ECEN 667 Power System Stability

Lecture 23:Measurement Based Modal Analysis, FFT

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, <u>overbye@tamu.edu</u>

Announcements

- Read Chapter 8
- Homework 7 is posted; due on Thursday Nov 30

- Extended two days due to break

• Final is as per TAMU schedule. That is, Friday Dec 8 from 3 to 5pm

Measurement Based Modal Analysis

- With the advent of large numbers of PMUs, measurement based SSA is increasing used
 - The goal is to determine the damping associated with the dominant oscillatory modes in the system
 - Approaches seek to approximate a sampled signal by a series of exponential functions (usually damped sinusoidals)
- Several techniques are available with Prony analysis the oldest
 - Method, which was developed by Gaspard Riche de Prony, dates to 1795; power system applications from about 1980's
- Here we'll consider a newer alternative, based on the variable projection method

Some Useful References

- J.F. Hauer, C.J. Demeure, and L.L. Scharf, "Initial results in Prony analysis of power system response signals," IEEE Trans. Power Systems, vol.5, pp 80-89, Feb 1990
- D.J. Trudnowski, J.M. Johnson, and J.F. Hauer, "Making Prony analysis more accurate using multiple signals," IEEE Trans. Power Systems, vol.14, pp.226-231, Feb 1999
- A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013 North American Power Symposium, Manhattan, KS, Sept. 2013

- Idea of all techniques is to approximate a signal, y_{org}(t), by the sum of other, simpler signals (basis functions)
 - Basis functions are usually exponentials, with linear and quadratic functions also added to detrend the signal
 - Properties of the original signal can be quantified from basis function properties (such as frequency and damping)
 - Signal is considered over an interval with t=0 at the beginning
- Approaches work by sampling the original signal $y_{org}(t)$
- Vector **y** consists of m uniformly sampled points from $y_{org}(t)$ at a sampling value of ΔT , starting with t=0, with values y_j for j=1...m

- Times are then $t_j = (j-1)\Delta T$

Ā M

• At each time point j, where $t_j = (j-1)\Delta T$ the approximation of y_j is

$$\hat{y}_j(\boldsymbol{\alpha}) = \sum_{i=1}^n b_i \phi_i(t_j, \boldsymbol{\alpha})$$

where $\boldsymbol{\alpha}$ is a vector with the real and imaginary eigenvalue components, with $\phi_i(t_j, \boldsymbol{\alpha}) = e^{\alpha_i t_j}$ for a_i corresponding to a real eigenvalue, and $\phi_i(t_j, \boldsymbol{\alpha}) = e^{\alpha_i t_j} \cos(\alpha_{i+1} t_j)$ and $\phi_{i+1}(\boldsymbol{\alpha}) = e^{\alpha_i t_j} \sin(\alpha_{i+1} t_j)$ for a complex eigenvector value

• Error (residual) value at each point j is

$$r_j(t_j, \boldsymbol{\alpha}) = y_j - \hat{y}_j(t_j, \boldsymbol{\alpha})$$

- $-\alpha$ is the vector containing the optimization variables
- Function being minimized is

$$\frac{1}{2}\sum_{j=1}^{m}(y_{j}-\hat{y}_{j}(t_{j},\boldsymbol{\alpha}))^{2}=\frac{1}{2}\|\mathbf{r}(\boldsymbol{\alpha})\|_{2}^{2}$$

 $\mathbf{r}(\alpha)$ is the residual vector

Method iteratively changes α to reduce the minimization function

• A key insight of the variable projection method is that $\hat{\mathbf{y}}(\boldsymbol{\alpha}) = \boldsymbol{\Phi}(\boldsymbol{\alpha})\mathbf{b}$

