ECEN 667 Power System Stability

Lecture 24:Stabilizer Design, Measurement Based Modal Analysis

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, <u>overbye@tamu.edu</u>

Announcements

- Read Chapter 9
- Homework 7 is posted; due on Thursday Nov 30
- Final is as per TAMU schedule. That is, Friday Dec 8 from 3 to 5pm

Eastern Interconnect Frequency Distribution

Results Provided by Ogbonnaya Bassey using FNET Data

Stabilizer Design

- The following slides give an example of stabilizer design using the below single-input power system stabilizer (type PSS1A from IEEE Std. 421-5)
 - We already considered the theory in lecture 22
 - The PSS1A is very similar to the IEEEST Stabilizer and STAB1

Figure 31—Type PSS1A single-input power system stabilizer

Image Source: IEEE Std 421.5-2016

Stabilizer References

- Key papers on the example approach are
 - E. V. Larsen and D. A. Swann, "Applying Power System Stabilizers Part I: General Concepts," in IEEE Transactions on Power Apparatus and Systems, vol.100, no. 6, pp. 3017-3024, June 1981.
 - E. V. Larsen and D. A. Swann, "Applying Power System Stabilizers Part II: Performance Objectives and Tuning Concepts," in IEEE Transactions on Power Apparatus and Systems, vol.100, no. 6, pp. 3025-3033, June 1981.
 - E. V. Larsen and D. A. Swann, "Applying Power System Stabilizers Part III: Practical Considerations," in IEEE Transactions on Power Apparatus and Systems, vol.100, no. 6, pp. 3034-3046, June 1981.
 - Shin, Jeonghoon & Nam, Su-Chul & Lee, Jae-Gul & Baek, Seung-Mook & Choy, Young-Do & Kim, Tae-Kyun. (2010). A Practical Power System Stabilizer Tuning Method and its Verification in Field Test. Journal of Electrical Engineering and Technology. 5. 400-406.

Stabilizer Design

- As noted by Larsen, the basic function of stabilizers is to modulate the generator excitation to damp generator oscillations in frequency range of about 0.2 to 2.5 Hz
 - This requires adding a torque that is in phase with the speed variation; this requires compensating for the gain and phase characteristics of the excitation system.
- The stabilizer input is typically shaft speed

Image Source: Figure 1 from Larsen, 1981, Part 1

Stabilizer Design

- T_6 is used to represent measurement delay; it is usually zero (ignoring the delay) or a small value (< 0.02 sec)
- The washout filter removes low frequencies; T₅ is usually several seconds (with an average of say 5)
 - Some guidelines say less than ten seconds to quickly remove the low frequency component
 - Some stabilizer inputs include two washout filters

Figure 31—Type PSS1A single-input power system stabilizer

Image Source: IEEE Std 421.5-2016

Example Washout Filter Values

Graph plots the equivalent of T₅ for an example actual system

With $T_5 = 10$ at 0.1 Hz the gain is 0.987; with $T_5 = 1$ at 0.1 Hz the gain is 0.53

Stabilizer Design

- The Torsional filter is a low pass filter to attenuate the torsional mode frequency
 - We will ignore it here
- Key parameters to be tuned at the gain, K_s, and the time constants on the two lead-lag blocks (to provide the phase compensation)

Figure 31—Type PSS1A single-input power system stabilizer

Stabilizer Design Phase Compensation

- Goal is to move the eigenvalues further into the left-half plane
- Initial direction the eigenvalues move as the stabilizer gain is increased from zero depends on the phase at the oscillatory frequency
 - If the phase is close to zero, the real component changes significantly but not the imaginary component
 - If the phase is around -45° then both change about equally
 - If the phase is close to -90° then there is little change in the real component but a large change in the imaginary component

Stabilizer Design Tuning Criteria

- Theoretic tuning criteria:
 - Compensated phase should pass -90° after 3.5 Hz
 - The compensated phase at the oscillatory frequency should be in the range of [-45°, 0°], preferably around -20°
 - Ratio $(T_1T_3)/(T_2T_4)$ at high frequencies should not be too large
- A peak phase lead provided by the compensator occurs at the center frequency $f_c = 1/(2\pi\sqrt{T_1T_2})$
 - The peak phase lead increases as ratio T_1/T_2 increases
- A practical method is:
 - Select a reasonable ratio T_1/T_2 ; select T_1 such that the center frequency is around the oscillatory frequency without the PSS

