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Announcements

• Read Chapter 6 

• Homework 2 is due today
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Linear System Solution: Introduction

• A problem that occurs in many is fields is the solution 

of linear systems Ax = b where A is an n by n matrix 

with elements aij, and x and b are n-vectors with 

elements xi and bi respectively

• In power systems we are particularly interested in 

systems when n is relatively large and A is sparse
• How large is large is changing 

• A matrix is sparse if a large percentage of its elements 

have zero values
• Goal is to understand the computational issues (including 

complexity) associated with the solution of these systems 
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Introduction, cont.

• Sparse matrices arise in many areas, and can have 

domain specific structures

• Symmetric matrices

• Structurally symmetric matrices

• Tridiagnonal matrices

• Banded matrices

• A good (and free) book on sparse matrices is available at 

www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

• ECEN 615 is focused on problems in the electric power 

domain; it is not a general sparse matrix course

• Much of the early sparse matrix work was done in power!
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Gaussian Elimination

• The best known and most widely used method for 

solving linear systems of algebraic equations is 

attributed to Gauss

• Gaussian elimination avoids having to explicitly 

determine the inverse of A, which is O(n3)

• Gaussian elimination can be readily applied to sparse 

matrices

• Gaussian elimination leverages the fact that scaling a 

linear equation does not change its solution, nor does 

adding on linear equation to another

1 2 1 22 4 10 2 5x x x x        
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Gaussian Elimination, cont.

• Gaussian elimination is the elementary procedure in 

which we use the first equation to eliminate the first 

variable from the last n-1 equations, then we use the 

new second equation to eliminate the second variable 

from the last n-2 equations, and so on

• After performing n-1 such eliminations we end up with 

a triangular system which is easily solved in a 

backward direction
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Example 1

• We need to solve for x in the system

• The three elimination steps are given on the next 

slides; for simplicity, we have appended the r.h.s. 

vector to the matrix 

• First step is set the diagonal element of row 1 to 1 (i.e., 

normalize it)

1

2

3

4

2 3 1 0 20

6 5 0 2 45

2 5 6 6 3

4 2 2 3 30

x

x

x

x

     
      
    

      
    

    
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Example 1, cont.

• Eliminate x1 by subtracting row 1 from all the rows 

below it

 
1

1
2

multiply row by 

     

 

1  2

3

multiply row by

and add to row

    1  4

 4

multiply row by

and add to row

  

 

1 6 

2

multiply row by  

and add to row

3 1
1 0 10

2 2

0 4 3

0 8 7 6 23

0 4 7 3 10

1
15

2





   

  

 
 
 
 
 
 
 
 
 
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Example 1, cont.

• Eliminate x2 by subtracting row 2 from all the 

rows below it

    
1

2
4

multiply row by

    2 8

3

multiply row by

and add to row  

    

  

2 4

4

multiply row by

and add to row









 
 
 
 
 
 
 
 
 

3 1
1 0 10

2 2

0 1

0 0 1 2 7

0 0 1 1 5

3 1 15

4 2 4
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Example 1, cont.

• Elimination of  x3 from row 3 and 4

 

 

3 

4

subtract row

from row









 
 
 
 
 
 
 
 
 

3 1
1 0 10

2 2

0 1

0 0 1 2 7

0 0 0 1 2

3 1 15

4 2 4
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Example 1, cont.

• Then, we solve for  x by “going backwards”,    i.e., 

using back substitution: 

     
2 3 4 2

3 1 15
7

4 2 4
x x x x

 
4

2x

   
3 4 3

2 7 3    x x x

    
1 2 3 1

3 1
10 1

2 2
x x x x
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Triangular Decomposition

• In this example, we have:
– triangularized the original matrix by  

Gaussian elimination using column elimination

– then, we used back substitution to solve the       

triangularized system

• The following slides present a general scheme for 

triangular decomposition by Gaussian elimination

• The assumption is that A is a nonsingular matrix 

(hence its inverse exists)

• Gaussian elimination also requires the diagonals to be 

nonzero; this can be achieved through ordering

• If b is zero then we have a trivial solution x = 0
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Triangular Decomposition

• We form the matrix Aa using A and b with

and show the steps of the triangularization scheme

 
 
 
 
 
 
 
 
 
 
 
 
 

11 12 1 1

21 22 2 2

31 32 3 3

1 2

n

n

n

n n nn n

a a a b

a a a b

a a a b

a a a b

   

  

   

   



 a  A A b
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Triangular Decomposition, Step 1

• Step 1: normalize the first equation 


1(1)

1

11

 1(1)

1

 11

= 2 ...