And then the residual is minimized by selecting

$$\mathbf{b} = \mathbf{\Phi}(\mathbf{\alpha})^+ \mathbf{y}$$

where $\Phi(\alpha)$ is the m by n matrix with values

$$\Phi_{ji}(\boldsymbol{\alpha}) = e^{\alpha_i t_j}$$
 if α_i corresponds to a real eigenvalue,

and $\Phi_{ji}(\boldsymbol{\alpha}) = e^{\alpha_i t_j} \cos(\alpha_{i+1} t_j)$ and $\Phi_{ji+1}(\boldsymbol{\alpha}) = e^{\alpha_i t_j} \sin(\alpha_{i+1} t_j)$ for a complex eigenvalue; $t_j = (j-1)\Delta T$ Finally, $\Phi(\boldsymbol{\alpha})^+$ is the pseudoinverse of $\Phi(\boldsymbol{\alpha})$

Pseudoinverse of a Matrix

- The pseudoinverse of a matrix generalizes concept of a matrix inverse to an m by n matrix, in which m >= n
 Specifically talking about a Moore-Penrose Matrix Inverse
- Notation for the pseudoinverse of A is A⁺
- Satisfies $AA^+A = A$
- If **A** is a square matrix, then $\mathbf{A}^+ = \mathbf{A}^{-1}$
- Quite useful for solving the least squares problem since the least squares solution of Ax = b is x = A⁺ b
- Can be calculated using an SVD $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T$

Simple Least Squares Example

- Assume we wish to fix a line (mx + b = y) to three data points: (1,1), (2,4), (6,4)
- Two unknowns, m and b; hence $\mathbf{x} = [m \ b]^T$
- Setup in form of Ax = b

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 6 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix} \text{ so } \mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 6 & 1 \end{bmatrix}$$

We are trying to select m and b to minimize the error in this overdetermined problem

Simple Least Squares Example

• Computing the pseudoinverse

 $\mathbf{A}^{+} = \mathbf{V} \, \mathbf{\Sigma}^{+} \mathbf{U}^{T} = \begin{bmatrix} -0.976 & 0.219 \\ -0.219 & -0.976 \end{bmatrix} \begin{bmatrix} 0.152 & 0 \\ 0 & 1.012 \end{bmatrix} \begin{bmatrix} -0.182 & -0.331 & -0.926 \\ -0.765 & -0.543 & 0.345 \end{bmatrix}$ $\mathbf{A}^{+} = \mathbf{V} \, \mathbf{\Sigma}^{+} \mathbf{U}^{T} = \begin{bmatrix} -0.143 & -0.071 & 0.214 \\ 0.762 & 0.548 & -0.310 \end{bmatrix}$

In an economy SVD the Σ matrix has dimensions of m by m if m < n or n by n if n < m

Simple Least Squares Example

• Computing $\mathbf{x} = [m b]^T$ gives

$$\mathbf{A}^{+}\mathbf{b} = \begin{bmatrix} -0.143 & -0.071 & 0.214 \\ 0.762 & 0.548 & -0.310 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 0.429 \\ 1.71 \end{bmatrix}$$

- With the pseudoinverse approach we immediately see the sensitivity of the elements of x to the elements of b
 New values of m and b can be readily calculated if y changes
- Computationally the SVD is order m^2n+n^3 (with n < m)

VPM Example

• Assume we'd like to determine the characteristics of the below SMIB angle response

The signal itself is given from 0 to 5 seconds; we will be sampling it over a shorter time period

For simplicity we'll just consider this signal from 1 to 2 seconds, and work with m=6 samples (ΔT=0.2, from 1 to 2 seconds); hence we'll set our t=0 as 1.0 seconds

VPM Example

• Assume we know a good approximation of this signal (over the desired range) is

 $y_{org}(t) = e^{0.047t} \left(-13.58 \cos\left(11.97t\right) + 8.34 \sin\left(11.97t\right) \right) + 24.42e^{0.0065t}$

37.13 7.90

• Hence the zero error values would be

$$\boldsymbol{\alpha} = \begin{bmatrix} 0.047\\11.97\\0.0065 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -13.58\\8.34\\24.42 \end{bmatrix} \quad \begin{bmatrix} 10.85\\40.23\\14.94\\22.60 \end{bmatrix}$$
With ΔT =0.2, m=6 then $\mathbf{y} = \begin{bmatrix} 22.60\\22.60 \end{bmatrix}$

