator behavior

* Next several slides go through how these models can be
simplified, then we'll cover the standard industrial
models

15




Two-Axis Model

T
* |If we assume the damper winding dynamics are
sufficiently fast, then T"y, and T", go to zero, so there
Is an integral manifold for their dynamic states

Wi = Eé _(Xé _Xzs)ld
Waq =—E4 _(Xc’q _Xﬁs)lq

16




Two-Axis Model
T

" d')” / /
Tdo dtld = Y14 +Eq_(xd _st)ld =0

Tgo—— :—E' (Xd—X(’j)x

dt_ / ]

XI_x”
| ———4—9 (y, + (X=X, )ly—E.)|+E
d (Xé—xzs)Z( 1d ( d zs)d q)_ fd

Which can be simplified to

/

Too— ——E' (Xd—X(’j)IdJrEfd

dt

17




Two-Axis Model

" dWZq ’ ’
qu dt _WZq_Ed_(Xq_st)lq:O
’ dE(’j ’ ’
Too— = —Eg +(Xq = Xg )%
dt
XI _X”
qa— g
lg——— 2(‘//2q+(
(X Xs)
Which can simplified to
4 dEé / 4
Too =—Ej +14(Xq— Xg)

o
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Two-Axis Model
T

0

(Rs + Ra)l4 —(X(’:1 + Xep)lq —Eg +Vssin(6 —0y)

/ /
I+ qu) 2/ (6-1/2) X4 Ry R, JXep
_WYY\_IVW__.._JM_NW\_.
+
’ ¢ iE' & + 1Bys
[Ea+ Xg- XDl +JEg] & (Mm<i> (Va +iVy) &) C—)V’ e

"}
i}

19




dEq

4

Tiq ——
do dt

TC’IO

dEg

dt

Two-Axis Model

=—Eq —(Xg = Xg)lg +Egq

Eq +(Xq - Xg)lq

dt

2H dw

wg dt

=Twm —Eglg —Eglg —(X§ = Xa 1l —Trw

A

20




Two-Axis Model

o

0=(Rs+Ry)ly —(x;q +xep)|q —E} +V,sin(5—6,,)

0

(Rs +Re) 1 +(x(gI + Xep)ld —E} +V,C0S(5 — 0O, )

Vg = Relg = Xgplg +Vssin(S5—6,4)

ep g

Vi = Relg + Xgplg +V5c0s(5 —6,5)

Vi = Vi +V{

21




Example (Used for All Models)
T

* Below example will be used with all models. Assume a

100 MVA base, with gen supplying 1.0+j0.3286 power

Into infinite bus with unity voltage through network

Impedance of j0.22

— Gives current of 1.0 - j0.3286 = 1.0526/-18.19 °

— Generator terminal voltage of 1.072+j0.22 = 1.0946 ~£11.59 °

Bus 1 Bus 2
Bus 4 X12 =0.20

P3>3 > >

XTR = 0.10 Infinite Bus

100.00 MW 1.0946 pu 132010 BYS3 32 00 100,00 MW

57.24 Mvar 11.59DegF - } } } } }b - } } } - -32.86 Mvar

1.0463 pu 1.0000 pu
6.59 Deg 0.00 Deg
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Two-Axis Example
Al
® For the two-axis model assume H = 3.0 per unit-
seconds, R&=0, X;=2.1, X,=2.0, X;=0.3, X, = 0.5,
T’y = 7.0, T'y, = 0.75 per unit using the 100 MVA base.
* Solving we get
E =1.0946./11.59°+( j2.0)(1.0526.£ ~18.19°) = 2.81/52.1°

— 0 =5b2.1°
V.| |0.6146 0.7889 || 0.220 | |0.8326

| q

] losie o) -aan]|ases

| | 106146 0.7889 || -0.3287 | |0.3553

. 4

23




Two-Axis Example

* And

E! =0.8326+(0.3)(0.9909) =1.130

E! =0.7107 — (0.5)(0.3553) = 0.533
E., =1.1299+ (2.1-0.3)(0.9909) = 2.913

Saved as case B4 TwoAxis

o

24




® Assume a fault at bus 3 at time t=1.0, cleared by
opening both lines into bus 3 at time t=1.1 seconds

74
72]
70
681
66
64
62
60
58
561
54
52

Gen Bus 4 #1 Rotor Angle

Two-Axis Example

Gen Bus 4 #1 Rotor Angle

[\

50
48’
461
44

J

T v v T i i i T v v v T " " " T
1 2 3 4 5

Time

|— Gen Bus 4#1 RotorAngle I

A
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Two-Axis Example

AlM

®

PowerWorld allows the gen states to be easily stored.