Example T₁ and T₂ Values

The average T_1 value is about 0.25 seconds and T_2 is 0.1 seconds, but most T_2 values are less than 0.05; the average T_1/T_2 ratio is 6.3

Stabilizer Design Tuning Criteria

• Eigenvalues moves as K_s increases

 K_{OPT} is where the damping is maximized K_{INST} is the gain at which sustained oscillations or an instability occur

• A practical method is to find K_{INST} , then set K_{OPT} as about 1/3 or 1/4 this value

Example with 42 Bus System

• A three-phase fault is applied to the middle of the 345 kV transmission line between Prairie (bus 22) and Hawk (bus 3) with both ends opened at 0.05 seconds

Step 1: Decide Generators to Tune and Frequency

• Generator speeds and rotor angles are observed to have a poorly damped oscillation around 0.6 Hz.

Step 1: Decide Generators to Tune and Frequency

• In addition to interpreting from those plots, a modal analysis tool could assist in finding the oscillation information

Modal Analysis Status Solved a	at 11/25/2017 3:59:17 PM				Results					
Data Source Source Type From Plot	Select Input Data from Plot Gen_Speed	~	Data Sampling Start Time (Seconds) End Time (Seconds)	3.000 ×	Number Lowest	r of Complex Percent Dam	and Real Mode ping odes - Editable	s 8 3.351 to Change Initial Guesse	·S	
File, JSIS Format File, Comtrade CFF	Select Input Data from File Browse		Maximum Frequency (Hz) 5.000		1	Frequency (Hz)	Damping A	Largest Weighted Percentage for Mode 99.1415	Signal Name of Largest Weighted Percentage for Mode Speed \ Gen Dolphin345 (23) #1	Lambda -0.1257
U File, Comtrade CFG	tal Analycic	Do	FET		2 3 4	0.935 1.328 0.043	7.196 7.215 8.694	51.9188 38.5432 96.5908	Speed \ Gen Oak345 (18) #2 Speed \ Gen Oak345 (18) #3 Speed \ Gen Prairie345 (22) #1	-0.4237 -0.6036 -0.0238
Just Load Signals Do Initial Modes Just Do Modal Analysis Save in JSIS Format Save to CSV						1.442 0.752 0.355	9.302 9.454 13.753	14.8146 36.3237 11.8553	Speed \ Gen Viking345 (19) #2 Speed \ Gen Ram345 (35) #1 Speed \ Gen Prairie345 (22) #1	-0.8462 -0.4488 -0.3095
					- 8	0.151	43.593	23.0976	Speed \ Gen Ram345 (35) #1	-0.4582

• We are going to tune PSS1A models for all generators using the same parameters (doing them individually would be better by more time consuming)

Step 2: Phase Compensation

- Select a ratio of T_1/T_2 to be ten
- Select T_1 so f_c is 0.6 Hz

$$\begin{aligned} f_c &= \frac{1}{\left(2\pi\sqrt{T_1T_2}\right)} = \frac{1}{\left(2\pi\sqrt{T_2T_210}\right)} = \frac{1}{\left(2\pi T_2\sqrt{10}\right)} \\ 0.6 &= \frac{1}{\left(2\pi T_2\sqrt{10}\right)} \to T_2 = \frac{1}{\left(2\pi\times0.6\times\sqrt{10}\right)} = 0.084 \\ T_1 &= 0.84 \end{aligned}$$

Step 3: Gain Tuning

- Find the K_{INST}, which is the gain at which sustained oscillations or an instability occur
 - This occurs at about 9 for the gain 0.08 0.06 0.04 0.02 C -0.02 -0.04 -0.06 -0.08 -0.1 12 6 8 10 14 16 18 4 20 — Vstab. Gen Grafton 345 (1) #1 — Vstab, Gen Lake345 (2) #1 Vstab. Gen Lake345 (2) #2 Vstab, Gen Oak 345 (18) #1 Vstab, Gen Oak345 (18) #2 Vstab, Gen Oak 345 (18) #3 ✓ — Vstab, Gen Viking345 (19) #1 Vstab, Gen Viking 345 (19) #2 ✓ ____ Vstab, Gen Viking345 (19) #3 ☑. Vstab, Gen Prairie345 (22) #1 Vstab, Gen Dolphin 345 (23) #1 🗹 — Vstab, Gen Dolphin 345 (23) #2 Vstab, Gen Lion 345 (42) #1 Vstab. Gen Ram345 (35) #1

