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the disturbance, and the following recovery, to estimate the

parameters of the load model. In [4], [9], we found that the

ability of a parameter estimation algorithm to determine the

correct parameters of our test case was heavily dependent

on the amount of noise in the synthetic measurements. This

was due to parameter interdependency—when changing one

parameter has a similar impact on the simulation results as

another.

In this paper, we build on this work and investigate how

the choice or availability of measurements can impact the

accuracy of a parameter estimation algorithm in the presence

of measurement noise. This is important because often we

may not have access to our desired type of measurements.

For instance, the definition of a load model is one that maps

voltage inputs to real and reactive power (P and Q) outputs.

Thus, direct parameter estimation would require measurements

of P and Q for all the loads at a substation, which may not be

available due to the limited placement of PMUs. In such cases,

we may only have access to bus voltage measurements, and

would thus have to perform estimation indirectly by examining

the recovery of a fault induced delayed voltage recovery

(FIDVR) event. In this paper, we will analyze several scenarios

which differ in the type of measurements available, ranging

from local to wide-area power and voltage measurements.

A. Outline

In Section II, we introduce the load model for our case

study, the measurement-based load modeling algorithm, and

the impact of measurement noise. In Section III, we present

the scenarios we wish to study, the synthetic power grid we

use, and the synthetic measurements. In Section IV, we show

the results of the analysis, and finally conclude in Section V.

II. BACKGROUND

Measurement-based load modeling involves the selection of

a load model, followed by parameter estimation. The model we

will analyze is the complex load (CLOD) model. This model

and it’s parameter estimation are described here.

A. CLOD Model

The CLOD model is a composite model defined in Siemens

PSSE [10] and PowerWorld [11], which means that it com-

bines several simpler submodels. The CLOD model contains

both dynamic and static components, described here:

• Induction motors Two IMs labeled Large and Small

which are each characterized by a d-q reference frame

dynamic model.

Abstract—Measurement-based load model parameter estima-
tion uses measurements from a disturbance on the grid. Those 
measurements can include voltage and/or real and reactive power. 
In this paper, we show that the type of measurements used 
directly impacts the accuracy of parameter estimation. We look 
at four scenarios. With wide-area deployment of voltage sensors, 
such as PMUs, the resulting parameter estimation is very accu-
rate at high signal-to-noise ratios (SNR), but is very poor at low 
SNRs, because voltage has low sensitivity to the parameters. With 
only local deployment of complex power sensors, the estimate is 
worse than the first scenario at all SNRs. However, with wide-
area deployment of complex power sensors, the estimate becomes 
very robust to low SNR, because complex power has much higher 
sensitivity to the parameters. Combining wide-area voltage and 
power measurements produces the best results.

I. INTRODUCTION

Aggregate dynamic load models are designed to be used in 
transient stability simulations of large areas, such as the entire 
Eastern Interconnect. In such a large simulation, it would be 
infeasible to model loads down to the device level, for example

by implementing a separate induction motor (IM) model 
for each air conditioner or refrigerator compressor in every 
home. Instead, we use relatively few differential equations to 
represent the aggregate load at the bulk transmission level. 
This aggregation leads to many difficulties for the parameter 
estimation of the load model [1], [2], [3], [4]. The result 
is that our understanding of load models is relatively weak. 
For example, the authors in [5] found that in a survey of 97

electricity utilities globally, 70% of utilities were using static 
load models (e.g. constant power, ZIP, or exponential) for

transient stability studies. Additionally, 60% of utilities had 
not updated their load models (static or dynamic) within the

last 5 years. This lack of knowledge has made load models a 
source of major uncertainty in simulations [6]. For example, in
[7], the authors showed that for their proposed power system 
stabilizer algorithm, the tie-line flow required for the algorithm

to achieve a certain level of damping could vary by approxi-

mately 250% depending on the type of load model assumed. 
In the absence of an accurate and verified load model, we 
must err on the side of caution, thus potentially under-utilizing

our available resources [8]. Clearly, load modeling is an issue 
which needs to be tackled.