Result Storage

Where to Save/Store Results Save Results Every n Timesteps:
Store Results to RAM

[ save Results to Hard Drive I:l =

Save the Results stored to RAM in the PWE file
Store to RAM Options

Do Not Combine RAM Results with Hard Drive Results
[ 5ave the Min/Max Results stored to RAM in the PWE file

Save to Hard Drive Options
Mote: Al fields that are spedfied in a plot series of defined plot will also be stored to RAM,

[ 5tore Results for Open Devices Set All to NO for All Types Set Save All by Type ...

Generator  Bus load  Switched Shunt Branch Transformer DC Transmission Line VSCDCLine Mult-Terminal DC Record  Multi-Terminal DC Converter  Area  Zone  Interf
setalno | | ] B ek %D %0 @k 8 Records - Geo~ Set~ Columns - - g W S OBH- W - B | Options -
Save All| Save |Sawve Save Save Save Save Save | Save V |Sawve EfdSave Ifd| Sawve Save Save Save | Save |Save Save |%
From Rotor |Rotor Speed MW MW MW Mvar pu Vstab | VOEL | VUEL pu Status [Maching Exciter |C
Selection: Angle [Angle Mech Accel State State |S
Mo Shif
1[MNO MO NO NO MO NO NO NO NO MO O NO NO NO NO
Make Plot —
3 o 2|MO YES NO YES MO YES NO YES NO NO M s) O s) NO HES || NO §
Gen Bus 4 #1 Machine State\Edp
£ 0.56
I} ]
0 0.54]
I Graph shows
o 0.52]
2 ]
E 0.5 . t. .
0.08 ] variation in
k ]
< 0.46 E ’
3 0.44 ] d
c ]
Q ]
O 0.424
o T T T T T T T Y T T T Y T T T Y T T T Y
0 1 2 3 4 5

Time

== Gen Bus 4 #1 Machine State\Edp I
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Flux Decay Model

° If we assume Ty, Is sufficiently fast then

!dE’ ! !
T, dtd :—Ed+(xq—xq)|q:o
Ty —2=—E/ —(X4—X}) 1, +Eq
dt
do
— =0—0,
dt
2H dw , ,
— =T, —E/l, - quq—( X)Idlq ~T.y,

S

=T, —(X — X! )l » —E'| — X - X! )'dlq —Tew
=T, —E| —(x _X! )| | —T.,

o
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Flux Decay Model

(1 + jI,) &12) X, R, R, JXep

+

, e N
(X, - XPI, +jE,] /(&-72) <_.> .
R A (Vg + V) 5E2)




Rotor Angle Sensitivity to Tgop
T
® Graph shows variation in the rotor angle as Tqop is
varied, showing the flux decay Is same as Tgop =0

80
= Flux Decay
75 ———Two-Axis TqOp=0.75
Two-Axis TqOp=0.1
70 e TWO-AXis TqOp=0.05
/ ==—=Two-Axis Tq0p=0.02
(%]
g 65 \
oD
]
n \
1]
= 60
s
<
g
2 55 /
)

wu
o

N
9y

S
o

Simulation Tine, Seconds 29




Classical Model

o

* Has been widely used, but most difficult to justify
* From flux decay model  Xq = X, Tgo =0
E'=E, ¢&°=0
® Or go back to the two-axis model and assume
Xézxa Tyo =0 Tq’O:oo

(Eq =const  Ey =const)

E' = \/E(’qo2 +EY°

5" = tan‘l(E‘aO )—n/z
o ErO

30




Classical Model

Or, argue that an integral manifold exists for

Eq.Eq.Efd,Rf,VR such that Eq = const.

