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extremely useful for GMD studies. Reference [7] presents a 
17-bus system designed for GIC calculation which models the 
Finish 400-kV grid. A 20-bus test case is designed in [8] for 
GMDs studies which includes transformer models and two 
voltage levels. These cases do not contain the ac power flow 
parameters and, hence, cannot be used for steady-state voltage 
stability analysis under a GMD. Reference [14] proposes an 
algorithm to generate realistic synthetic power system test 
cases. These cases include both the ac power flow parameters 
and the GMD-related parameters.

The geographic coordinates are the key parameters which 
are missing in the standard cases and are essential for GIC 
analysis. Graph drawing techniques may be utilized to obtain 
the geographic layout and consequently determine the coor-
dinates. A drawing of a graph is a pictorial representation of 
its vertices and edges. Very different layouts can be generated 
for the same graph with varying levels of understandability, 
usability and aesthetic. Various techniques have been devel-
oped for graph drawings each attempting to achieve different 
quality measures [9], [11], [12]. The common quality measures 
used for graph drawings are crossing number (number of edge 
pair that cross each other), the drawing area (the size of the 
smallest bounding box relative to the closest node distance) 
and symmetry display.

This paper proposes a framework to incorporate GMD 
modeling into the already-existing standard power system test 
cases. Kamada and Kawai (KK) Algorithm and Force-directed 
(FD) method are presented as two effective graph drawing 
algorithms. The geographic layout is developed using these 
techniques and the substation coordinates, the key parameters 
required for GIC analysis are obtained. The effectiveness of 
these techniques in retrieving the coordinates is evaluated 
through numerical results using the EPRI 20-bus test case. 
Moreover, the proposed procedure is applied to the IEEE-
24bus system and the necessary GMD-related parameters are 
defined for t his case.

The paper is organized as follows: The GIC model is intro-
duced in Section II. The proposed framework for determining 
the GIC-related parameters is presented in Section III. Section 
IV demonstrates the proposed technique through numerical 
results. Section V presents a conclusion and direction for 
future work.

Abstract—Realistic public test cases can facilitate the studies 
on the GMDs impacts on the power system by providing a bench-
mark to validate the related analysis tools. Many standard test 
cases are available for different aspects of power system analysis. 
These cases are designed for ac analysis and do not contain the 
necessary inputs such as the substation grounding resistances and 
the geographic coordinates which are essential for GMD studies. 
In this paper, a framework is proposed to generate GMD-related 
parameters for the existing standard power system test cases. 
The substation geographic coordinates are the key parameters 
which are missing in the existing cases. The Kamada and Kawai 
algorithm and the Force-directed method are presented as two 
effective graph drawing algorithms to generate the geographic 
layout and determine the coordinates. The effectiveness of the 
proposed framework is evaluated through numerical results using 
the 20-bus system and the IEEE 24-bus system.

I. INTRODUCTION

Solar coronal holes and coronal mass ejections can disturb 
the Earth’s geomagnetic field. These geomagnetic disturbances 
(GMD) in turn induce electric fields which drive low frequency 
currents in the transmission lines. These geomagnetically 
induced currents (GICs) can cause increased harmonic currents 
and reactive power losses by causing transformers half-cycle 
saturation. This may cause voltage instability by a combination 
of two means. First, the increased transformer reactive power 
losses may lead directly to voltage instability. Second, the har-
monic currents might cause relay misoperation and unintended 
disconnection of the reactive power providers such as static 
VAR compensators [1]–[4]. The 1989 Hydro-Québec blackout 
demonstrates the significance o f G ICs a nd t heir potential 
impacts on power grid. In March13, 1989, Hydro-Québec 
network with 21,500 MW generation and 2,000 kilometers of 
power lines went down for 9 hours and caused tens of millions 
of dollars damage to the utility and the costumers.

