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Announcements

® Read Chapter 8
®* Homework 7 iIs posted; due on Thursday Nov 30
— Extended two days due to break

® Final is as per TAMU schedule. That is, Friday Dec 8
from 3 to 5pm
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Measurement Based Modal Analysis
T
* With the advent of large numbers of PMUSs,
measurement based SSA Is increasing used

— The goal is to determine the damping associated with the
dominant oscillatory modes in the system

— Approaches seek to approximate a sampled signal by a series
of exponential functions (usually damped sinusoidals)

® Several technigues are available with Prony analysis the
oldest

— Method, which was developed by Gaspard Riche de Prony,
dates to 1795; power system applications from about 1980's

®* Here we'll consider a newer alternative, based on the
variable projection method




Some Useful References
T
* J.F. Hauer, C.J. Demeure, and L.L. Scharf, "Initial
results in Prony analysis of power system response

signals,”" IEEE Trans. Power Systems, vol.5, pp 80-89,
Feb 1990

® D.J. Trudnowski, J.M. Johnson, and J.F. Hauer,
"Making Prony analysis more accurate using multiple

signals,” IEEE Trans. Power Systems, vol.14, pp.226-
231, Feb 1999

* A. Borden, B.C. Lesieutre, J. Gronguist, "Power System
Modal Analysis Tool Developed for Industry Use,"
Proc. 2013 North American Power Symposium,
Manhattan, KS, Sept. 2013




Variable Projection Method (VPM)
T
® ldea of all techniques Is to approximate a signal, y,(t),
by the sum of other, simpler signals (basis functions)

— Basis functions are usually exponentials, with linear and
quadratic functions also added to detrend the signal

— Properties of the original signal can be quantified from basis
function properties (such as frequency and damping)

— Signal is considered over an interval with t=0 at the beginning
* Approaches work by sampling the original signal y,(t)
® Vector y consists of m uniformly sampled points from
Yorg(t) at @ sampling value of AT, starting with t=0, with
values y; for j=1...m
— Times are then t= (J-1)AT




Variable Projection Method (VPM)

® Ateach time point J, where t; = (J-1)AT the
approximation of y; Is

JOEATID

where a 1S a vector with the real and imaginary
eigenvalue components, with ¢ (t;, a) = e for

a. corresponding to a real eigenvalue, and

& (t., o) =e"cos(a,,t;) and @, () = e“Isin(a,qt )

for a complex eigenvector value
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Variable Projection Method (VPM)
Alw

® Error (residual) value at each point j is
rj(tpa) — yj _yj(tpa)

— o IS the vector containing the optimization variables
® Function being minimized is

%g(yj ~9i(t,,0))’ :%Hr(a)Hz -




Variable Projection Method (VPM)
T

* A key insight of the variable projection method is that
y(a) =®(a)b
And then the residual is minimized by selecting
b=2®(a)"y
where ®(a) 1S the m by n matrix with values
D (a) = e if . corresponds to a real eigenvalue,

ait;
and @ ; (o) =€e™’ cos(«

i1+1

tj) and q)ji+l(a) — eaitj Sin(al+ltj)
for a complex eigenvalue; t, = ( j—1)AT

Finally, ®(a)" is the pseudoinverse of ®(a)




Pseudoinverse of a Matrix

Al
The pseudoinverse of a matrix generalizes concept of a
matrix inverse to an m by n matrix, in which m >=n

— Specifically talking about a Moore-Penrose Matrix Inverse
Notation for the pseudoinverse of A is A*

Satisfies AA*A = A

If A is a square matrix, then A* = A

Quite useful for solving the least squares problem since
the least squares solution of AX=Dbisx=A*b

Can be calculated using an SVD A=UXV’
A"=VXI'U'




Simple Least Squares Example

o

* Assume we wish to fix a line (mx + b = y) to three data
points: (1,1), (2,4), (6,4)

* Two unknowns, m and b; hence x = [m b]"