How we got the initial α will be shown in a few slides

VPM Example

• To verify
First row is
t=0, second
t=0.2, etc
$$\Phi(\alpha) = \begin{bmatrix} 1 & 0 & 1 \\ -0.741 & 0.685 & 1.001 \\ 0.079 & -1.016 & 1.003 \\ 0.637 & 0.807 & 1.004 \\ -1.026 & -0.161 & 1.005 \\ 0.871 & -0.583 & 1.006 \end{bmatrix} \quad b = \Phi(\alpha)^{+} y \rightarrow$$

$$\Phi^{+}(\alpha) = \begin{bmatrix} 0.242 & -0.213 & -0.057 & 0.175 & -0.328 & 0.181 \\ 0.055 & 0.259 & -0.396 & 0.366 & -0.096 & -0.187 \\ 0.135 & 0.206 & 0.156 & 0.159 & 0.207 & 0.134 \end{bmatrix}$$
• Giving $\mathbf{b} = \Phi(\alpha)^{+} \mathbf{y} = \begin{bmatrix} -13.57 \\ 8.34 \\ 24.43 \end{bmatrix}$ Which matches the known values!

VPM, cont.

This is an iterative process, requiring an initial guess of α, and then a method to update α until the residual vector, r, is minimized

$$\min_{\boldsymbol{\alpha}} \frac{1}{2} \| \mathbf{r}(\boldsymbol{\alpha}) \|_{2}^{2} = \min_{\boldsymbol{\alpha}} \frac{1}{2} \| (\mathbf{I} - \boldsymbol{\Phi}(\boldsymbol{\alpha}) \boldsymbol{\Phi}(\boldsymbol{\alpha})^{+}) \mathbf{y} \|_{2}^{2}$$

- Solved with a gradient method, with the details on finding the gradient direction given in the Borden, Lesieutre, Gronquist 2013 NAPS paper
- Iterative until a minimum is reached
- Like any iterative method, its convergence depends on the initial guess, in this case of α

VPM: Initial Guess of α

- The initial guesses for α are calculated using a Matrix Pencil method
- First, with m samples, let L=m/2
- Then form a Hankel matrix, **Y** such that

$$\mathbf{Y} = \begin{bmatrix} y_1 & y_2 & \dots & y_{L+1} \\ y_2 & y_3 & \dots & y_{L+2} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m-L} & y_{m-L+1} & \dots & y_m \end{bmatrix}$$

The computational complexity increases with the cube of the number of measurements!

• And calculate its singular values with an economy SVD $\mathbf{Y} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$

VPM: Initial Guess of α

- The ratio of each singular value is then compared to the largest singular value σ_c ; retain the ones with a ratio > than a threshold (e.g., 0.16)
 - This determines the modal order, M
 - Assuming V is ordered by singular values (highest to lowest), let V_p be then matrix with the first M columns of V
- Then form the matrices \mathbf{V}_1 and \mathbf{V}_2 such that
 - $-\mathbf{V}_1$ is the matrix consisting of all but the last row of \mathbf{V}_p
 - $-\mathbf{V}_2$ is the matrix consisting of all but the first row of \mathbf{V}_p
 - NAPS paper equation is incorrect on this
- Discrete-time poles are found as the generalized eigenvalues of the pair $\{\mathbf{V}_2^T\mathbf{V}_1, \mathbf{V}_1^T\mathbf{V}_1\}$

Generalized Eigenvalues

- Generalized eigenvalue problem for a matrix pair (A,B) consists of determining values α_k , β_k and \mathbf{x}_k such that $\beta_k \mathbf{A} \mathbf{x}_k = \alpha_k \mathbf{B} \mathbf{x}_k$ If $\mathbf{B} = \mathbf{I}$ then this gives the regular eigenvalues
- The generalized eigenvalues are then α_k/β_k
- If B is nonsingular than these are the eigenvalues of B⁻¹A
 - That is the situation here
- These eigenvalues are the discrete-time poles, z_i, with the modal eigenvalues then

$$\lambda_i = \frac{\ln(z_i)}{\Delta T}$$

Recall the log of a complex number $z=r \angle \theta$ is $ln(r) + j\theta$

Returning to Example

• With m=6, L=3, and

- $\mathbf{Y} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T} \rightarrow diag(\mathbf{\Sigma}) = \begin{bmatrix} 83.49\\ 29.90\\ 22.61 \end{bmatrix}, \quad \mathbf{V} = \begin{bmatrix} -0.4877 & 0.5731 & 0.1241 & -0.6468\\ -0.5146 & -0.6759 & -0.4375 & -0.2948\\ -0.5015 & -0.2497 & 0.7702 & 0.3048\\ -0.4958 & 0.3904 & -0.4471 & 0.6339 \end{bmatrix}$
- In this example we retain all three singular values