Considering the negative impacts of GMDs, proper mitiga-
tion programs are required to protect the system. One of the 
key challenges in GMD studies is the shortage of suitable test 
cases for evaluation purposes. Various power system test cases 
have been developed to validate the models associated with 
different aspects of power system such as power flow, dynam-
ics, distributions, reliability [6]. These cases are designed for 
ac analysis and do not contain the necessary inputs such as 
substation grounding resistances and geographic coordinates 
which are essential for GMD studies. Hence, developing 
realistic test cases which include GIC-related parameters is
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II. GIC MODELING

To calculate the voltage potential induced on the transmis-
sion line, the E-field is integrated over the length of the line.
Assuming uniform E-field, the DC voltage on the line between
bus n and m is expressed in:

Vnm = ENLN
nm + EELE

nm (1)

where LN
nm and LE

nm denote the northward and eastward line
distances; and EN and EE are the northward and eastward
E-fields, respectively. The induced voltages are converted to
the dc current injections through Norton Equivalent, and the
total current injections are derived from Kirchhoff’s current
law (KCL) [4]. The vector of current injections is obtained by
putting all the current injections together as given by INo =
CE where C depends on the length, orientation and resistance
of the lines.

The nodal network equations are written using KCL and
the bus voltages are obtained from the current injections as
expressed in:

V = G−1INo (2)

where matrix G is similar to the bus admittance matrix except
that it only captures the conductance values and is modified to
include substation grounding resistances. The GICs are related
to the bus voltages by Ohm’s law:

I = GSV = (GSG−1)INo = (GSG−1C)E = HE (3)

where GS is a diagonal matrix with the grounding resistances
on its diagonal and H is the coefficient matrix defined as
H := GSG−1C . This linear model indicates that the GICs
relate to the E-field through some constant coefficients. Matrix
H depends only on the network resistances and topology.

The GIC model represents the whole network and the vector
I includes the GICs at all transformers. Sometimes the whole
network is not of interest, and it is desired to reduce the model
to cover only specific transformers. To reduce the model,
the entries of the I vector corresponding to the specified
transformers are selected and the coefficient matrix is truncated
accordingly.

III. DETERMINING THE GIC-RELATED PARAMETERS

The key parameters required for GMD analysis, which
are usually missing in standard test cases, are the substation
grounding resistances and geographic coordinates. A rather
simplistic model for determining the substation grounding re-
sistances is used in [13]. In this model, the assumed resistance
depends on the highest substation voltage level and its assumed
size (based on the number of lines coming into the substation),
with larger, higher voltage substations having lower values.
Soil resistivity, which certainly can have an impact, is not
included in this simplistic model. Ballpark values are usually
substantially below 0.5Ω for 230kV and above substations,
and between 1 and 2Ω for the lower voltage substations.

The geographic coordinates may be obtained through de-
veloping a geographic layout of the system using the existing
graph drawing techniques as described in the following.

Fig. 1. Example of using FD method for layout design.

A. Force-directed Graph Drawings

Force-directed graph drawings is a method for drawing
graphs in a way that looks pleasant to the eye [11]. The
vertices of the graph are positioned in two-dimensional or
three-dimensional space so that the edges are about the same
length and the number of crossings is minimized. The al-
gorithm assigns forces among the set of edges and the set
of vertices and uses these forces to simulate the movement
of the vertices or to minimize their energy. Attractive forces
like springs are used to attract the vertices that are connected
in the graph (based on Hooke’s law). Repulsive forces like
electrically charged particles are used to separate all pairs of
vertices (based on Coulomb’s law). The layout is obtained
by solving for the equilibrium state of this system of forces.
In equilibrium, the edges have similar lengths because of the
spring attractions and the vertices are as far as possible from
each other due to the electric repulsive forces.

The attractive and repulsive forces between a pair of vertices
are defined as {

fa(d) = d2

k

fr(d) = −k2

d

(4)

where fa and fr are respectively the attractive and repulsive
forces and d is the distance between the pair of vertices. k is
the optimal distance between the vertices as given by

k = C

√
area

number of vertices
(5)

where C is a constant. The algorithm reduces the number
of edge-crossings significantly and the resulting layout is
aesthetically pleasant. Fig. 1 illustrates an example of using
FD method for layout design.