=

j

j

a
a j , ,n

a

b
b

a
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Triangular Decomposition, Step 2

• Step 2: a) eliminate x1 from row 2:

• Step 2: b) normalize the second equation

15

,(1) (1)

2 2 21 1 2 ...j j ja = a a a j = , ,n

  (1) (1)

2 2 21 1b = b a b

,

(1)

2(2)

2 (1)

22

3 ...
j

j

a
a = j = , ,n

a
(1)

 2(2)

2 (1)

22

b
b =

a



Triangular Decomposition, Step 2

and we end up at the end of step 2 with 

 
 
 
 
 
 
 
 
 
 
  

(1) (1) (1) (1)

12 13 1 1

(2) (2) (2)

23 2 2

31 32 33 3 3

1 2 3

1

1

n

n

n

n n n nn n

a a a b

0 a a b

a a a a b

a a a a b
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Triangular Decomposition, Step 3

• Step 3: a) eliminate x1 and x2 from row 3: 

• Step 3: b) normalize the third equation:

2            ( ) (1) (1) (2)

3 3 32 2 3 ...j j ja a   a  a j = , ,n

           (1) (1)

3 3 31 1 2j j ja = a   a  a j = , ... ,n  

       (1) (1)

3 3 31 1b = b a  b

   (2) (1) (1) (2)

3 3 32 2b = b   a  b

        

(2)

3(3)

3 (2)

33

4 ...
 j

 j

a
a =   j = , ,n

a

 

(2)

 3(3)

3 (2)

33

b
b =

a
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Triangular Decomposition, Step 3

and we have the system at the end of step 3

 
 
 
 
 
 
 
 
 
 
 

(1) (1) (1) (1) (1)

12 13 14 1 1

(2) (2) (2) (2)

21 24 2 2

(3) (3) (3)

34 3 3

41 42 43 44 4 4

1 2 3 4

1

1

1

n

n

n

n

n n n n nn n

a a a a b

0 a a a b

0 0 a a b

a a a a a b

a a a a a b
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Triangular Decomposition, Step k

• In general, we have for step k:

a) eliminate   from row k:

b) normalize the kth equation:

 1 1
1 ...

(m) (m ) (m ) (m)

kj kj km mja = a a a      j = m + , ,n

, , ,
1 2 1

...
k

x x x 

 1 1
1 2 ... 1

(m) (m ) (m ) (m)

k k km mb = b a b m = , , , k -





1

1
= = 1 ...

(k )
 kj(k)

 kj
(k )
 kk

j
a

a k + , ,n
a





1

1
=

(k )
k(k)

 k (k )
kk

b
b

a
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Triangular Decomposition:
Upper Triangular Matrix

• and proceed in this manner until we obtain the upper 

triangular matrix (the nth derived system):

 
 
 
 
 
 
 
 
 
 
 

(1) (1) (1) (1) (1)
12 13 14 1n 1

(2)(2) (2) (2)
21 24 2 2

(3)(3) (3)
34 3 3

(4) (4)
4 4

1

1

1

1

1

n

n

n

(n)
n

a a a a b

0 a a a b

0 0 a a b

0 0 0 a b

0 0 0 0 b
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Triangular Decomposition

• Note that in the scheme presented, unlike in the 

first example, we triangularly decompose the 

system by eliminating row-wise rather than 

column-wise
– In successive rows we eliminate (reduce to 0) each 

element to the left of the diagonal rather than those 

below the diagonal

– Either could be used, but row-wise operations will 

work better for power system sparse matrices
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Solving for X

• To compute x we perform back substitution 

   

   

 


  

