
Lecture 10: Gaussian Elimination, Sparse

Systems

ECEN 615
Methods of Electric Power Systems Analysis

Prof. Tom Overbye

Dept. of Electrical and Computer Engineering

Texas A&M University

overbye@tamu.edu

Special Guest Lecture: TA Iyke Idehen

mailto:overbye@tamu.edu

Announcements

• Read Chapter 6

• Homework 2 is due today

2

Linear System Solution: Introduction

• A problem that occurs in many is fields is the solution

of linear systems Ax = b where A is an n by n matrix

with elements aij, and x and b are n-vectors with

elements xi and bi respectively

• In power systems we are particularly interested in

systems when n is relatively large and A is sparse
• How large is large is changing

• A matrix is sparse if a large percentage of its elements

have zero values
• Goal is to understand the computational issues (including

complexity) associated with the solution of these systems

3

Introduction, cont.

• Sparse matrices arise in many areas, and can have

domain specific structures

• Symmetric matrices

• Structurally symmetric matrices

• Tridiagnonal matrices

• Banded matrices

• A good (and free) book on sparse matrices is available at

www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

• ECEN 615 is focused on problems in the electric power

domain; it is not a general sparse matrix course

• Much of the early sparse matrix work was done in power!
4

Gaussian Elimination

• The best known and most widely used method for

solving linear systems of algebraic equations is

attributed to Gauss

• Gaussian elimination avoids having to explicitly

determine the inverse of A, which is O(n3)

• Gaussian elimination can be readily applied to sparse

matrices

• Gaussian elimination leverages the fact that scaling a

linear equation does not change its solution, nor does

adding on linear equation to another

1 2 1 22 4 10 2 5x x x x    

5

Gaussian Elimination, cont.

• Gaussian elimination is the elementary procedure in

which we use the first equation to eliminate the first

variable from the last n-1 equations, then we use the

new second equation to eliminate the second variable

from the last n-2 equations, and so on

• After performing n-1 such eliminations we end up with

a triangular system which is easily solved in a

backward direction

6

Example 1

• We need to solve for x in the system

• The three elimination steps are given on the next

slides; for simplicity, we have appended the r.h.s.

vector to the matrix

• First step is set the diagonal element of row 1 to 1 (i.e.,

normalize it)

1

2

3

4

2 3 1 0 20

6 5 0 2 45

2 5 6 6 3

4 2 2 3 30

x

x

x

x

     
      
    

      
    

    

7

Example 1, cont.

• Eliminate x1 by subtracting row 1 from all the rows

below it

1

1
2

multiply row by

1 2

3

multiply row by

and add to row

 1 4

 4

multiply row by

and add to row

1 6

2

multiply row by

and add to row

3 1
1 0 10

2 2

0 4 3

0 8 7 6 23

0 4 7 3 10

1
15

2





   

  

 
 
 
 
 
 
 
 
 

8

Example 1, cont.

• Eliminate x2 by subtracting row 2 from all the

rows below it

1

2
4

multiply row by

 2 8

3

multiply row by

and add to row

2 4

4

multiply row by

and add to row









 
 
 
 
 
 
 
 
 

3 1
1 0 10

2 2

0 1

0 0 1 2 7

0 0 1 1 5

3 1 15

4 2 4

9

Example 1, cont.

• Elimination of x3 from row 3 and 4

3

4

subtract row

from row









 
 
 
 
 
 
 
 
 

3 1
1 0 10

2 2

0 1

0 0 1 2 7

0 0 0 1 2

3 1 15

4 2 4

10

Example 1, cont.