B. Kamada and Kawai Algorithm

The FD method does not preserve the distances between the
vertices and the edges, and the resulting layout has uniform
lengths. Sometimes, it is desired to maintain the distances,
especially in GMD applications where the line lengths have
significant impact on the GIC flows. The Kamada and Kawai
algorithm minimizes the difference between the ideal lengths
and actual ones instead of minimizing the number of edge
crossings [12]. Unlike the FD algorithm, no repulsive forces
are considered between vertices. Spring forces are used be-
tween all pairs of vertices, with ideal spring lengths equal to



the vertices’ graph-theoretic distance. The optimal layout is
obtained by minimizing the total spring energy.

Let n be the number of vertices and p1, p2, · · · , pn be the
particles in a plane representing the vertices v1, v2, · · · , vn
respectively. The energy of the system is given by

E =
n−1∑
i=1

n∑
j=i+1

1

2
kij(|pi − pj | − lij) (6)

where lij is the desired length of the spring between pi and
pj and is calculated by

lij =
L0

max
i≤j

dij
dij (7)

where dij is the distance between vi and vj and L0 is the
length of the display area. kij is the strength of the spring
between pi and pj as expressed in:

kij =
Kspr

d2ij
(8)

where Kspr is a constant. For a two-dimensional space,
the particle pi is represented by the rectangular coordinates
(xi, yi) and the system energy in (6) is given by

E =
n−1∑
i=1

n∑
j=i+1

1

2
kij{(xi − xj)2 + (yi − yj)2

+ l2ij − 2lij

√
(xi − xj)2 + (yi − yj)2} (9)

The necessary condition of the local minimum is as follow:

∂E

∂xm
=

∂E

∂ym
= 0, 1 ≤ m ≤ n (10)

The partial derivative of the energy with respect to x and y is
expressed in:

∂E

∂xm
=

∑
i6m

kmi{(xm − xi)−
lmi(xm − xi)√

(xm − xi)2 + (ym − yi)2
}

∂E

∂ym
=

∑
i6m

kmi{(ym − yi)−
lmi(xm − xi)√

(xm − xi)2 + (ym − yi)2
}

(11)

This gives rise to a system of 2n nonlinear equations and
Newton-Raphson may be used for solving it.

Note that KK requires the line lengths as input. However,
the lengths are not usually available for the synthetic cases. To
address this, the line conductance may be used as a criterion
to determine the length. The line conductance depends on
its conductor type, the conductor bundling structure and the
length. The conductor type and the bundling structure depend
on the voltage level. Heuristics may be developed to get
the resistance per meter for different voltage levels through
the statistical analysis of the real power systems. Using the
resistance (available in standard test cases) and the estimated
resistance per line, the line length can be estimated.
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Fig. 2. One-line diagram of the 20-bus system.
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Fig. 3. The geographic layout of the 20-bus system using the available
coordinates.

IV. NUMERICAL RESULTS

In this section, the geographic layouts of two power systems
are developed using the KK and BF methods. The first system
to study is the 20-bus system in [8] with the one-line diagram
shown in Fig. 2. This case is designed specifically for GMD
applications and contains substation geographic coordinates.
Fig. 3 illustrates the geographic layout of the system using
the available coordinates.

The Kamada and Kawai algorithm is utilized to develop a
geographic layout as shown in Fig. 4. The coordinates are not
provided to the algorithm and are to be estimated. Instead, the
line lengths are calculated from the coordinates and are given
to the algorithm:

a = sin2(
φ2 − φ1

2
) + cos(φ1)cos(φ2)sin2(

λ2 − λ1
2

)

c = 2atan2(
√
a,
√

1− a)

d = Rc (12)
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Fig. 4. Geographic layout of the 20-bus system obtained from the KK
algorithm.
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Fig. 5. Comparison of the line lengths obtained from the KK algorithm with
the actual ones for the 20-bus system.

where φ and λ are latitude and longitude respectively, d is
the distance between points 1 and 2 (in mile), and R is the
Earth radius, i.e. 6,371 km. Figure 4 illustrates the resulting
layout obtained from the KK algorithm. Comparing this layout
with the actual one in Fig. 3, it is observed that the layout
developed by KK algorithm preserves the lengths, but does
not capture the original layout. This is because developing the
layout from only the line lengths does not provide a unique
solution and additional information is required to retrieve the
original layout.

