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Announcements

• Read Chapter 8

• Homework 7 is posted; due on Thursday Nov 30

– Extended two days due to break

• Final is as per TAMU schedule.  That is, Friday Dec 8 

from 3 to 5pm
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Measurement Based Modal Analysis

• With the advent of large numbers of PMUs, 

measurement based SSA is increasing used

– The goal is to determine the damping associated with the 

dominant oscillatory modes in the system

– Approaches seek to approximate a sampled signal by a series 

of exponential functions (usually damped sinusoidals) 

• Several techniques are available with Prony analysis the 

oldest

– Method, which was developed by Gaspard Riche de Prony, 

dates to 1795; power system applications from about 1980's

• Here we'll consider a newer alternative, based on the 

variable projection method
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231, Feb 1999 
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Variable Projection Method (VPM)

• Idea of all techniques is to approximate a signal, yorg(t), 

by the sum of other, simpler signals (basis functions)

– Basis functions are usually exponentials, with linear and 

quadratic functions also added to detrend the signal

– Properties of the original signal can be quantified from basis 

function properties (such as frequency and damping)

– Signal is considered over an interval with t=0 at the beginning

• Approaches work by sampling the original signal yorg(t)

• Vector y consists of m uniformly sampled points from 

yorg(t) at a sampling value of DT, starting with t=0, with 

values yj for j=1…m

– Times are then tj= (j-1)DT
5



Variable Projection Method (VPM)

• At each time point j, where tj = (j-1)DT the 

approximation of yj is 
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Variable Projection Method (VPM)

• Error (residual) value at each point j is

–  is the vector containing the optimization variables

• Function being minimized is
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Variable Projection Method (VPM)

• A key insight of the variable projection method is that 
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Pseudoinverse of a Matrix

• The pseudoinverse of a matrix generalizes concept of a 

matrix inverse to an m by n matrix, in which m >= n

– Specifically talking about a Moore-Penrose Matrix Inverse

• Notation for the pseudoinverse of A is A+

• Satisfies AA+A = A

• If A is a square matrix, then A+ = A-1

• Quite useful for solving the least squares problem since 

the least squares solution of Ax = b is x = A+ b

• Can be calculated using an SVD
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Simple Least Squares Example

• Assume we wish to fix a line (mx + b = y) to three data 

points: (1,1), (2,4), (6,4)

• Two unknowns, m and b; hence x = [m  b]T

• Setup in form of Ax = b
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Simple Least Squares Example

• Doing an economy SVD

• Computing the pseudoinverse
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Simple Least Squares Example

• Computing x = [m b]T gives

• With the pseudoinverse approach we immediately see 

the sensitivity of the elements of x to the elements of b

– New values of m and b can be readily calculated if y changes

• Computationally the SVD is order m2n+n3 (with n < m)
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VPM Example

• Assume we'd like to determine the characteristics of the 

below SMIB angle response 

• For simplicity we'll just consider this signal from 1 to 2 

seconds, and work with m=6 samples (DT=0.2, from 1 

to 2 seconds); hence we'll set our t=0 as 1.0 seconds 13
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VPM Example

• Assume we know a good approximation of this signal 

(over the desired range) is 

• Hence the zero error values would be

• With DT=0.2, m=6 then
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VPM Example

• To verify 

• Giving 
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VPM, cont.

• This is an iterative process, requiring an initial guess of 

, and then a method to update  until the residual 

vector, r, is minimized

– Solved with a gradient method, with the details on finding the 

gradient direction given in the Borden, Lesieutre, Gronquist

2013 NAPS paper

– Iterative until a minimum is reached

• Like any iterative method, its convergence depends on 

the initial guess, in this case of 
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VPM: Initial Guess of 

• The initial guesses for  are calculated using a Matrix 

Pencil method

• First, with m samples, let L=m/2

• Then form a Hankel matrix, Y such that

• And calculate its singular values with an economy SVD
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VPM: Initial Guess of 

• The ratio of each singular value is then compared to the 

largest singular value sc; retain the ones with a ratio > 

than a threshold (e.g., 0.16)

– This determines the modal order, M

– Assuming V is ordered by singular values (highest to lowest), 

let Vp be then matrix with the first M columns of V

• Then form the matrices V1 and V2 such that

– V1 is the matrix consisting of all but the last row of Vp

– V2 is the matrix consisting of all but the first row of Vp

– NAPS paper equation is incorrect on this

• Discrete-time poles are found as the generalized 

eigenvalues of the pair {V2
TV1, V1

TV1} 18



Generalized Eigenvalues

• Generalized eigenvalue problem for a matrix pair (A,B) 

consists of determining values k, bk and xk such that 

• The generalized eigenvalues are then k/bk

• If B is nonsingular than these are the eigenvalues of 

B
-1

A

– That is the situation here

• These eigenvalues are the discrete-time poles, zi ,with 

the modal eigenvalues then 
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Returning to Example

• With m=6, L=3, and

• In this example we retain all three singular values 
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Example

• Which gives

• And generalized eigenvalues of 1.0013, -0.741j0.6854

• Then with DT=0.2 
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Example

• This initial guess of  is very close to the final solution

• The iteration works by calculating the Jacobian, J() 

(with details in the paper), and the gradient

• A gradient search optimization (such as Golden 

Section) is used to determine the distance to move in 

the negative gradient direction

• For the example 
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Comments

• These techniques only match the signals at the sampled 

time points

• The sampling frequency must be at least twice the 

highest frequency of interest

– A higher sampling rate is generally better, but there is a 

computational limitation associated with the size of the Hankel

matrix

– Aliasing is a concern since we are dealing with a time limited 

signal 

• Detrending can be used to remove a polynomial offset

• Method can be extended to multiple signals
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VPM: Example 2

• Do VPM on speed for generator 2 from previous three 

bus small signal analysis case

– Calculated modes were at 1.51 and 2.02 Hz
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VPM: Example 2

• Below results were obtained from sampling the input 

data every 0.1 seconds (10 Hz)
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1.51 Hz with a dc offset;

the 2.03 frequency has

a value of almost

4 times that of the

1.51 Hz



Example using PowerWorld Modal 

Analysis Dialog
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Case is earlier B3_CLS_3Gen_SSA



Example using PowerWorld Modal 

Analysis Dialog
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Details of solution 

process are available

by selecting “Show

Solution Details.”



VPM: Example 2

• Results are quite poor if sampling is reduced to 1.5 Hz
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Sampling will be at twice

this frequency.  With 1.5

Hz we would sample at

three times per second,

which is too slow.  



Moving Forward with VPM

• Not all signals exhibit such straightforward oscillations, 

since there can be other slower dynamics superimposed

• How can this method be extended to handle these 

situations?
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Moving Forward with VPM

• Here are the results
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