® Setup informof Ax =D

11
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m
b
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SO A=

o N
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Simple Least Squares Example

Alw
® Doing an economy SVD
-0.182 -0.765
. 6559 0 |[-0.976 -0.219
A=UXV' =|-0.331 -0.543
0 0.988| 0219 -0.976
| —0.926 0.345
* Computing the pseudoinverse
Ayt | 0976 0219f0.152 0 |[-0.182 0331 -0.926
- 7|-0219 -0.976| 0 1.012||-0.765 -0.543 0.345

A+_VZ+UT_'—0.143 -0.071 0.214
- | 0762 0548 —0.310
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Simple Least Squares Example

o

* Computing X = [m b]" gives

Ay ~0.143 -0.071 0.214 .l 0.429
0.762 0548 -0.310 1171

* With the pseudoinverse approach we immediately see
the sensitivity of the elements of x to the elements of b

— New values of m and b can be readily calculated if y changes
* Computationally the SVD is order m?n+n3 (with n <m)
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VPM Example

o

e Assume we'd like to determine the characteristics of the

below SMIB angle response

. A A A I \ I\
I\ | [ | I\ | \
| | [

o |
w
|

N

|/
/1A REL I A

N
o

iN ~——
o

o

Time

| —— Gen Bus 4 #1 Rotor Angle I

* For simplicity we'll just consider this signal from 1 to 2

seconds, and work with m=6 samples (AT=0.2, from 1
to 2 seconds); hence we'll set our t=0 as 1.0 seconds
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VPM Example
T

* Assume we know a good approximation of this signal
(over the desired range) Is

Vorg (1) = €77 (—13.58¢0s (11.97t ) + 8.345in (11.97t)) + 24.42°™*

®* Hence the zero error values would be

C0.047 1358 o
10.85
40.23
0.0065 24.42
i i : S 1494
* With AT=0.2, m=6then Y= g0
37.13
7.90 Y




VPM Example

—0.741 0.685 1.001

0.637 0.807 1.004
-1.026 -0.161 1.005
| 0.871 -0.583 1.006

@' (a)=|0.055 0259 -0.396 0.366 —0.096
0135 0206 0156 0.159 0.207
"_13.57
* GIVING p_q@(q)'y=| 834
2443

10.242 -0.213 -0.057 0.175 -0.328 0.181 |

—0.187
0.134

0079 -1016 1.003| b —q(a)'y —

o

1 0 1 @, (0) = e°%7°2 c0s(11.97x0.2) = —0.741
21
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VPM, cont.
A

® This Is an iterative process, requiring an initial guess of
o, and then a method to update o until the residual

vector, r, IS minimized
main%Hr(a)Hi =min %H(I—‘I’(“)‘I’(W)YHE

— Solved with a gradient method, with the details on finding the
gradient direction given in the Borden, Lesieutre, Gronquist
2013 NAPS paper

— lterative until a minimum is reached

* Like any iterative method, Its convergence depends on
the initial guess, In this case of a

16




VPM: Initial Guess of o

® The initial guesses for o are calculated using a Matrix
Pencil method

* First, with m samples, let L=m/2
®* Then form a Hankel matrix, Y such that

Ve Yo e Y
V= y.z }{3 e yl_.+2
| ym—L ym—L+1 Tt ym |

* And calculate its singular values with an economy SVD

Y =UxzV'

A
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VPM: Initial Guess of a
T
® The ratio of each singular value is then compared to the
largest singular value o ; retain the ones with a ratio >
than a threshold (e.g., 0.16)
— This determines the modal order, M

— Assuming V is ordered by singular values (highest to lowest),
let VV,, be then matrix with the first M columns of V

® Then form the matrices V, and V, such that
— V, Is the matrix consisting of all but the last row of V
— V, Is the matrix consisting of all but the first row of V|
— NAPS paper equation is incorrect on this