Eq +(Xq — Xg )lq = const

E'0 =\/(Egj°+(xg| X)) +ED

5" =tan"*()-7/2

A

31




Classical Model

(Id + qu )ej(s'n/2) _]X;i R_,. Re lep

E? &/(3+57) <i> Ci Vg ePvs

do
— = — W
dt

2Hdo __o __E'V
@ dt M XG+ Xep

SiN(8 — 05 ) —Trw

This is a pendulum model

o
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Classical Model Response

* Rotor angle variation for same fault as before

Gen Bus 4 #1 Rotor Angle

487
46
44-
42
40
38
36
34
32
307
28]
26
247
22
20
18]
167
143
12-
10

Gen Bus 4 #1 Rotor Angle

| | |

) N A

1 N 1 1 1
1 2 3 4 5
Time

|— Gen Bus 4#1Rotor Angle I

A
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Subtransient Models

AlM
The two-axis model is a transient model

Essentially all commercial studies now use subtransient
models

First models considered are GENSAL and GENROU,
which require X" =X",

This allows the internal, subtransient voltage to be
represented as

E"=V +(R, + jX"I

Ey + JE; = (v + iv§ ) o

34




Subtransient Models

Alw
® Usually represented by a Norton Injection with
e JErIE (v ivi)e
T R 4+ X” R+ jX"

* May also be shown as

S R T

35




GENSAL
o

®* The GENSAL model has been widely used to model
salient pole synchronous generators

— In the 2010 WECC cases about 1/3 of machine models were
GENSAL,; in 2013 essentially none are, being replaced by
GENTPF or GENTPJ

— A 2014 series EI model had about 1/3 of its machines models
set as GENSAL

* In salient pole models saturation is only assumed to
affect the d-axis

36




GENSAL Block Diagram

Xi—X
. X(,l_Xl
1 i l//’ Tyl +
+ a|Xqg—Xq |+
A

Field Current
To Exciter




GENSAL Example

T

® Assume same system as before with same common
generator parameters: H=3.0, D=0, R, = 0, X; = 2.1, X,
=2.0, X4=03, X"=X"=0.2, X, =0.13, T'y, = 7.0, T"y,
=0.07, T",, =0.07, 5(1.0) =0, and S(1.2) = 0.

® Same terminal conditions as before

® Current of 1.0-J0.3286 and generator terminal voltage of
1.072+j0.22 = 1.0946 ~11.59 °

® Use same equation to get initial o
E[£8=V +(R,+ jX )T

=1.729+ J2.22 =2.81/52.1°




GENSAL Example
T

® Then as before
V, B 0.7889 -0.61461(/1.0723 B 0.7107
V,| [0.6146 0.7889 || 0.220 | |0.8326
And l,| [0.7889 -0.6146 | 1.000 | [0.9909
l,| |0.6146 0.7889 || -0.3287 | |0.3553
V +(R + jX"I

~1.072+ j0.22+(0+ j0.2)(1.0— j0.3286)
~1.138+ j0.42

39




GENSAL Example

® Giving the initial fluxes (with o = 1.0)

] [0.7889 -0.6146[1.1387 [0.6396
w) | |0.6146 0.7889 || 0.420| | 1.031

® To get the remaining variables set the differential
equations equal to zero, e.g.,

wi=—(X,—XI)1, =—(2-0.2)(0.3553) = ~0.6396
E! =1.1298, ) =0.9614

o

40




Field Current

To Exciter

GENSAL Example




Comparison Between Gensal and

Flux Deca

o

ﬂ = Flux Decay =——GENSAL

A
J /\V/’\ Ay

Simulation Time (Seconds)

42




Nonlinear Magnetic Circuits

T
* Nonlinear magnetic models are needed because
magnetic materials tend to saturate; that is, increasingly
large amounts of current are needed to increase the flux

density

. R=0
“ di _, dg
v=-—=N-—*
“r dt dt
S
Linear A = LI

43




() o

Saturation

S,10) or Sal3)

A

44




Many different models exist to represent saturation
— There Is a tradeoff between accuracy and complexity

Saturation Models

o

Book presents the details of fully considering saturation
In Section 3.5

One simple approach is to replace

—(—Ey = (Xg =Xl +Eyy)

dE('q 1
dt T
With
qu _ 1
dt T,

. (—E(; —(Xg =X, _Se(E('q)_I_ Efd)

45




Saturation Models

® |n steady-state this becomes
E =E, +(Xy— Xyl +Se(E,)

® Hence saturation increases the required E¢4 to get a
desired flux

® Saturation is usually modeled using a quadratic
function, with the value of Se specified at two points
(often at 1.0 flux and 1.2 flux)

Se =B (E. — A)?
B(E! - A)?
E’

q

An alternative model Is Se =

A




