
ECEN 667 

Power System Stability

1

Lecture 9: Synchronous Machine Models

Prof. Tom Overbye

Dept. of Electrical and Computer Engineering

Texas A&M University, overbye@tamu.edu

mailto:overbye@tamu.edu


Announcements

• Read Chapter 5 and Appendix A

• Homework 3 is posted, due on Thursday Oct 5

• Midterm exam is Oct 17 in class; closed book, closed 

notes, one 8.5 by 11 inch hand written notesheet

allowed; calculators allowed
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Chapter 5, Single Machine, Infinite 

Bus System (SMIB)

Book introduces new variables by combining machine

values with line values 

Usually infinite bus

angle, qvs, is zero
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We are ignoring the exciter and governor for now; they 

will be covered in much more detail later
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Stator Flux Differential Equations
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Elimination of Stator Transients

• If we assume the stator flux equations are much faster 

than the remaining equations, then letting  go to zero 

allows us to replace the differential equations with 

algebraic equations
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Impact on Studies
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Image Source: P. Kundur, Power System Stability and Control, EPRI, McGraw-Hill, 1994

Stator transients are not considered in transient stability



3 fast dynamic states, now eliminated

, ,de qe oe  

7 not so fast dynamic states

1 2, , , , ,q d d q t fdE E E    

8 algebraic states

, , , , , , ,d q o d q t ed eqI I I V V V  

Machine Variable Summary
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We'll get

to the 

exciter

and 

governor

shortly
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Network Expressions

9



 

 

sin

cos

d e d ep q s vs

q e q ep d s vs

V R I X I V

V R I X I V

 q

 q

   

   

These two equations can be written as one 

complex equation.

        

vsj
s

j
qdepe

j
qd

eV

ejIIjXRejVV

q





  22

10

Network Expressions
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Stator Flux Expressions



 
 

 
 

 

 
 

 
 

 

2

2
1

q s q q

d q q d q

q s q s

jd s d d
q d

d s d s

X X X X
E X X I

X X X X

X X X X
j E e

X X X X

 






    
      
    

    
   

    

E

E 

12

Subtransient Algebraic Circuit



Network Reference Frame

• In transient stability the initial generator values are set 

from a power flow solution, which has the terminal 

voltage and power injection

– Current injection is just conjugate of Power/Voltage

• These values are on the network reference frame, with 

the angle given by the slack bus angle

• Voltages at bus j converted to d-q reference by
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Network Reference Frame

• Issue of calculating , which is key, will be considered 

for each model

• Starting point is the per unit stator voltages (3.215 and 

3.216 from the book)

• Sometimes the scaling of the flux by the speed is 

neglected, but this can have a major solution impact

• In per unit the initial speed is unity
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Simplified Machine Models

• Often more simplified models were used to represent 

synchronous machines

• These simplifications are becoming much less common 

but they are still used in some situations and can be 

helpful for understanding generator behavior

• Next several slides go through how these models can be 

simplified, then we'll cover the standard industrial 

models
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Two-Axis Model

• If we assume the damper winding dynamics are 

sufficiently fast, then T"do and T"qo go to zero, so there 

is an integral manifold for their dynamic states
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Two-Axis Model
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Two-Axis Model
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No saturation

effects are

included

with this

model
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Example (Used for All Models)

• Below example will be used with all models.  Assume a 

100 MVA base, with gen supplying 1.0+j0.3286 power 

into infinite bus with unity voltage through network 

impedance of j0.22

– Gives current of 1.0 - j0.3286 =  1.0526-18.19 

– Generator terminal voltage of 1.072+j0.22 = 1.0946 11.59 

22

Infinite Bus

slack

X12 = 0.20

X13 = 0.10 X23 = 0.20

XTR = 0.10

Bus 1 Bus 2

Bus 3

  0.00 Deg  6.59 Deg

Bus 4

1.0463 pu

 11.59 Deg

1.0000 pu

1.0946 pu -100.00 MW

-32.86 Mvar

100.00 MW

57.24 Mvar

Sign convention on

current is out of the

generator is positive



Two-Axis Example

• For the two-axis model assume H = 3.0 per unit-

seconds,  Rs=0, Xd = 2.1, Xq = 2.0, X'd= 0.3, X'q = 0.5, 

T'do = 7.0, T'qo = 0.75 per unit using the 100 MVA base. 

• Solving we get
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Two-Axis Example

• And
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  0.8326 0.3 0.9909 1.130

0.7107 (0.5)(0.3553) 0.533

1.1299 (2.1 0.3)(0.9909) 2.913

q

d
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E

E

E

   
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   

Saved as case B4_TwoAxis



Two-Axis Example

• Assume a fault at bus 3 at time t=1.0, cleared by 

opening both lines into bus 3 at time t=1.1 seconds
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Two-Axis Example

• PowerWorld allows the gen states to be easily stored.