1 1

1 1 1

1

=

= = 1 2 ... 1

n n

n- n- n- ,n n

n
k k

k k k j j
j=k+

x b a x

x b a x k n , n , ,

 


n

n n
x b 
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Upper Triangular Matrix

• The triangular decomposition scheme applied to the 

matrix A results in the upper triangular matrix U with 

the elements

• The following theorem is important in the development 

of the sparse computational scheme 









1 =

(i)

ij ij

i j

u = a j > i

0 j < i
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LU Decomposition Theorem

• Any nonsingular matrix A has the following 

factorization:

where U could be the upper triangular matrix 

previously developed (with 1’s on its diagonals) and L

is a lower triangular matrix defined by

A = LU






1

=

(j )

i j

ij

a

0

j i

j i
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LU Decomposition Application

• As a result of this theorem we can rewrite

• Can also be set so U has non unity diagonals

• Once A has been factored, we can solve for x by 

first solving for y, a process known as forward 

substitution, then solving for x in a process known 

as back substitution

• In the previous example we can think of L as a 

record of the forward operations preformed on b.  

Define 

Then 

Ax = LUx = b

y = Ux

Ly = b
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LDU Decomposition

• In the previous case we required that the diagonals 

of U be unity, while there was no such restriction 

on the diagonals of L 

• An alternative decomposition is

where D is a diagonal matrix, and the lower triangular 

matrix is modified to require unity for the diagonals 

26
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A = LDU

L = LD



Symmetric Matrix Factorization

• The LDU formulation is quite useful for the case of a 

symmetric matrix 

• Hence only the upper triangular elements and the 

diagonal elements need to be stored, reducing storage 

by almost a factor of 2 

T

T T T

T

T



 



A A

A = LDU U DL A

U L

A = U DU
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Symmetric Matrix Factorization

• There are also some computational benefits from 

factoring symmetric matrices.  However, since 

symmetric matrices are not common in power 

applications, we will not consider them in-depth

• However, topologically symmetric sparse matrices 

are quite common, so those will be our main focus
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Pivoting

• An immediate problem that can occur with 

Gaussian elimination is the issue of zeros on the 

diagonal; for example

• This problem can be solved by a process known as 

“pivoting,” which involves the interchange of 

either both rows and columns (full pivoting) or just 

the rows (partial pivoting)

– Partial pivoting is much easier to implement, and actually 

can be shown to work quite well

0 1

2 3

 
 
 

A =
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Pivoting, cont.

• In the previous example the (partial) pivot would just 

be to interchange the two rows

obviously we need to keep track of the interchanged 

rows!

• Partial pivoting can be helpful in improving 

numerical stability even when the diagonals are not 

zero

– When factoring row k interchange rows so the new diagonal 

is the largest element in column k for rows j  >= k

2 3

0 1

 
 
 

A =
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LU Algorithm Without Pivoting
Processing by row

• We will use the more common approach of having ones on 

the diagonals of L.  Also in the common, diagonally 

dominant power system problems pivoting is not needed

Below algorithm is in row form (useful with sparsity!)

For i := 2 to n Do Begin  // This is the row being processed

For j := 1 to i-1 Do Begin  // Rows subtracted from row i

A[i,j] = A[i,j]/A[j,j]  // This is the scaling 

For k := j+1 to n Do Begin  // Go through each column in i

A[i,k] = A[i,k] - A[i,j]*A[j,k]

End;

End;

End;
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LU Example

• Starting matrix

• First row is unchanged; start with i=2

• Result with i=2, j=1; done with row 2

20 12 5

5 12 6

4 3 8

  
 
  
   

A =

20 12 5

0.25 9 7.25

4 3 8

  
 
  
   

A =
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LU Example, cont.

• Result with i=3, j=1;

• Result with i=3, j=2; done with row 3; done!

20 12 5

0.25 9 7.25

0.2 5.4 7

  
 
  
   

A =

20 12 5

0.25 9 7.25

0.2 0.6 2.65

  
 
  
   

A =
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LU Example, cont.