• Then, we solve for x by “going backwards”, i.e.,

using back substitution:

     
2 3 4 2

3 1 15
7

4 2 4
x x x x

 
4

2x

   
3 4 3

2 7 3 x x x

    
1 2 3 1

3 1
10 1

2 2
x x x x

11

Triangular Decomposition

• In this example, we have:
– triangularized the original matrix by

Gaussian elimination using column elimination

– then, we used back substitution to solve the

triangularized system

• The following slides present a general scheme for

triangular decomposition by Gaussian elimination

• The assumption is that A is a nonsingular matrix

(hence its inverse exists)

• Gaussian elimination also requires the diagonals to be

nonzero; this can be achieved through ordering

• If b is zero then we have a trivial solution x = 0

12

Triangular Decomposition

• We form the matrix Aa using A and b with

and show the steps of the triangularization scheme

 
 
 
 
 
 
 
 
 
 
 
 
 

11 12 1 1

21 22 2 2

31 32 3 3

1 2

n

n

n

n n nn n

a a a b

a a a b

a a a b

a a a b

   

  

   

   



 a  A A b

13

Triangular Decomposition, Step 1

• Step 1: normalize the first equation


1(1)

1

11

 1(1)

1

 11

= 2 ...

=

j

j

a
a j , ,n

a

b
b

a

14

Triangular Decomposition, Step 2

• Step 2: a) eliminate x1 from row 2:

• Step 2: b) normalize the second equation

15

,(1) (1)

2 2 21 1 2 ...j j ja = a a a j = , ,n

 (1) (1)

2 2 21 1b = b a b

,

(1)

2(2)

2 (1)

22

3 ...
j

j

a
a = j = , ,n

a
(1)

 2(2)

2 (1)

22

b
b =

a

Triangular Decomposition, Step 2

and we end up at the end of step 2 with

 
 
 
 
 
 
 
 
 
 
  

(1) (1) (1) (1)

12 13 1 1

(2) (2) (2)

23 2 2

31 32 33 3 3

1 2 3

1

1

n

n

n

n n n nn n

a a a b

0 a a b

a a a a b

a a a a b

16

Triangular Decomposition, Step 3

• Step 3: a) eliminate x1 and x2 from row 3:

• Step 3: b) normalize the third equation:

2  () (1) (1) (2)

3 3 32 2 3 ...j j ja a a a j = , ,n

 (1) (1)

3 3 31 1 2j j ja = a a a j = , ... ,n

 (1) (1)

3 3 31 1b = b a b

 (2) (1) (1) (2)

3 3 32 2b = b a b

(2)

3(3)

3 (2)

33

4 ...
 j

 j

a
a = j = , ,n

a

(2)

 3(3)

3 (2)

33

b
b =

a

17

Triangular Decomposition, Step 3

and we have the system at the end of step 3

 
 
 
 
 
 
 
 
 
 
 

(1) (1) (1) (1) (1)

12 13 14 1 1

(2) (2) (2) (2)

21 24 2 2

(3) (3) (3)

34 3 3

41 42 43 44 4 4

1 2 3 4

1

1

1

n

n

n

n

n n n n nn n

a a a a b

0 a a a b

0 0 a a b

a a a a a b

a a a a a b

18

Triangular Decomposition, Step k

• In general, we have for step k:

a) eliminate from row k:

b) normalize the kth equation:

 1 1
1 ...

(m) (m) (m) (m)

kj kj km mja = a a a j = m + , ,n

, , ,
1 2 1

...
k

x x x 

 1 1
1 2 ... 1

(m) (m) (m) (m)

k k km mb = b a b m = , , , k -





1

1
= = 1 ...

(k)
 kj(k)

 kj
(k)
 kk

j
a

a k + , ,n
a





1

1
=

(k)
k(k)

 k (k)
kk

b
b

a

19

Triangular Decomposition:
Upper Triangular Matrix

• and proceed in this manner until we obtain the upper

triangular matrix (the nth derived system):

 
 
 
 
 
 
 
 
 
 
 

(1) (1) (1) (1) (1)
12 13 14 1n 1

(2)(2) (2) (2)
21 24 2 2

(3)(3) (3)
34 3 3

(4) (4)
4 4

1

1

1

1

1

n

n

n

(n)
n

a a a a b

0 a a a b

0 0 a a b

0 0 0 a b

0 0 0 0 b

20

Triangular Decomposition

• Note that in the scheme presented, unlike in the

first example, we triangularly decompose the

system by eliminating row-wise rather than

column-wise
– In successive rows we eliminate (reduce to 0) each

element to the left of the diagonal rather than those

below the diagonal

– Either could be used, but row-wise operations will

work better for power system sparse matrices

21

Solving for X

• To compute x we perform back substitution

   