Example

$$\mathbf{V}_{I} = \begin{bmatrix} -0.4877 & 0.5731 & 0.1241 \\ -0.5146 & -0.6759 & -0.4375 \\ -0.5015 & -0.2497 & 0.7702 \end{bmatrix}, \quad \mathbf{V}_{2} = \begin{bmatrix} -0.5146 & -0.6759 & -0.4375 \\ -0.5015 & -0.2497 & 0.7702 \\ -0.4958 & 0.3904 & -0.4471 \end{bmatrix}$$
$$\mathbf{V}_{2}^{T} \mathbf{V}_{I} = \begin{bmatrix} 0.758 & 0.168 & -0.226 \\ 0.262 & -0.316 & 0.326 \\ 0.041 & -0.660 & -0.736 \end{bmatrix}, \quad \mathbf{V}_{I}^{T} \mathbf{V}_{I} = \begin{bmatrix} 0.754 & 0.194 & -0.222 \\ 0.194 & 0.848 & 0.175 \\ -0.222 & 0.175 & 0.800 \end{bmatrix}$$

- And generalized eigenvalues of 1.0013, -0.741±j0.6854
- Then with $\Delta T=0.2$

$$\lambda_{1} = \frac{\ln(1.0013)}{0.2} = 0.0065$$
$$\lambda_{2,3} = \frac{\ln(1.0094 \angle \pm 137.2^{\circ})}{0.2} = 0.047 \pm j11.97$$

Example

- This initial guess of α is very close to the final solution
- The iteration works by calculating the Jacobian, $J(\alpha)$ (with details in the paper), and the gradient

$$\nabla \frac{1}{2} \left\| \mathbf{r}(\boldsymbol{\alpha}) \right\|_{2}^{2} = \mathbf{J}(\boldsymbol{\alpha})^{T} \mathbf{r}(\boldsymbol{\alpha})$$

- A gradient search optimization (such as Golden Section) is used to determine the distance to move in the negative gradient direction
- For the example $\mathbf{J}(\boldsymbol{\alpha})^{T} = \begin{bmatrix} -7.25 & 4.52 & -1.14 & -0.29 & -3.84 & 7.96 \\ 3.56 & -0.38 & -2.27 & -2.40 & 1.81 & -0.32 \\ 11.21 & 5.55 & 6.14 & -6.08 & -5.72 & -11.00 \end{bmatrix}$

Comments

- These techniques only match the signals at the sampled time points
- The sampling frequency must be at least twice the highest frequency of interest
 - A higher sampling rate is generally better, but there is a computational limitation associated with the size of the Hankel matrix
 - Aliasing is a concern since we are dealing with a time limited signal
- Detrending can be used to remove a polynomial offset
- Method can be extended to multiple signals

VPM: Example 2

- Do VPM on speed for generator 2 from previous three bus small signal analysis case
 - Calculated modes were at 1.51 and 2.02 Hz

Input data here is the red curve

VPM: Example 2

• Below results were obtained from sampling the input data every 0.1 seconds (10 Hz)

Calculated frequencies were 2.03 and 1.51 Hz with a dc offset; the 2.03 frequency has a value of almost 4 times that of the 1.51 Hz