• Original matrix is used to hold L and U

20 12 5

0.25 9 7.25

0.2 0.6 2.65

1 0 0

0.25 1 0

0.2 0.6 1

20 12 5

0 9 7.25

0 0 2.65

  
 
   
   

 
 

  
   

  
 

  
  

A = LU

L

U

With this approach

the original A matrix

has been replaced

by the factored values!
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Forward Substitution

Forward substitution solves              with values in b

being over written (replaced by the y values)

For i := 2 to n Do Begin  // This is the row being processed

For j := 1 to i-1 Do Begin 

b[i] = b[i] - A[i,j]*b[j]    // This is just using the L matrix

End;

End;

b = Ly
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Forward Substitution Example

10

Let  = 20

30

1 0 0

From before 0.25 1 0

0.2 0.6 1

[1] 10

[2] 20 ( 0.25)*10 22.5

[3] 30 ( 0.2)*10 ( 0.6)*22.5 45.5

y

y

y

 
 
 
  

 
 

  
   



   

     

b

L
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Backward Substitution

• Backward substitution solves              (with values of y

contained in the b vector as a result of the forward 

substitution)

For i := n to 1 Do Begin  // This is the row being processed

For j := i+1 to n Do Begin 

b[i] = b[i] - A[i,j]*b[j]    // This is just using the U matrix

End;

b[i] = b[i]/A[i,i]    // The A[i,i] values are <> 0 if it is nonsingular

End

y = Ux
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Backward Substitution Example

 

 

10

Let  = 22.5

45.5

20 12 5

From before 0 9 7.25

0 0 2.65

[3] (1/ 2.65)*45.5 17.17

[2] (1/ 9)* 22.5 ( 7.25)*17.17 16.33

[1] (1/ 20)* 10 ( 5)*17.17 ( 12)*16.33 14.59

x

x

x

 
 
 
  

  
 

  
  

 

   

     

y

U
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Computational Complexity

• Computational complexity indicates how the number 

of numerical operations scales with the size of the 

problem

• Computational complexity is expressed using the “Big 

O” notation; assume a problem of size n

– Adding the number of elements in a vector is O(n)

– Adding two n by n full matrices is O(n2)

– Multiplying two n by n full matrices is O(n3)

– Inverting an n by n full matrix, or doing Gaussian 

elimination is O(n3)

– Solving the traveling salesman problem by brute-force 

search is O(n!)
39



Computational Complexity

• Knowing the computational complexity of a 

problem can help to determine whether it can be 

solved (at least using a particular method)

– Scaling factors do not affect the computation complexity

• an algorithm that takes n3/2 operations has the same 

computational complexity of one the takes n3/10 operations 

(though obviously the second one is faster!)

• With O(n3) factoring a full matrix becomes 

computationally intractable quickly!

– A 100 by 100 matrix takes a million operations (give or 

take)

– A 1000 by 1000 matrix takes a billion operations 

– A 10,000 by 10,000 matrix takes a trillion operations! 40



Sparse Systems

• The material presented so far applies to any arbitrary 

linear system

• The next step is to see what happens when we apply 

triangular factorization to a sparse matrix

• For a sparse system, only nonzero elements need to be 

stored in the computer since no arithmetic operations 

are performed on the 0’s

• The triangularization scheme is adapted to solve sparse 

systems in such a way as to preserve the sparsity as 

much as possible
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Sparse Matrix History

• A nice overview of sparse matrix history is by Iain Duff 

at http://www.siam.org/meetings/la09/talks/duff.pdf

• Sparse matrices developed simultaneously in several 

different disciplines in the early 1960’s with power 

systems definitely one of the key players (Bill Tinney

from BPA)

• Different disciplines claim credit since they didn’t 

necessarily know what was going on in the others
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Sparse Matrix History

• In power systems a key N. Sato, W.F. Tinney, “Techniques for 

Exploiting the Sparsity of the Network Admittance Matrix,” 

Power App. and Syst., pp 944-950, December 1963

• In the paper they are proposing solving systems with up to 1000 buses 

(nodes) in 32K of memory!