The preferred method of load model parameter estimation

is measurement-based estimation. In this approach, we wait

for a disturbance on the system to excite the dynamics of 
the load. We can then use measurements obtained during
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• Discharge lighting A piecewise polynomial that de-

scribes behavior during operating and extinguished states.

• Transformer losses Saturation and hysteresis losses.

• Constant MVA Constant real and reactive power.

• PI/QZ Constant current real power, constant impedance

reactive power.

The CLOD model also includes a feeder with a feeder

impedance. The parameters of the CLOD model are the

percentages allotted to each submodel, summing to 100%.

Since there are six submodels, we can set five parameters inde-

pendently. Additionally, we can also set the feeder impedance,

R and X , for a total of seven parameters. We chose to use the

CLOD model for our studies because it contains a sufficient

amount of dynamics but is still simple enough to understand.

B. Parameter Estimation of Load Models

Measurement-based parameter estimation seeks to produce

a model that best emulates, in simulations, the same input-

output characteristics of the real system. To do this, the

estimation algorithm solves for the model parameters that

minimize the difference between measured signals on the

grid and simulated results. Since dynamic models are desired,

steady state measurements are insufficient; we require an input

of sufficient magnitude to observe meaningful outputs. Power

system disturbances such as generator outages, load steps, and

line faults are our best sources of input. While these events

are near instantaneous, they are severe enough to result in a

period of recovery, and the behavior of the loads during that

time is used to determine their parameters.

For a given disturbance on the system, the traditional

measurement based parameter estimation approach [12] is to

find the parameters p which minimize the mean squared error

(MSE) between the measurements, Ymeas, and the simulation

results Yp. Since there are usually measurements at multiple

buses, we concatenate the measurements and simulation results

for each bus i:

p∗ =argmin
p

MSE(Ymeas, Yp)

= argmin
p

{

mean(||Ymeas − Yp||
2)
}

=argmin
p

{

1

I

1

T

I
∑

i=1

T
∑

t=0

(

Y i
meas[t]− Y i

p [t]
)2

}

(1)

The availability of Ymeas, the output (i.e. measurements)

recorded during the recovery, is the focus of this paper.

Possibilities include voltage magnitude, real power, reactive

power, and combinations of those.

C. Measurement Noise

Whenever real measurements are used, we must be con-

cerned about measurement noise and sensor inaccuracies. The

IEEE standard for PMUs (STD C37.118.1) lists an accuracy

requirement of 1% during steady state and 5% for voltage

steps of up to 0.1 pu [13]. This is equivalent to 40 dB signal-

to-noise ratio (SNR) and 26 dB SNR, respectively. There are

not, however, requirements for larger voltage steps, which may

often be seen during a fault. However, we may infer that

measurement error will be higher than 5% (SNR lower than

26 dB) for larger disturbances.

In [9], we analyzed how measurement noise affects the

accuracy of parameter estimation using a synthetic case and

fault, by artificially adding white noise. Due to insensitivity

of the simulation results to the parameters, the optimization

problem in (1) is very ill-conditioned, in that the cost function

is very flat near the optimal solution. As a result, the paper

showed that as SNR dropped, the estimation error increased

drastically. In that paper, the parameter estimation was done

using voltage measurements, since those are the most widely

available at the transmission level. In this paper, we will

determine if parameter estimation can be improved with the

use of other types of measurements, namely complex power.

In other words, we are trying to find the Y that makes (1)

most accurate and robust to noise. In the next section, four

possibilities are described.

III. SIMULATION SETUP

In this section, we define the four scenarios we will study,

as well as the synthetic power system and load model we will

use in our studies.