Easiest to see the oscillations just by plotting the stabilizer output signal

Step 4: Testing on Original System

• With gain set to 3

Better tuning would be possible with customizing for the individual generators

Dual Input Stabilizers

Images Source: IEEE Std 421.5-2016

TSGC 2000 Bus VPM Example

Texas Synthetic Grid Company Ministry of the second of the second contains on CEL To reference to activity of the second contains on CEL To reference to activity of the second contains on CEL To reference to activity of the second contains on CEL To reference to activity of the second contains on CEL To reference to activity of the second contains on the second containsecond contains on the second contains on the second

Note: this grid is licitious and doesn't represent the real Texas grid

	Potential G	oal Plant R	etrements
1	Bus Number	Max MW	Status
	6078	563 MW	Cloved
	6079	563 MW	Closed
	6060	563 MW	Cloved
	8129	660 MW	Closed
	8130	GGD HW	Cloved
<u>.</u>	8131	660 MW	Closed

TSGC 2000 Bus Example

aquanciae ara

Results obtained with a time period from 1 to 20 seconds, sampling at 4 Hz Most significant

💭 Transient Stability Analysis												uei		5 010	
Simulation Status Not Initialized											- 1 0				
Run Transient Stability Paus	e Abort R	estore Reference	For Contingency: Find Gen Drop	1350 MW	~						AT ()		h ar	na () .32	
Select Step	Modal Analysis														
> · Simulation						Results									
> · Options	Modal Analysis	Status Solved	at 11/21/2017 9:15:17 AM						- 7						
> Result Storage	Data Source			D	ata Sampling			Numbe	er of Complex ar	nd Real Mod					
> Plots	Source Typ	e	Select Input Data from Plot		tart Time (Seconds)	1.0	00	Lowes	t Percent Dampi	ing					
Results from RAM	From Pl	ot	Pue Frequency Ten		tare mile (Seconda)	1.0	•								
> Transient Limit Monitors	O File, WE	CC CSV Type 2	Bus Frequency Ten V	E	nd Time (Seconds)	20.0	00 🚖	Real a	nd Complex Mo	des - Editable to	Change Initial Gu	Jesses			
> States/Manual Control		S Format	Coloret Terry & Data From File						Frequency (H	z) Damping (%	Largest	V Signal Name	of Lambda		
SMTR Eigenvalung	O File Co	mtrada CEE	Select input Data iron File	wse M	aximum Frequency	(Hz) 4.0	00				Weighted	Largest			
Modal Analysis		mtrade CEC									Percentage	Weighted			
- Inout Data Actual	Urile, Co	intrade CFG									Mode	Mode	or		
Sampled Input Data					-	0.22	25 43.4	10 78.14	61 Frequency \ B	.0.6816					
Signals		Do Mo	dal Analysis		2	2 0.32	28 15.4	07 69.05	75 Frequency \ B	u -0.3213					
Options	2 11 10								3 0.05	55 17.12	26 58.73	92 Frequency \ B	u -0.0600)	
Dynamic Simulator Options	Just Load Sig	Just Load Signals Do Initidal Modes Just Do Modal Analysis Save in JSIS Format Save t								14 4.5	54 35.78	32 Frequency \ B	u -0.1760		
-,							5 0.67	73 8.0	39 23.18	67 Frequency \ B	u -0.3432				
	l	bj 0.346 5.941 21.0955 Frequency\Bu -0.3538													
	Input Data, Ac	tual Sampled In	put Data Signals Options												
	🛄 📰 🖽	⇒ ¢ •.0 .00	🖗 💏 Records - Set - Column	s • 📴 • 🕴	11 · 11 · 11 · 1	^{ORT} ^{Zų} BCD f(x) ▼ ⊞	Option	s *							
	Ţ	/pe	Name	Units	Descriptioon	Include	Stand	ard	Solved	Average Error,	Average Error,	Cost Function	Set as Reference		
	1 Bus	Freque	ency \ Bus 2127 (MIAMI 0)		-	(ES	0.014	Y	ES	0.0003	0.0000	0.0018	NO		
	2 Bus	Freque	ency \ Bus 1079 (ODESSA 1 8)			/ES	0.014	Y	ES	0.0002	0.0000	0.0017	NO		
	3 Bus	Freque	ency \ Bus 8126 (MOUNT PLEASANT 1			/ES	0.015	Y	ES	0.0003	0.0000	0.0019	ON		
	4 Bus	Freque	ency \ Bus 5260 (GLEN ROSE 1 0)			(ES	0.014	14 YES 13 YES 12 YES 12 YES 14 YES 12 YES	ES	0.0002	0.0000	0.0017	NO		
	5 Bus	Freque	ency \ Bus 8082 (FRANKLIN 0)			/ES	0.013		ES	0.0002	0.0000	0.0012	0		
	7 Bus	Freque	ency \ Bus 7159 (HOUSTON 5.0)			/ES	0.012		0.0004	0.0000	0.0029	NO			
	8 Bus	Freque	ency \ Bus 4192 (BROWNSVILLE 1.0)			/FS	0.012		/ES 0.0 /ES 0.0	0.0002	0.0000	0.0018	NO		
	9 Bus	Freque	ency \ Bus 4195 (OILTON 0)			/ES	0.012			0.0002	0.0000	0.0015	NO		
	10 Bus	Freque	ency \ Bus 7042 (VICTORIA 2 0)			/ES	0.011	Y	ES	0.0005	0.0000	0.0058	NO		