® Discrete-time poles are found as the generalized
eigenvalues of the pair {V,'V,, V,V,} 18




Generalized Eigenvalues
T
® Generalized eigenvalue problem for a matrix pair (A,B)
consists of determining values o, B, and x, such that

PAX, =@ BX. 1B = I then this gives the regular eigenvalues

® The generalized eigenvalues are then o, /B,

* If B i1s nonsingular than these are the eigenvalues of
B™A
— That is the situation here

® These eigenvalues are the discrete-time poles, z; ,with
the modal eigenvalues then

T
19

A =
AT




Returning to Example

* With m=6, L=3,

10.85 |
40.23
14.94
22.60
37.13

| 7.90 |

—>Y =

Y =UXV' - diag(X) =

* In this example we retain all three singular values

and

83.49 |
29.90

| 2261

10.85 40.23 14.94 22.60 |
40.23 1494 2260 37.13
11494 22,60 37.13 7.90 |

—0.4877
—0.5146
—0.5015
—0.4958

0.5731
—0.6759
—0.2497

0.3904

0.1241
—0.4375
0.7702

~0.4471 0.6339 |

o

~0.6468 |
—0.2948
0.3048
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Example

o

* Which gives
(-0.4877 05731 0.1241 | [ -0.5146 —-0.6759 —0.4375]
V,=|-0.5146 -0.6759 -0.437/5|, V,=|-0.5015 -0.2497 0.7702
| —0.5015 -0.2497 0.7702 | —0.4958 0.3904 -0.4471
(0.758 0.168 —0.226 [ 0.754 0.194 -0.222]
V,V,=]0.262 -0.316 0326 |, V/V,=| 0194 0.848 0.175
10.041 -0.660 —0.736 | -0.222 0.175 0.800 |

* And generalized eigenvalues of 1.0013, -0.741+)0.6854

o I —
Then with AT=0.2 = In(1.0013) _ 4 0as5
L In(1.0094042 +137.29) 0 047 4 i11.97

21




Example

V%Hr(a)H; = J(0) r(a)

A

This initial guess of a Is very close to the final solution

The iteration works by calculating the Jacobian, J(a)
(with details in the paper), and the gradient

A gradient search optimization (such as Golden
Section) Is used to determine the distance to move in
the negative gradient direction

For the example

J(a)' =

[ -7.25 452

-1.14 -029 -3.84 7.96 |

356 -038 -227 -240 181 -0.32

1121 555

6.14 -6.08 -5.72 -11.00
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Comments

T
These technigues only match the signals at the sampled
time points

The sampling frequency must be at least twice the

highest frequency of interest

— A higher sampling rate is generally better, but there is a
computational limitation associated with the size of the Hankel
matrix

— Aliasing is a concern since we are dealing with a time limited
signal

Detrending can be used to remove a polynomial offset
Method can be extended to multiple signals

23




®* Do VPM on speed for generator 2 from previous three

VPM: Example 2

bus small signal analysis case

— Calculated modes were at 1.51 and 2.02 Hz

60.0100 | ” [

60.0090

60.0080

60.0070

60.0060

60.0050

60.0040

60.0030

60.0020

60.0010

60.0000

59.9990

59.9980

59.9970

59.9960

n I\I

NvA Y A% Y/
AR ARV y
| /o
—_— v ¥
0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
[v = Speed_Gen Bus 1#1 [v =—— Speed_Gen Bus 2 #1 |[v =—— Speed_Gen 3 #1

o
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VPM: Example 2

A

* Below results were obtained from sampling the input
data every 0.1 seconds (10 Hz)

PWDVector Grid Variables

60.0055

60.005

—

60.0045 ’

60.004

60.0035

8
S 60.003
>

60.0025

60.002

60.0015 \ \4

60.001 \

60.0005 J :
60 u u

50 100 150 200 250 300 350 400 450 500

—— Original Value —— Reproduced Value I
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Example using PowerWorld Modal