• You’ll also note that in the discussion by El-Abiad, Watson, and Stagg 

they mention the creation of standard test systems with between 30 and 

229 buses (this surely included the now famous 118 bus system)

• The BPA authors talk “power flow” and the discussors talk “load flow.” 

• Tinney and Walker present a much more detailed approach in 

their 1967 IEEE Proceedings paper titled “Direct Solutions of 

Sparse Network Equations by Optimally Order Triangular 

Factorization”
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Sparse Matrix Computational Order

• The computational order of factoring a sparse matrix, or 

doing a forward/backward substitution depends on the 

matrix structure

– Full matrix is O(n3)

– A diagonal matrix is O(n); that is, just invert each element

• For power system problems the classic paper is 

F. L. Alvarado, “Computational complexity in power 

systems,” IEEE Transactions on Power Apparatus and 

Systems, ,May/June 1976

– O(n1.4) for factoring, O(n1.2) for forward/backward

– For a 100,000 by 100,000 matrix changes computation for 

factoring  from 1 quadrillion to 10 million!
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Inverse of a Sparse Matrix

• The inverse of a sparse matrix is NOT in general a 

sparse matrix

• We never (or at least very, very, very seldom) explicitly 

invert a sparse matrix

– Individual columns of the inverse of a sparse matrix can be 

obtained by solving x = A-1b with b set to all zeros except for a 

single nonzero in the position of the desired column

– If a few desired elements of A-1 are desired (such as the 

diagonal values) they can usually be computed quite efficiently 

using sparse vector methods (a topic we’ll be considering soon)

• We can’t invert a singular matrix (with sparse or not)
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Computer Architecture Impacts

• With modern computers the processor speed is many 

times faster than the time it takes to access data in main 

memory

– Some instructions can be processed in parallel 

• Caches are used to provide quicker access to more 

commonly used data

– Caches are smaller than main memory

– Different cache levels are used with the quicker caches, like 

L1, have faster speeds but smaller sizes; L1 might be 64K, 

whereas the slower L2 might be 1M

• Data structures can have a significant impact on sparse 

matrix computation
46



ECEN 615 Sparsity Limitations

• Sparse matrices arise in many areas, and can have 

domain specific structures

– Symmetric matrices

– Structurally symmetric matrices

– Tridiagnonal matrices

– Banded matrices

• ECEN 615 is focused on problems that arise in the 

electric power; it is not a general sparse matrix 

course
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Full Matrix versus Sparse Matrix 
Storage

• Full matrices are easily stored in arrays with just one 

variable needed to store each value since the value’s 

row and column are implicitly available from its matrix 

position

• With sparse matrices two or three elements are needed 

to store each value

– The zero values are not explicitly stored

– The value itself, its row number and its column number

– Storage can be reduced by storing all the elements in a 

particular row or column together

• Because large matrices are often quite sparse, the total 

storage is still substantially reduced
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Sparse Matrix Usage Can 
Determine the Optimal Storage

• How a sparse matrix is used can determine the best 

storage scheme to use

– Row versus column access; does structure change 

• Is the matrix essentially used only once? That is, its 

structure and values are assumed new each time used 

• Is the matrix structure constant, with its values changed

– This would be common in the N-R power flow, in which the  

structure doesn’t change each iteration, but its values do

• Is the matrix structure and values constant, with just the 

b vector in Ax=b changing

– Quite common in transient stability solutions
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Numerical Precision

• Required numerical precision determines type of 

variables used to represent numbers

– Specified as number of bytes, and whether signed or not

• For Integers

– One byte is either 0 to 255 or -128 to 127

– Two bytes is either smallint (-32,768 to 32,767) or word (0 to 

65,536)

– Four bytes is either Integer (-2,147,483,648 to 2,147,483,647) 

or Cardinal (0 to 4,294,967,295)

• This is usually sufficient for power system row/column numbers

– Eight bytes (Int64) if four bytes is not enough
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Numerical Precision, cont.