26

Graph shows

variation in

Ed’



Flux Decay Model

• If we assume T'qo is sufficiently fast then
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Flux Decay Model

This model is no longer common
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Rotor Angle Sensitivity to Tqop

• Graph shows variation in the rotor angle as Tqop is 

varied, showing the flux decay is same as Tqop = 0
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Classical Model

• Has been widely used, but most difficult to justify

• From flux decay model

• Or go back to the two-axis model and assume 
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Or, argue that an integral manifold exists for 

Rffddq VREEE ,,,,  such that const.qE
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   j δ-π 2
d qI + jI e
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Classical Model
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This is a pendulum model



Classical Model Response

• Rotor angle variation for same fault as before
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Notice that 

even though

the rotor

angle is 

quite different, 

its initial increase

(of about 24

degrees) is 

similar.  However

there is no

damping 



Subtransient Models

• The two-axis model is a transient model

• Essentially all commercial studies now use subtransient

models

• First models considered are GENSAL and GENROU, 

which require X"d=X"q

• This allows the internal, subtransient voltage to be 

represented as 
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Subtransient Models

• Usually represented by a Norton Injection with

• May also be shown as
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 q dd q

d q

s s

jE jE
I jI

R jX R jX

     
  

  

 
   q d d q

d q q d

s s

j j j
j I jI I jI

R jX R jX

           
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In steady-state  = 1.0



GENSAL

• The GENSAL model has been widely used to model 

salient pole synchronous generators

– In the 2010 WECC cases about 1/3 of machine models were 

GENSAL; in 2013 essentially none are, being replaced by 

GENTPF or GENTPJ

– A 2014 series EI model had about 1/3 of its machines models 

set as GENSAL

• In salient pole models saturation is only assumed to 

affect the d-axis
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GENSAL Block Diagram

37

A quadratic saturation function is used.  For

initialization it only impacts the Efd value 



GENSAL Example

• Assume same system as before with same common 

generator parameters: H=3.0, D=0, Ra = 0, Xd = 2.1, Xq

= 2.0, X'd = 0.3, X"d=X"q=0.2, Xl = 0.13, T'do = 7.0, T"do

= 0.07, T"qo =0.07, S(1.0) =0, and S(1.2) = 0.

• Same terminal conditions as before

• Current of 1.0-j0.3286 and generator terminal voltage of 

1.072+j0.22 = 1.0946 11.59 

• Use same equation to get initial 
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 
1.072 0.22 (0.0 2)(1.0 0.3286)

1.729 2.22 2.81 52.1
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j j j
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    

    

Same delta as

with the other
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GENSAL Example

• Then as before

And   
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0.6146 0.7889 0.3287 0.3553
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      



GENSAL Example

• Giving the initial fluxes (with  = 1.0)

• To get the remaining variables set the differential 

equations equal to zero, e.g.,
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0.7889 0.6146 1.138 0.6396

0.6146 0.7889 0.420 1.031
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    2 0.2 0.3553 0.6396

1.1298, 0.9614

q q q q

q d

X X I

E


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        

  

Solving the d-axis requires solving two linear

equations for two unknowns



GENSAL Example
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0.4118

0.5882

0.17

Id=0.9909

d”=1.031

1.8

Eq’=1.1298
d’=0.9614

3.460

Efd = 1.1298+1.8*0.991=2.912



Comparison Between Gensal and 

Flux Decay
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Nonlinear Magnetic Circuits

• Nonlinear magnetic models are needed because 

magnetic materials tend to saturate; that is, increasingly 

large amounts of current are needed to increase the flux 

density
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dt

d
N

dt

d
v

R




 0

Linear Li



Saturation
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Saturation Models

• Many different models exist to represent saturation

– There is a tradeoff between accuracy and complexity

• Book presents the details of fully considering saturation 

in Section 3.5

• One simple approach is to replace

• With
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 
'

' '

'

1
( )

q

q d d d fd

do

dE
E X X I E

dt T
    

 
'

' ' '

'

1
( ) ( )

q

q d d d q fd

do

dE
E X X I Se E E

dt T
     



Saturation Models

• In steady-state this becomes

• Hence saturation increases the required Efd to get a 

desired flux

• Saturation is usually modeled using a quadratic 

function, with the value of Se specified at two points 

(often at 1.0 flux and 1.2 flux)
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' ' '( ) ( )fd q d d d qE E X X I Se E   

2

2

( )

( )
An alternative model is 

q

q

q

Se B E A

B E A
Se

E

 

 




A and B are

determined from

the two data 

points