B8 - SRHOBRERRE--

Analvysis Dialo

B3_CLS_3Gen 554 - Case: B3 CLS_3Gen_SSApwb Status: Running (PF) | Simulator 20

un Mcj

Draw Onelines Tools Options Add Ons ‘Window -
- cEE
- o ER
Simulation Status |Finished at 5.000000 aesults
Modal Analysis Status [Solved at 11/21/2017 8:56:09 AM
Run Transient Stability t | R c=  For Contingency: | Find | My Transient Contingency ~ ‘ Number of Complex and Real Modes
Select Step Results from RAM st Saneing Lowest Percent Dampin
Smulation - Start Time (Seconds) =3
Time Values
Options Minimum/Maximum Values ~ Summary Events  Solution Details e Update Sampled Data e e
Result Storage Generator Bus  Load  Switthed Shunt Branch Transformer DC TransmissionLine ¥SCDCLine Multi-Terminal DC Re
Plots Column Order o0 o0 aa g i, w4 Maximum Frequency (H2) e R
 Results from RAM B otk W8 % 8B, Records - set~ commns~ B9~ R~ WE-
© Tome Vol Chject then Field ~ ~
e Values Column Fite Time |Gen Bus1|GenBus2| Gen3#1 ~
Generator olumn Filtering #1Speed | #1 Speed | Speed
Filter Modiy... : T 5 5 5 Do Modal Analysis T =
2 0 1 1 1 2 -0
: onT| 0077 T 0004 Save in SIS Format Save to CSV 3 100,
[Juse Areafzane Filters 4/ 0.01 10017 1 1.0004
Transformer 5 0.02] 1.0016 1 1.0004
DC Transmission Lir Choose Fields to Dis... ™ 8 003 o8 11000
7 0.04) 1.0016 1 1.0004 < >
5C DC Line ] v Accel 8 0.05 1.0015  1.0001  1.0004
Modal Analysis Signal Dialog [ | Input Data, Actusl  Sampled InputData  Signals | Options
Type Units Descriptioon | Include | Standard Solved  |Average Err
Deviation Unscaled
Name Data Detrend Parameters Output Summary
1 VES 0.000 VES 0.0(
Type :l Detrend Model = A + B=(t-10) + C(t-10)~2 Used Detrend Model Average Error. Scaled by 5D | 0.0000
. l:l Use Case Default Detrend Model Parameter A 1.0005 Average Error. Unscaled
Descipton | | Signal Specific Detrend Model Parameter B 0.0000 Cost Function Value, Scaled | 0.0002
(®) None (O Linear
Parameter 0000 ncude Detrend in Reproduced Signal
include in Modal Analysis () Constant (O Quadratic
Standard Deviation (SD) | 0.0003 Update Reproduced
Actual Input | Sampled Input  Fast Fourier Transform Results  Modal Results  Original and Reproduced Signal Comparison
Time (Seconds) | Original Value Reproduced Value Difference | s o
1 0.010] 1.000 1.000
2 0.020 1.000 1.000 i
3 0.030 1.000 1.000 =
4 0.040 1.000 1.000 < 7 telp 1 Qlose
5 0.050 1.000 1.000
6 0.060 1.000 1.000 .
Print
7] 0.070 1.000 1.000 fEEE ™
g 0.080 1.000 1.000
] 0.090 1.000 1.000
10) 0100 1.000 1.000
11 0110 1.000 1.000
12 0.120 1.000 1.000
13 0.130 1.000 1.000
14] 0140 1.001 1.001
15 0.150 1.001 1.001
16 0.160 1.001 1.001
17| 0170 1.001 1.001
13| 0180 1.001 1.001
13 0.130 1.001 1.001
20) 0200 1.001 1.001
21 0210 1.001 1.001 i

Case is earlier B3 CLS _3Gen_SSA
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Example using PowerWorld Modal