   

 


  

1 1

1 1 1

1

=

= = 1 2 ... 1

n n

n- n- n- ,n n

n
k k

k k k j j
j=k+

x b a x

x b a x k n , n , ,

 


n

n n
x b

22

Upper Triangular Matrix

• The triangular decomposition scheme applied to the

matrix A results in the upper triangular matrix U with

the elements

• The following theorem is important in the development

of the sparse computational scheme









1 =

(i)

ij ij

i j

u = a j > i

0 j < i

23

LU Decomposition Theorem

• Any nonsingular matrix A has the following

factorization:

where U could be the upper triangular matrix

previously developed (with 1’s on its diagonals) and L

is a lower triangular matrix defined by

A = LU






1

=

(j)

i j

ij

a

0

j i

j i

24

LU Decomposition Application

• As a result of this theorem we can rewrite

• Can also be set so U has non unity diagonals

• Once A has been factored, we can solve for x by

first solving for y, a process known as forward

substitution, then solving for x in a process known

as back substitution

• In the previous example we can think of L as a

record of the forward operations preformed on b.

Define

Then

Ax = LUx = b

y = Ux

Ly = b

25

LDU Decomposition

• In the previous case we required that the diagonals

of U be unity, while there was no such restriction

on the diagonals of L

• An alternative decomposition is

where D is a diagonal matrix, and the lower triangular

matrix is modified to require unity for the diagonals

26

with

A = LDU

L = LD

Symmetric Matrix Factorization

• The LDU formulation is quite useful for the case of a

symmetric matrix

• Hence only the upper triangular elements and the

diagonal elements need to be stored, reducing storage

by almost a factor of 2

T

T T T

T

T



 



A A

A = LDU U DL A

U L

A = U DU

27

Symmetric Matrix Factorization

• There are also some computational benefits from

factoring symmetric matrices. However, since

symmetric matrices are not common in power

applications, we will not consider them in-depth

• However, topologically symmetric sparse matrices

are quite common, so those will be our main focus

28

Pivoting

• An immediate problem that can occur with

Gaussian elimination is the issue of zeros on the

diagonal; for example

• This problem can be solved by a process known as

“pivoting,” which involves the interchange of

either both rows and columns (full pivoting) or just

the rows (partial pivoting)

– Partial pivoting is much easier to implement, and actually

can be shown to work quite well

0 1

2 3

 
 
 

A =

29

Pivoting, cont.

• In the previous example the (partial) pivot would just

be to interchange the two rows

obviously we need to keep track of the interchanged

rows!

• Partial pivoting can be helpful in improving

numerical stability even when the diagonals are not

zero

– When factoring row k interchange rows so the new diagonal

is the largest element in column k for rows j >= k

2 3

0 1

 
 
 

A =

30

LU Algorithm Without Pivoting
Processing by row

• We will use the more common approach of having ones on

the diagonals of L. Also in the common, diagonally

dominant power system problems pivoting is not needed

Below algorithm is in row form (useful with sparsity!)

For i := 2 to n Do Begin // This is the row being processed

For j := 1 to i-1 Do Begin // Rows subtracted from row i

A[i,j] = A[i,j]/A[j,j] // This is the scaling

For k := j+1 to n Do Begin // Go through each column in i

A[i,k] = A[i,k] - A[i,j]*A[j,k]

End;

End;

End;
31

LU Example

• Starting matrix

• First row is unchanged; start with i=2

• Result with i=2, j=1; done with row 2

20 12 5

5 12 6

4 3 8

  
 
  
   

A =

20 12 5

0.25 9 7.25

4 3 8

  
 
  
   

A =

32

LU Example, cont.

• Result with i=3, j=1;

• Result with i=3, j=2; done with row 3; done!

20 12 5

0.25 9 7.25

0.2 5.4 7

  
 
  
   

A =

20 12 5

0.25 9 7.25

0.2 0.6 2.65

  
 
  
   

A =

33

LU Example, cont.