Example using PowerWorld Modal Analysis Dialog

💽 🏪 - 👺 퉵 班 🖉 🏭 📃 😣 🔐 -

B3_CLS_3Gen_SSA - Case: B3_CLS_3Gen_SSA.pwb Status: Running (PF) | Simulator 20

File Case Information Draw Onelines Tools Options Add Ons

Transient Stability Data Not Transferred

	C Transient	Stability Analysis							A de del dos los initiations de la contraction de la contractio	Distant								- 🗆 🗙
	Simulation State	us Finished at 5.00	0000						Viodal Analysis	Dialog								
				- 4					Modal Analysis Statu	s Solved at 11/21/2017 8	:56:09 AM			Result	5			
	Run Transier	nt Stability Pause	Abort Restore	Reference For Continge	ncy: Find My 1	ransient Contingency	~		Data Sampling					Numbe	er of Complex a	and Real Modes		
Select Step Results from RAM									Start Time (Seconds) 0.010						Lowest Percent Damping			
	> Simulation	· ^	Time Values Minimur	n/Maximum Values Summa	ary Events Solu	tion Details			Start Time (Second	0.010	Lindata Ca	moled Data						
	> Result Sto	prage	Generator Bue	Load Switched Shunt	Branch Transfor	mer DC Transmission Line VS	C DC Line Multi-Terr	ninal DC P	End Time (Seconds) 5.000 🜲	Update Sa	mpied Data		Real a	nd Complex M	odes - Editable to		
> Plots Column Order							Maximum Frequency (Hz) 5,000						Frequency (Hz) Damping (
	✓ Results from the second	om RAM	Object then Field		11° 138 ⊋38 6 4	Records * Set * Col	lumns * 🛅 * 🛛 🛍	• " <u>0</u> 40 •	· · · · ·									
	✓ Time V	Values		Time	Gen Bus 1 G	en Bus 2 Gen 3 #1												^
	Ge	enerator	Filter Mr	dify	#1 Speed #	1 Speed Speed			Do N	todal Analysis					1 20	129 .01		
	Lo	bad		2	0 1	1 1					1				2 1.5	514 -0.		
	Sv	witched Shunt		3 0	.01 1.0017	1 1.0004			Save in JSIS F	ormat Save to CSV					3 0.0	-100,		
	Br	ranch	Use Area/Zone P	11ters 4 0	01 1.0017	1 1.0004												
	- Tr	ransformer C Transmission Lin	Charace Fields to Die	6 0	.03 1.0016	1 1.0004												
		C Transmission Lir	Choose Fields to Dis	7 0	.04 1.0016	1 1.0004								< ا		>		
			MW Accel	8 0	.05 1.0015	1.0001 1.0004			Input Data Actual	Sampled Input Data Sign	als Options							
Modal Analysis	s Signal Dialog						×		Input Data, Actual	Sampleu Input Data	opuoris	1 1		1	1	_		
									Туре	Name	Units	Descriptioon	Include	Standard	Solved	Average Err		
Name Time	(sec)	Data Detrend Para	meters			Output Summary			1	Time (sec)			YES	0.000	YES	0.00		
Туре		Detrend Model = A	$(+B^{*}(t-t0) + C^{*}(t-t0)^{2})$	2 Used Detrend Model	Linear	Average Error. Scaled by SD	0.0000											
Unite		Use Case De	fault Detrend Model	Parameter A	1.0005	Average Error. Unscaled	0.0000											
		Signal Specific	Detrend Model	Docomotor P	0.0000	Cost Function Value, Scaled	0.0002											
Description		None	OLinear	Farameter b	0.0000													
		0	0	Parameter C	0.0000	Include Detrend in Reprod	luced Signal											
[∨] Include in Mod	Jai Analysis	Constant	Quadratic	Standard Deviation (SD)	0.0003	Update Reproduced	1											
			the Martin of the O	ininal and Deproduced Sign	al Comparison			1										
Actual Input Sa	mpled Input Fast F	Original Value	Demonstration of Model Results	Difference	al comparison			1										~
1	(Seconds)	Unginal value	Reproduced value	Difference			A											
2	0.020	1.000	1.000	0.000				ear Min,										
3	0.030	1.000	1.000	0.000													7 Help	Close
4	0.040	1.000	1.000	0.000					<							>	1 2.4	J
6	0.060	1.000	1.000	-0.000				11	1 OK		2	Unio		brint				
7	0.070	1.000	1.000	-0.000					V OK		- *	пер		- THILE				
- 8	0.080	1.000	1.000	-0.000					V									
10	0.100	1.000	1.000	-0.000														
11	0.110	1.000	1.000	-0.000														
12	0.120	1.000	1.000	-0.000														
14	0.140	1.001	1.001	0.000														
15	0.150	1.001	1.001	0.000														
16	0.160	1.001	1.001	0.000														
18	0.180	1,001	1.001	0.000														
19	0.190	1.001	1.001	0.000														
20	0.200	1.001	1.001	0.000			~											
211	0.210	1.001	1.001	0.000														