A. Description of Scenarios

The four scenarios differ in the type of measurements we

have access to. Table I lists the measurements used for each

scenario, the input-output relationship of the simulation, and

the objective function of the parameter estimation. It is also

illustrated in Fig. 1. Scenarios 1 and 2 are meant to represent

the current level of monitoring: wide-area voltage monitoring,

but limited power monitoring at only some feeders. In Scenario

1, we find the load model indirectly, by measuring the load

recovery’s impact on voltage, i.e. FIDVR. As opposed to

voltage, which can be measured by a single PMU at the

high voltage side, load power consumption is usually harder

to monitor, because it requires PMUs on each distribution

feeder. Thus, in Scenario 2, we assume we only have power

measurements at a few buses. As a result, instead of using a
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Fig. 1. Illustration of the voltage (V) and power (S) measurements of the 4
scenarios (color coding explained in Table I). The thick buses are part of the
bulk transmission system, while the distribution feeders are connected to the
thin buses.



TABLE I
SUMMARY OF SCENARIOS # 1 TO 4.

SCENARIO MEASUREMENTS SIMULATION OBJECTIVE FUNCTION

1 �� Wide-area V fault
system
−−−−→ Vp MSE(Vmeas, Vp)

2 �� Local V , P , Q Vmeas
SMIB
−−−−→ Pp, Qp MSE(Pmeas, Pp) +MSE(Qmeas, Qp)

3 �� Wide-area P , Q fault
system
−−−−→ Pp, Qp MSE(Pmeas, Pp) +MSE(Qmeas, Qp)

4 ���� Wide-area V , P , Q fault
system
−−−−→ Vp, Pp, Qp MSE(Vmeas, Vp)+MSE(Pmeas, Pp)+MSE(Qmeas, Qp)

Notes: system means the network model of the system. fault means the description of the disturbance. P and Q are normalized, based on the
steady state consumption of each load.

wide-area simulation of the system, we use a single-machine-

infinite-bus (SMIB) simulation of just the buses where power

measurements exist. The machine in this model is set to

“playback” mode, where the terminal voltage is set to the V

measurements. Scenario 3 represents a system with improved

wide-area complex power monitoring. In this case, we have

power measurements at all loads so we can return to a full

system simulation instead of using a SMIB. Finally, scenario

4 combines the wide-area measurements of scenarios 1 and 3

for the best possible case.

B. Power System and Fault Description

The power network we will use is the 37 bus case from

[14], shown in Fig. 2. It contains 57 branches, 9 generators,

25 loads, and bus voltages ranging from 69 kV to 345 kV.

A fictitious synthetic fault has been placed on the system at

bus 36, a centrally located bus, which occurs at 1 second and

self-clears after 0.5 seconds.

C. Synthetic Load Model Description

In order to assess the performance of the parameter estima-

tion algorithm, we require a set of measurements for which we

know the real load parameters. We can then use the difference

between the estimated parameters and the real parameters to

Fig. 2. 37 bus case from [14] used for validation (fault bus highlighted).

TABLE II
PARAMETERS DESIGNATED AS THE SYNTHETIC LOAD MODEL.

psyn =
[

0.24 0.19 0.3 0.09 0.18
]T

PARAMETER VALUE

Large motor 24%

Small motor 19%

Discharge lighting 30%

Transformer losses Neglected

Constant MVA 9%

PI/QZ 18%

Feeder R and X Neglected

judge the algorithm’s efficacy. Therefore, we use a synthetic

model with fictional parameters, psyn, to generate a set of

synthetic measurement data: Ysyn[t]. The synthetic load model

parameters are listed in Table II. The five bold ones are the

parameters the algorithm will solve for. We choose to ignore

the transformer and feeder losses, since those are relatively

insignificant compared to the other five parameters [6], which

represent the major classes of loads.

In order to quantify the performance of the algorithm, we

need to define an error metric. Since the CLOD parameters

are represented in a vector, a natural metric would be the Eu-

clidean distance between the estimate and the correct solution

||psyn − p∗||2, which we henceforth call the estimation error.