• Original matrix is used to hold L and U

20 12 5

0.25 9 7.25

0.2 0.6 2.65

1 0 0

0.25 1 0

0.2 0.6 1

20 12 5

0 9 7.25

0 0 2.65

  
 
   
   

 
 

  
   

  
 

  
  

A = LU

L

U

With this approach

the original A matrix

has been replaced

by the factored values!

34

Forward Substitution

Forward substitution solves with values in b

being over written (replaced by the y values)

For i := 2 to n Do Begin // This is the row being processed

For j := 1 to i-1 Do Begin

b[i] = b[i] - A[i,j]*b[j] // This is just using the L matrix

End;

End;

b = Ly

35

Forward Substitution Example

10

Let = 20

30

1 0 0

From before 0.25 1 0

0.2 0.6 1

[1] 10

[2] 20 (0.25)*10 22.5

[3] 30 (0.2)*10 (0.6)*22.5 45.5

y

y

y

 
 
 
  

 
 

  
   



   

     

b

L

36

Backward Substitution

• Backward substitution solves (with values of y

contained in the b vector as a result of the forward

substitution)

For i := n to 1 Do Begin // This is the row being processed

For j := i+1 to n Do Begin

b[i] = b[i] - A[i,j]*b[j] // This is just using the U matrix

End;

b[i] = b[i]/A[i,i] // The A[i,i] values are <> 0 if it is nonsingular

End

y = Ux

37

Backward Substitution Example

 

 

10

Let = 22.5

45.5

20 12 5

From before 0 9 7.25

0 0 2.65

[3] (1/ 2.65)*45.5 17.17

[2] (1/ 9)* 22.5 (7.25)*17.17 16.33

[1] (1/ 20)* 10 (5)*17.17 (12)*16.33 14.59

x

x

x

 
 
 
  

  
 

  
  

 

   

     

y

U

38

Computational Complexity

• Computational complexity indicates how the number

of numerical operations scales with the size of the

problem

• Computational complexity is expressed using the “Big

O” notation; assume a problem of size n

– Adding the number of elements in a vector is O(n)

– Adding two n by n full matrices is O(n2)

– Multiplying two n by n full matrices is O(n3)

– Inverting an n by n full matrix, or doing Gaussian

elimination is O(n3)

– Solving the traveling salesman problem by brute-force

search is O(n!)
39

Computational Complexity

• Knowing the computational complexity of a

problem can help to determine whether it can be

solved (at least using a particular method)

– Scaling factors do not affect the computation complexity

• an algorithm that takes n3/2 operations has the same

computational complexity of one the takes n3/10 operations

(though obviously the second one is faster!)

• With O(n3) factoring a full matrix becomes

computationally intractable quickly!

– A 100 by 100 matrix takes a million operations (give or

take)

– A 1000 by 1000 matrix takes a billion operations

– A 10,000 by 10,000 matrix takes a trillion operations! 40

Sparse Systems

• The material presented so far applies to any arbitrary

linear system

• The next step is to see what happens when we apply

triangular factorization to a sparse matrix

• For a sparse system, only nonzero elements need to be

stored in the computer since no arithmetic operations

are performed on the 0’s

• The triangularization scheme is adapted to solve sparse

systems in such a way as to preserve the sparsity as

much as possible

41

Sparse Matrix History

• A nice overview of sparse matrix history is by Iain Duff

at http://www.siam.org/meetings/la09/talks/duff.pdf

• Sparse matrices developed simultaneously in several

different disciplines in the early 1960’s with power

systems definitely one of the key players (Bill Tinney

from BPA)

• Different disciplines claim credit since they didn’t

necessarily know what was going on in the others

42

Sparse Matrix History

• In power systems a key N. Sato, W.F. Tinney, “Techniques for

Exploiting the Sparsity of the Network Admittance Matrix,”

Power App. and Syst., pp 944-950, December 1963

• In the paper they are proposing solving systems with up to 1000 buses

(nodes) in 32K of memory!