Mode Observability, Shape, Controllability and Participation Factors

- In addition to frequency and damping, there are several other mode characteristics
- Observability tells how much of the mode is in a signal, hence it is associated with a particular signal
- Mode Shape is a complex number that tells the magnitude and phase angle of the mode in the signal (hence it quantifies observability)
- Controllability specifies the amount by which a mode can be damped by a particular controller
- Participation facts is used to quantify how much damping can be provided for a mode by a PSS

Determining Modal Shape Example

- Example uses the four generator system shown below in which the generators are represented by a combination of GENCLS and GENROU. The contingency is a self-clearing fault at bus 1
 - The generator speeds (the signals) are as shown in the right figure

Case is saved as B4_Modes

Determining Modal Shape Example

- Example uses the multi-signal VPM to determine the key modes in the signals
 - Four modes were identified, though the key ones were at 1.22,
 1.60 and 2.76 Hz

on Status N	ot Initialized ility Pause	Abort Restore Re	ference For Continge	ncy: Find My	Transient Conti	ngency	~							
Step	Modal Analysis													
mulation ptions esult Storage	Modal Analysis St	atus Solved at 4/16/20	016 4:48:50 PM		Data Sampling			Results Number of Comp	lex and Real Mod	les 4				
ots esults from F ansient Limit	Source Type From Plot	Select Gen s	Input Data from Plot	~	Start Time (Se	conds)	0.050	Lowest Percent	Damping	-14.864				
ates/Manua	◯ File, WECC	CSV Type 2			End Time (Sec	onds)	5.000 🚔	Real and Comple	x Modes - Editab	le to Change Init	al Guesses			
alidation MIB Eigenval odal Analysi: 	 File, JSIS F File, Combr File, Combr 	ormat Select I ade CFF ade CFG	nput Data from File	Browse	Maximum Freq	uency (Hz)	10.000	Freque	ncy (Hz) Dampir	ig (%) Largest Weighte Percenta Mode	d Larges ge for Weigh Percen Mode	Name of t ited itage for	Lambda	
- Sampled I		Do Modal Analys	is	Do FF	т			1	2.764	9.730 6	6.3686 Speed	\Gen 4+	-1.6978	
Signals		Do Hoddi / Haiyo						2	1.598	4.639 9	9.3323 Speed	\Gen 3+	-0.4664	
··· Options mamic Simul	Just Load Signals	Do Initial Mo	Just Do Mod	al Analysis	Save in JSIS F	ormat Save	e to CSV	4	0.236 -	14.864	7.1639 Speed	\ Gen 4+	0.2230	
	Input Data, Actual	Sampled Input Data	Signals Options cords • Set • Colun Units	nns - 📴 - 👹	t ∰ + ∰ + Include	Sont HEED Standard	Options - Solved	Average Error,	Average Error,	Cost Function	Set as			
	1 Gen	Sneed \ Gen Bu	s 1 #1		VES	0.000	VES	Unscaled 0.0000	Scaled by SD	0.0144	NO			
>	2 Gen	Speed \ Gen Bu	s 2 #1		YES	0.000	YES	0.0000	0.0000	0.0104	NO			
s Contingen	3 Gen	Speed \ Gen 3 #	£1		YES	0.000	YES	0.0000	0.0000	0.0146	NO			
e Contingen tiple Conting	4 Gen	Speed \ Gen 4 #	ŧ1		YES	0.000	YES	0.0000	0.0000	0.0099	NO			
														-