Case is earlier B3_CLS_3Gen_SSA

Example using PowerWorld Modal Analysis Dialog

💽 Modal Analysis Dialog		- 🗆 🗙
Modal Analysis Status Solved at 11/21/2017 8:56:09 AM Data Sampling Start Time (Seconds) 0.010 • End Time (Seconds) 5.000 • Update Sampling Maximum Frequency (Hz) 5.000 • Image: Constraint of the same same same same same same same sam	ampled Data	Results Number of Complex and Real Modes 3 Lowest Percent Damping -100.000 Real and Complex Modes - Editable to Change Initial Guesses Signal Name of Largest Weighted Percentage for Mode 1 2.029 -0.020 96.8395 Time (sec) 2 1.514 -0.012 24.8369 Time (sec) 3 0.000 -100.000 2.2897 Time (sec)
Input Data, Actual Sampled Input Data Signals Options Case Title	Variable Projection Results Total Iterations 1 Initial Cost Function 0.0002	Coptions Default Case Detrend Model Constant Quadratic Linear Singular Value Thrachold Constant
JSIS Start Time	Show Solution Details	Variable Projection Options 0.023 • Max Iterations 20 • Minimum Gradient Norm 0.00000100 Minimum Change in Cost Function 0.0000100
СК ?	Process by sele Solutio	of solution s are available cting "Show n Details."

VPM: Example 2

• Results are quite poor if sampling is reduced to 1.5 Hz

💭 Mod	al Analysis Dia	log								x			
Modal A	nalysis Status So	olved at 11/21/2017 9:	03:59 AM			Results	_						
Data S	ampling					Number of Complex and Real Modes 3							
Start T	īme (Seconds)	0.010				Lowest Percent Damping		-8.736					
End Ti	me (Seconds)	5.000	Update Sam	pled Data		Real and Complex Mode	s - Editable to C	hange Initial Gue	ises				
Maxim	um Frequency (H:	z) 1.500 🖛				Frequency (Hz)	Damping (%)	Largest Weighted Percentage for Mode	Signal Name of Largest Weighted Percentage for Mode	Li			
	Do Modal	Analysis				1 1.503	0.133	27.2297	Time (sec)	<u> </u>			
Sa	ive in JSIS Format	a Save to C.				2 0.976	-0.051	72.5167 63.2445	Time (sec) Time (sec)				
						<				>			
Input Da	ta, Actual Samp	led Input Data Signal	ls Options										
	Туре	Name	Vnits	Descriptioon	Include Star	dard Solved	Average Error,	Average Error,	Cost Function	S Pat			
1							onstated	Stated by 50	0.0003	NO			
	6	mn	lind	N NAZİ	II h	o ot	t \	ioo					
	JC	uπp	Шų	ו עע נ		e al	ινν	ILE					
								_					
	thi	s tre	nnc	ien	CV	\/\/itl	n 1	5					
		5 11	240		Uy.	vviti		-0					
	1.1-			ر ار بر م			_	- 1					
		L WE	W	OUIO	J Sa	ampi	ea	่าเ					
						•							
	th	· 00 ·	tim		nor	SOC	n	A					
<	u n	66	unn	63	per	360		u,		/			
	wr	JICh	IS	too	SIO	W_							
				.00	0.0								

Moving Forward with VPM

- Not all signals exhibit such straightforward oscillations, since there can be other slower dynamics superimposed
- How can this method be extended to handle these situations?

Moving Forward with VPM

This is made up of five signals with frequencies from 0.123 to 1.1 Hz, with the highest magnitude at 0.634 Hz