IV. RESULTS

We now investigate how the four scenarios described in

Section III-A affect the accuracy of the parameter estimation

under noisy conditions. In Fig. 3, we show the estimation error

as a function of SNR. We vary the SNR from 0 dB to 90 dB,

in 5 dB steps. For each noise level, we perform the test 5

times, each time with a new realization of white Gaussian

noise added to Vmeas. We expected that with low noise levels,

the correct solution would be obtained. As noise increased

(SNR decreased), the minimization of the MSE between Vmeas

and Vp may not converge to the correct solution. Upon first

inspection, we can see that scenarios 1 and 2 matched our

expectations, but scenarios 3 and 4 did not. Several of the

scenarios also have unpredictable behavior at low SNR, most



Fig. 3. The total estimation error as a function of the measurement SNR for
the 4 cases.

likely because computational feasibility would only allow us

to test 5 realizations of noise. Finally, at above 40 dB, the

curves flatten out. This means that the noise has dropped to a

low enough level as to not impact the algorithm’s convergence

to the correct global optimum. The following sections compare

and elaborate on the performance of each scenario.

A. Scenario 1: Wide-Area Voltage Measurements

In scenario 1, we see the expected increase in estimation

error as SNR drops. Above 25 dB, wide-area voltage mea-

surements provide the best accuracy. However, as discussed in

Section II-C, real measurements may not achieve the necessary

SNR for this to matter.

B. Scenario 2: Local Power Measurements

Scenario 2 suffers from the same problem at low SNR, but

even more so than scenario 1. This is because not only do the

measurements of P and Q include noise, but so does the input

to the simulation Vmeas. Thus, when we perform the SMIB

simulation, we obtain simulation results Pp and Qp that are

already degraded by the effects of noise. Then, when we com-

pare that to the noisy measurements, the effect is exacerbated.

At high SNR, scenario 2 also does not perform as well as

scenario 1. This means that even in ideal conditions, P and

Q still have a relatively flat objective cost near the optimum

p∗, resulting in the optimization algorithm converging to an

imperfect solution.

C. Scenario 3: Wide-Area Power Measurements

In scenario 3, the measurement SNR did not have much

impact on estimation error, which was surprising. At low SNR,

we find that scenario 3 performs much better than scenarios

1 or 2. What this points to is that when p is far away from

p∗, P and Q are much more sensitive to p than V is to p.

V
P
Q

Fig. 4. Illustrating the sensitivity of V , P , and Q to different parameters.

Fig. 4 illustrates this. In Fig. 4, one set of plots corresponds

to the simulation results at a bus using the parameters in Table

II. The other set corresponds to the results at the same bus,

but with the percentages of Large and Small IMs swapped.

While the V results are nearly overlapping, there is a visible

difference in P and a significant difference in Q.

To further analyze this sensitivity, we can visualize it by

contouring the log(·) of the cost function (1) by varying

each pair of parameters in the CLOD model. Fig. 5 shows

the contour for scenario 1. In the first subplot, Large and

Small motors are varied, while Constant Power and Discharge

Lighting are fixed to their correct values. The final parameter,

PI/QZ, is used as a “slack” parameter, to ensure they add to

100%. The remaining five subplots show the other pairwise

combinations of parameters, with PI/QZ always playing the

role of “slack” parameter. Fig. 6 shows the same figures for

scenario 3.