Determining Modal Shape Example

 Information about the mode shape is available for each signal; the mode content in each signal can also be isolated

Modal /	Analysis Signal	Dialog									x			
Name	Speed \ Gen B	us 1 #1	Data De	etrend Parameter	s				Output	Summary				
Туре	Gen		Detren	d Model = A + B*	(t-t0) + C*(t-t0)^2	Used Detrend Mod	el	Quadratic	Averag	Average Error. Scaled by SD 0.0000				
Units			V U	se Case Default [Detrend Model	Parameter A		1.0004	Averag	e Error. Unscaled	0.0000			
Description	n		Sigr	nal Specific Detre	nd Model	Parameter B		0.0002	Cost Fi	inction Value, Scaled	0.0144			
_			۲	None) Linear	Parameter C		-0.0000						
[√] Indud	le in Modal Analys	is	0	Constant	Quadratic Standard Deviation (S			(SD) 0.0001		Update Reproduced				
											_			
Actual In	put Sampled Inp	out Fast For	urier Tra	ansform Results	Modal Results Ori	iginal and Reproduce	d Signa	Comparis	on					
	Damping (%)	Frequency	(Hz)	Magnitude Scaled by SD	Magnitude, Unscaled	Angle (Deg)	Lamb	da	Include in Reproduced Signal					
1	9.730		2.764	0.146	0.000	-66.02		-1.698 Y	ES	-				
2	4.639		1.598	2.404	0.000	-141.46		-0.466 Y	ES ES					
4	-14.864		0.236	0.027	0.000	-158.97		0.223 Y	ES					
	ОК				? Help	Print								

Graph shows original and the reproduced signal

Determining Modal Shape Example

• Graph shows the contribution provided by each mode in the generator 1 speed signal

Modes Shape by Generator (for Speed)

• The table shows the contributions by mode for the different generator speed signals

Mode				
(Hz)	Gen 1	Gen 2	Gen 3	Gen 4
0.244	0.07	0.082	0.039	0.066
1.22	1.567	1.494	0.097	0.01
1.6	2.367	2.203	2.953	1.639
2.76	0.174	0.378	0.927	4.913

Image on the right shows the Gen 4 2.76 Hz mode; note it is highly damped

Modes Depend on the Signals!

- The below image shows the bus voltages for the previous system, with some (poorly tuned) exciters
 - Response includes a significant 0.664 Hz mode from the gen 4 exciter (which can be seen in its SMIB eigenvalues)

Inter-Area Modes in the WECC

- The dominant inter-area modes in the WECC have been well studied
- A good reference paper is D. Trudnowski, "Properties of the Dominant Inter-Area Modes in the WECC Interconnect," 2012
 Below figure from
 - Four well known modes are NS Mode A (0.25 Hz),
 NS Mode B (or Alberta Mode),
 (0.4 Hz), BC Mode (0.6 Hz),
 Montana Mode (0.8 Hz)

Below figure from paper shows NS Mode A On May 29, 2012

Example WECC Results

• Figure shows bus frequencies at several WECC buses following a large system disturbance

Example WECC Results

The VPM was run simultaneously on all the signals

 Frequencies of 0.20 Hz (16% damping and 0.34 Hz (11.8% damping)

Angle of 58.7° at 0.34 Hz and 132 ° at 0.20 Hz

Angle of -137.1° at 0.34 Hz and 142° at 0.20 Hz

Fast Fourier Transform (FFT) Applications: Motivational Example

- The below graph shows a slight frequency oscillation in a transient stability run
 - The question is to figure out the source of the oscillation (shown here in the bus frequency)
 - Plotting all the frequency values is one option,
 but sometimes small oscillations could get lost
 - A solution is to do an FFT