Analysis Dialo

Modal &nalysis Dialog

Modal Analysis Status |Solved at 11/21/2017 &:56:09 AM

Data Sampling

Start Time (Seconds) :
End Time (Seconds) Z Update Sampled Data
Maximum Freguency (Hz) =

Results

Mumber of Complex and Real Modes |3

Lowest Percent Damping

Real and Complex Modes - Editable to Change Initial Guesses

Frequency (Hz}| Damping (%) |Largest Signal Mame o
Weighted Largest
Percentage for|Weighted

Li

Maode Percentage faor
dal v Mode
BT RTEE TE LS 1 7023 0.020 96,8395 Time (seq
2 1.514 0,012 24,8369 Time (sed)
Sawve in J5IS Format Save to C5V 3 0,000 100,000 2,2897 Time (seq)
< >
Input Data, Actual Sampled Input Data  Signals  Cptions
Case Title Variable Projection Results Options
) Default Case Detrend Model
Total Iterations Do Data Detrending () Constant () Quadratic
Initial Cost Function ® Linear

Ending Cost Function 0.0002

3515 Start Time |

| Show Solution Details

o oK ? Help

Singular Value Threshold 0.025)2

Variable Projection Options

Max [terations EI :
Mirimum Gradient Norm 0.00000100

Minimum Change in Cost Function | 9-0000100

AlM

®
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Values

® Results are quite poor if sampling is reducec

VPM: Example 2

PWDVectorGrid Variables

60.006

\

60.0055

7\

60.005

\\

60.0045

60.004

60.0035

60.003

60.0025

60.002

60.0015

60.001

60.0005

I
I
| LU
I
I

60

50

100

T
150 200 250 300

350

—— Original Value

—— Reproduced Value I

400

450

500

AlM

®
[®) Modal Analysis Diglog - x |
Modal AnclyssStatus [Sowved at 1/24/2017 5:03:59 AM eaks
Number of Complex and Real Modes |3
Data Sampling :
Lowest P 't Dampi
Start Time (Seconds) = PSR 8736
End Time (Seconds) = Update Sampled Data Real and Complex Modes - Editable to Change Initial Guesses
- Frequency (Hz)| Damping (%) |Largest Signal Name of  Li
Maximum Frequency (Hz) 1.500|= Weighted Largest
Percentage for|Weighted
Mode Percentage for|
Mode
Do Mol Aniyss i 0133 27.2297 Time (seg
2] -0.051 72,5167 Time (seq)
Save in J5I5 Format Save to C 3 4736 £3.2445 Time (sec)
€ >
Input Data, Actual  Sampled Input Data  Signals gntions
Type Name nits Descriptioon Include Standard Salved Average Errar, | Average Error, [ Cost Function 9
Deviation Unsealed | Scaled by SD Rel
1 0.0003 NO
< >
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Moving Forward with VPM

A

* Not all signals exhibit such straightforward oscillations,
since there can be other slower dynamics superimposed

®* How can this method be extended to handle these
S i tu ati O n S? Line 41754 (COUL1418) TO 41358 (COULEES3) CKT 1 MW To End

.

L9

a

o ®

o o
=

P

2

(@]

o

[oe]

n

™

—

<

P 1
& -589.4 ‘
—

g YRR
=1-589.6 \/
)

(@]

©

<

n

~

—

<

.

 -590.2 ~—i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time

41754 (COUL1418) TO 41358 (COULEES3) CKT 1 MW To End ||
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Moving Forward with VPM

AlM

®

®* Here are the results

PWDVectorGrid Variables

-587.9

-588
-588.1
-588.2
-588.3
-588.4
-588.5
-588.6
-588.7
-588.8

A\
\
-588.9 \\
\
\

Values

-589
-589.1
-589.2
-589.3
-589.4 \ /
-589.5
-589.6 v \
-589.7 \

-589.8 ; \
-589.9 N
\h

-590

=

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

= Original Value — Reproduced Value I
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