• You’ll also note that in the discussion by El-Abiad, Watson, and Stagg

they mention the creation of standard test systems with between 30 and

229 buses (this surely included the now famous 118 bus system)

• The BPA authors talk “power flow” and the discussors talk “load flow.”

• Tinney and Walker present a much more detailed approach in

their 1967 IEEE Proceedings paper titled “Direct Solutions of

Sparse Network Equations by Optimally Order Triangular

Factorization”

43

Sparse Matrix Computational Order

• The computational order of factoring a sparse matrix, or

doing a forward/backward substitution depends on the

matrix structure

– Full matrix is O(n3)

– A diagonal matrix is O(n); that is, just invert each element

• For power system problems the classic paper is

F. L. Alvarado, “Computational complexity in power

systems,” IEEE Transactions on Power Apparatus and

Systems, ,May/June 1976

– O(n1.4) for factoring, O(n1.2) for forward/backward

– For a 100,000 by 100,000 matrix changes computation for

factoring from 1 quadrillion to 10 million!
44

Inverse of a Sparse Matrix

• The inverse of a sparse matrix is NOT in general a

sparse matrix

• We never (or at least very, very, very seldom) explicitly

invert a sparse matrix

– Individual columns of the inverse of a sparse matrix can be

obtained by solving x = A-1b with b set to all zeros except for a

single nonzero in the position of the desired column

– If a few desired elements of A-1 are desired (such as the

diagonal values) they can usually be computed quite efficiently

using sparse vector methods (a topic we’ll be considering soon)

• We can’t invert a singular matrix (with sparse or not)

45

Computer Architecture Impacts

• With modern computers the processor speed is many

times faster than the time it takes to access data in main

memory

– Some instructions can be processed in parallel

• Caches are used to provide quicker access to more

commonly used data

– Caches are smaller than main memory

– Different cache levels are used with the quicker caches, like

L1, have faster speeds but smaller sizes; L1 might be 64K,

whereas the slower L2 might be 1M

• Data structures can have a significant impact on sparse

matrix computation
46

ECEN 615 Sparsity Limitations

• Sparse matrices arise in many areas, and can have

domain specific structures

– Symmetric matrices

– Structurally symmetric matrices

– Tridiagnonal matrices

– Banded matrices

• ECEN 615 is focused on problems that arise in the

electric power; it is not a general sparse matrix

course

47

Full Matrix versus Sparse Matrix
Storage

• Full matrices are easily stored in arrays with just one

variable needed to store each value since the value’s

row and column are implicitly available from its matrix

position

• With sparse matrices two or three elements are needed

to store each value

– The zero values are not explicitly stored

– The value itself, its row number and its column number

– Storage can be reduced by storing all the elements in a

particular row or column together

• Because large matrices are often quite sparse, the total

storage is still substantially reduced
48

Sparse Matrix Usage Can
Determine the Optimal Storage

• How a sparse matrix is used can determine the best

storage scheme to use

– Row versus column access; does structure change

• Is the matrix essentially used only once? That is, its

structure and values are assumed new each time used

• Is the matrix structure constant, with its values changed

– This would be common in the N-R power flow, in which the

structure doesn’t change each iteration, but its values do

• Is the matrix structure and values constant, with just the

b vector in Ax=b changing

– Quite common in transient stability solutions

49

Numerical Precision

• Required numerical precision determines type of

variables used to represent numbers

– Specified as number of bytes, and whether signed or not

• For Integers

– One byte is either 0 to 255 or -128 to 127

– Two bytes is either smallint (-32,768 to 32,767) or word (0 to

65,536)

– Four bytes is either Integer (-2,147,483,648 to 2,147,483,647)

or Cardinal (0 to 4,294,967,295)

• This is usually sufficient for power system row/column numbers

– Eight bytes (Int64) if four bytes is not enough

50

Numerical Precision, cont.