If we compare Figs. 5 and 6, we can see that, firstly, the

contours for scenario 3 span more orders of magnitude. This

confirms our hypothesis that P and Q are more sensitive to

parameters than V . As a result, when using P+jQ, even when

a high amount of noise exists, the optimization algorithm is

still able to converge to a reasonable solution. Secondly, the

contours for scenario 3 are much more circular than those for

scenario 1, which are more elongated. More circular contours

means that there is also less parameter interdependency: there

is a single optimal value for both parameters, and not a range

of optimal values for both. Both of these observations cause

scenario 3 to perform well at low SNR. At high SNR, scenario

3 performed identically to scenario 2. Thus, simply widening

our power measurements from local to wide-area does not

improve performance under ideal conditions. This means that,

while P and Q are most sensitive to p far away from p∗, V

is most sensitive to p near p∗.
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Fig. 5. Contours of the objective function cost (log scale) in case 1, for each pair of parameters. The white areas in the lower right corner of some plots
represent parameter vectors for which the simulation could not be solved.
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Fig. 6. Contours of the objective function cost (log scale) in case 3, for each pair of parameters. The white areas in the lower right corner of some plots
represent parameter vectors for which the simulation could not be solved.



TABLE III
COMPUTATIONAL COST REQUIRED FOR CONVERGENCE, WITH STANDARD

DEVIATIONS.

SCENARIO RUNTIME/ITERATION ITERATIONS

1 0.456± 0.187 s 78.2± 13.7
2 1.203± 0.045 s 76.9± 35.7
3 0.495± 0.187 s 104.2± 20.5
4 0.611± 0.187 s 88.7± 26.1

D. Scenario 4: Wide-Area Voltage and Power Measurements

We found in scenario 3 that wide-area power measurements

are best for finding a reasonable p, but scenario 1 showed us

that wide-area voltage provides the highest accuracy at low

levels of noise. Scenario 4 tries to capture the advantages of

both: the robustness of power to noise, and the accuracy of

voltage at high SNR. While the objective function is the sum

of the objective functions of scenarios 1 and 3, we can see

that the estimation error for scenario 4 is slightly better than

the average of the plots for scenarios 1 and 3. This is due to

the use of a weighted sum. Through empirical tests, we found

that weighting the MSE of voltage 5 times more than the MSE

of P and Q gives the best results in this case.

E. Computational Cost

In the previous sections, we compared how the use of

voltage or power affects the accuracy of parameter estimation.

In this section, we look at the computational cost of each

scenario. In scenarios 1, 3, and 4, we perform a single 37-

bus simulation. In scenario 2, we perform 25 separate SMIB

simulations, one for each bus which contains a load. Table III

summarizes the time required to evaluate each iteration and the

number of iterations required. For each of the four scenarios,

we measured the running time of 630 evenly spaced sets of

parameters, and the iterations required for convergence of 95

cases. The average and standard deviation of each scenario

was then calculated. We can see that scenario 2 is by far the

slowest. This can be attributed to the overhead required to

initialize 25 simulations, even though each SMIB simulation

is more simple than a 37-bus case. Scenario 4 requires slightly

longer to run than scenarios 1 and 3, but we feel that the

significant accuracy improvement justifies the small increase

in computational expense.

V. CONCLUSION

Load modeling has become increasingly important, but

the problem of load model parameter estimation remains

unsolved. We have found that when the dynamic response of

a load model is insensitive to its parameters, the parameter

estimation’s least-squares cost function becomes very shallow.

When random measurement noise is present, the noise causes

the optimization algorithm to converge to a random incorrect

estimate. In this paper, we looked at four possible sets of

input-output relationships that we can use for load modeling.

The first requires wide-area measurement of voltage. The

advantage of this first scenario is that voltage measurements

are abundant, and the results of parameter estimation using

voltage measurements are excellent for cases with low mea-

surement noise. The second uses measurements of voltage and

complex power at a local level, for example, at a single feeder.

However, this method is extremely susceptible to noise since

even the simulation results are contaminated by noise. The

third case requires wide-area complex power measurements.

The advantage of using complex power is that parameter

estimation using power is much more robust to noise than

using voltage, though it is not as accurate for low noise

cases. Finally, by combining both wide-area voltage and wide-

area power measurements, the best performance is achieved

across all SNRs, and is well worth the extra computational

time required. While we do not currently have the wide-area

complex power monitoring required to implement this fourth

case, thanks to the rapid expansion of the PMU network, this

could be a reality in the near future.
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