• For floating point values using choice is between 

four bytes (single precision) or eight bytes (double 

precision); extended precision has ten bytes

– Single precision allows for 6 to 7 significant digits

– Double precision allows for 15 to 17 significant digits

– Extended allows for about 18 significant digits

– More bytes requires more storage

– Computational impacts depend on the underlying device; 

on PCs there isn’t much impact; GPUs can be 3 to 8 

times slower for double precision

• For most power problems double precision is best
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General Sparse Matrix Storage

• A general approach for storing a sparse matrix would be 

using three vectors, each dimensioned to number of 

elements
– AA: Stores the values, usually in power system analysis as double precision 

values (8 bytes)

– JR: Stores the row number; for power problems usually as an integer (4 

bytes)

– JC: Stores the column number, again as an integer

• If unsorted then both row and column are needed

• New elements could easily be added, but costly to delete

• Unordered approach doesn’t make for good computation since 

elements used next computationally aren’t necessarily nearby

• Usually ordered, either by row or column 
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Sparse Storage Example

• Assume

• Then 
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5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

 
 
 

 
 
   

A

 

 

 

5 4 4 3 3 2 4 3 2 10

1 1 2 2 3 3 4 4 4 4

1 1 2 2 3 3 1 2 3 4

      





AA

JR

JC

Note, this example is a symmetric matrix, but the 

technique is general



Compressed Sparse Row Storage

• If elements are ordered (as was case for previous 

example) storage can be further reduced by noting we 

do not need to continually store each row number

• A common method for storing sparse matrices is 

known as the Compressed Sparse Row (CSR) format

– Values are stored row by row

– Has three vector arrays:

• AA: Stores the values as before

• JA: Stores the column index (done by JC in previous 

example)

• IA: Stores the pointer to the index of the beginning of each 

row 
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CSR Format Example

• Assume as before

• Then
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5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

 
 
 

 
 
   

A

 

 

 

5 4 4 3 3 2 4 3 2 10

1 1 2 2 3 3 1 2 3 4

1 3 5 7

      





AA

JA

IA



CSR Comments

• The CSR format reduces the storage requirements by 

taking advantage of needing only one element per row

• The CSR format has good advantages for computation 

when using cache since (as we shall see) during matrix 

operations we are often sequentially going through the 

vectors

• An alternative approach is Compressed Sparse Column 

(CSC), which identical, except storing the values by 

column

• It is difficult to add values.  

• We’ll mostly use the linked list approach here, which 

makes matrix manipulation simpler 56



Linked Lists: Classes and Objects

• In explaining the linked list approach it is helpful 

to use the concepts from object oriented 

programming (OOP) of classes and objects

– Approach can also be used in non-OOP programming

• OOP can be thought of as a collection of objects 

interacting with each other

• Objects are instances of classes.

• Classes define the object fields and actions 

(methods)

• We’ll define a class called sparse matrix element, 

with fields of value, column and next; each sparse 

matrix element is then an object of this class 57



Linked Lists

• A linked list is just a group of objects that represent 

a sequence

– We’ll used linked lists to represent a row or column of a 

sparse matrix

• Each linked list has a head pointer that points to the 

first object in the list

– For our sparse matrices the head pointer will be a vector 

of the rows or columns

Column a 

Value a 

Next a

Column b 

Value b 

Next b

Column c 

Value c 

Nil

Head
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Sparse Matrix Storage with 
Linked Lists by Rows

• If we have an n by n matrix, setup a class called 

TSparseElement with fields column, value and next

• Setup an n-dimensional head pointer vector that points 

to the first element in each row

• Each nonzero corresponds to an object of class (type) 

TSparseElement

• We do not need to store the row number since it is 

given by the object’s row

• For power system sparse matrices, which have nonzero 

diagonals, we also have a header pointer vector that 

points to the diagonal objects 
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Linked Lists, cont.

• Linked lists can be singly linked, which means they 

just go in one direction (to the next element), or 

doubly linked, pointing to both the previous and next 

elements

– Mostly we’ll just need singularly linked lists

• With linked lists it is quite easy to add new elements 

to the list.  This can be done in sorted order just by 

going down the list until the desired point is reached, 

then changing the next pointer for the previous 

element to the new element, and for the new element 

to the next element (for a singly linked list)
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On Board Example

• Draw the data structures for the matrix

5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

 
 
 

 
 
   

A