• For floating point values using choice is between

four bytes (single precision) or eight bytes (double

precision); extended precision has ten bytes

– Single precision allows for 6 to 7 significant digits

– Double precision allows for 15 to 17 significant digits

– Extended allows for about 18 significant digits

– More bytes requires more storage

– Computational impacts depend on the underlying device;

on PCs there isn’t much impact; GPUs can be 3 to 8

times slower for double precision

• For most power problems double precision is best

51

General Sparse Matrix Storage

• A general approach for storing a sparse matrix would be

using three vectors, each dimensioned to number of

elements
– AA: Stores the values, usually in power system analysis as double precision

values (8 bytes)

– JR: Stores the row number; for power problems usually as an integer (4

bytes)

– JC: Stores the column number, again as an integer

• If unsorted then both row and column are needed

• New elements could easily be added, but costly to delete

• Unordered approach doesn’t make for good computation since

elements used next computationally aren’t necessarily nearby

• Usually ordered, either by row or column
52

Sparse Storage Example

• Assume

• Then

53

5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

 
 
 

 
 
   

A

 

 

 

5 4 4 3 3 2 4 3 2 10

1 1 2 2 3 3 4 4 4 4

1 1 2 2 3 3 1 2 3 4

      





AA

JR

JC

Note, this example is a symmetric matrix, but the

technique is general

Compressed Sparse Row Storage

• If elements are ordered (as was case for previous

example) storage can be further reduced by noting we

do not need to continually store each row number

• A common method for storing sparse matrices is

known as the Compressed Sparse Row (CSR) format

– Values are stored row by row

– Has three vector arrays:

• AA: Stores the values as before

• JA: Stores the column index (done by JC in previous

example)

• IA: Stores the pointer to the index of the beginning of each

row

54

CSR Format Example

• Assume as before

• Then

55

5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

 
 
 

 
 
   

A

 

 

 

5 4 4 3 3 2 4 3 2 10

1 1 2 2 3 3 1 2 3 4

1 3 5 7

      





AA

JA

IA

CSR Comments

• The CSR format reduces the storage requirements by

taking advantage of needing only one element per row

• The CSR format has good advantages for computation

when using cache since (as we shall see) during matrix

operations we are often sequentially going through the

vectors

• An alternative approach is Compressed Sparse Column

(CSC), which identical, except storing the values by

column

• It is difficult to add values.

• We’ll mostly use the linked list approach here, which

makes matrix manipulation simpler 56

Linked Lists: Classes and Objects

• In explaining the linked list approach it is helpful

to use the concepts from object oriented

programming (OOP) of classes and objects

– Approach can also be used in non-OOP programming

• OOP can be thought of as a collection of objects

interacting with each other

• Objects are instances of classes.

• Classes define the object fields and actions

(methods)

• We’ll define a class called sparse matrix element,

with fields of value, column and next; each sparse

matrix element is then an object of this class 57

Linked Lists

• A linked list is just a group of objects that represent

a sequence

– We’ll used linked lists to represent a row or column of a

sparse matrix

• Each linked list has a head pointer that points to the

first object in the list

– For our sparse matrices the head pointer will be a vector

of the rows or columns

Column a

Value a

Next a

Column b

Value b

Next b

Column c

Value c

Nil

Head

58

Sparse Matrix Storage with
Linked Lists by Rows

• If we have an n by n matrix, setup a class called

TSparseElement with fields column, value and next

• Setup an n-dimensional head pointer vector that points

to the first element in each row

• Each nonzero corresponds to an object of class (type)

TSparseElement

• We do not need to store the row number since it is

given by the object’s row

• For power system sparse matrices, which have nonzero

diagonals, we also have a header pointer vector that

points to the diagonal objects
59

Linked Lists, cont.

• Linked lists can be singly linked, which means they

just go in one direction (to the next element), or

doubly linked, pointing to both the previous and next

elements

– Mostly we’ll just need singularly linked lists

• With linked lists it is quite easy to add new elements

to the list. This can be done in sorted order just by

going down the list until the desired point is reached,

then changing the next pointer for the previous

element to the new element, and for the new element

to the next element (for a singly linked list)

60

On Board Example

• Draw the data structures for the matrix

5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

 
 
 

 
 
   

A