The line lengths are calculated for the layout developed
by the KK algorithm and are compared with the actual ones
derived from the coordinates. This comparison is illustrated in
Fig. 5. The obtained lengths agree well with the actual ones,
except for some occasional mismatches.

Next, the geographic layout is calculated through the FD
algorithm as illustrated in Fig. 6. The resulting layout has
only one crossing and the line lengths are almost uniform.
The algorithm uses only the incident matrix as input and the
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Fig. 6. Geographic layout of the 20-bus system obtained from the FD method.

actual line lengths are ignored.
The second system to study is the IEEE 24-bus system with

the one-line diagram shown in Fig. 7. This system is designed
for ac analysis and does not contain the substation geographic
coordinates. To make it suitable for GMD studies, the KK
algorithm is utilized to develop a geographic layout of the
system and consequently obtain the substation coordinates.
The resulting layout is shown in Fig. 8. The KK algorithm
takes the incident matrix and the line lengths as input. The
required line lengths are collected from the available data in
[15]. Note that the line lengths are not usually available for
the synthetic standard cases and the line conductances may be
used to estimate them as described in Section III. Alternatively,
the FD method may be used instead of KK algorithm to get
the layout since it does not require the line lengths.

The line lengths obtained from the KK layout are compared
with the actual lengths in Fig. 9. There is relatively good
agreement between the obtained and actual lengths.

Next, the layout is obtained using the FD method as shown
in Fig. 10. Unlike the KK layout, that had many crossings
and looked very crowded; this layout has only one crossing
and appears aesthetically pleasant. The line lengths are almost
uniform and bear no correlation with the actual lengths.

Pearson correlation coefficient is used to measure the cor-
relation between the actual lengths and those obtained from
the investigated layout designs. The definition of Pearson
coefficient is as follow:

ρX,Y =
cov(X,Y )

σXσY
(13)

where ρX,Y and cov(X,Y ) are the Pearson correlation and
covariance between signals X and Y , respectively, and σ is the
standard deviation. Table I presents the correlation coefficients
for both drawing methods and the two investigated systems.
It is observed that the KK algorithm provides much better
correlation than the FD method. Moreover, the correlations
are higher for the EPRI 20-bus case than the IEEE 24-buse
system. This could relate to the fact that the 20-bus case



Fig. 7. One-line diagram of the IEEE 24-bus system.
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Fig. 8. Geographic layout of the IEEE 24-bus system obtained from the KK
algorithm.

was originally designed for GMD studies and has an actual
geographic layout. On the other hand, the 24-bus system may
not have been designed based on a real geographic layout, and
therefore, there might be no feasible layout that can correlate
well with the available line lengths. Further exploration into
the feasibility of the geographic layout given a set of line
lengths will be an interesting future direction.

V. CONCLUSIONS

In this paper, a framework is proposed to incorporate the
GMD modeling into the already existing standard power sys-
tem cases. The geographic coordinates are the key parameters
that are missing in the standard cases and are essential for
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Fig. 9. Comparison of the line lengths obtained from the KK algorithm with
the actual ones for the 24-bus system.
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Fig. 10. Geographic layout of the IEEE 24-bus system obtained from FD
method.

GMD studies. KK and BF are presented as two effective graph
drawing techniques to generate the geographic layout and
consequently get the coordinates. The proposed framework
is applied to the 20-bus and the IEEE 24-bus systems and
their coordinates are determined. Numerical results indicate
that the layout obtained from KK preserves the line lengths,
while BF provides a layout which is aesthetically pleasing,
but its resulting lengths have little correlation with the actual
lengths.

The study suggests several directions for future research:
First, the algorithm can be applied to other standard test cases
such as the IEEE 118-bus or the 300-bus systems. Second, the
algorithm for estimating the line lengths from their resistances
were described briefly. This algorithm can be further refined
and statistical analysis of the actual systems may be utilized to
verify its effectiveness. Last, the effectiveness of the test cases
generated from the proposed framework may be validated by
performing GMD studies on the generated case and evaluating
the results.



TABLE I
GROUNDING RESISTANCES OF THE 20-BUS TEST CASE.

Test Case Kamada-Kawai Force-directed
IEEE 24-bus 0.694 0.1711
EPRI 20-bus 0.8554 0.3441
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