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Announcements

• Read Chapter 6 

• Homework 2 is due on Sept 27
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Tribute to Ti Xu, 1998-2018
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Decoupled Power Flow

• Rather than not updating the Jacobian, the decoupled 

power flow takes advantage of characteristics of the 

power grid in order to decouple the real and reactive 

power balance equations

• There is a strong coupling between real power and voltage 

angle, and reactive power and voltage magnitude

• There is a much weaker coupling between real power and 

voltage angle, and reactive power and voltage angle

• Key reference is B. Stott, “Decoupled Newton Load 

Flow,” IEEE Trans. Power. App and Syst., Sept/Oct. 

1972, pp. 1955-1959  

4



Decoupled Power Flow Formulation
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Decoupling Approximation
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Off-diagonal Jacobian Terms
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Decoupled N-R Region of Convergence
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The high

solution ROC 

is actually

larger than 

with the 

standard

NPF. 

Obviously

this is not

a good a way 

to get the low

solution



Fast Decoupled Power Flow

• By continuing with our Jacobian approximations we 

can actually obtain a reasonable approximation that is 

independent of the voltage magnitudes/angles.

• This means the Jacobian need only be built/inverted 

once per power flow solution

• This approach is known as the fast decoupled power 

flow (FDPF)
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Fast Decoupled Power Flow, cont.

• FDPF uses the same mismatch equations as standard 

power flow (just scaled) so it should have same solution

• The FDPF is widely used, though usually only when we 

only need an approximate solution

• Key fast decoupled power flow reference is  B. Stott, O. 

Alsac, “Fast Decoupled Load Flow,” IEEE Trans. 

Power App. and Syst., May 1974, pp. 859-869

• Ongun Alsaç is NAE Class of 2018 (with Prof. Singh!)

• Modified versions also exist, such as D. Jajicic and A. 

Bose, “A Modification to the Fast Decoupled Power 

Flow for Networks with High R/X Ratios, “IEEE 

Transactions on Power Sys., May 1988, pp. 743-746 10



FDPF Approximations

11

ij

The FDPF makes the following approximations:

1. G 0

2. 1

3. sin 0 cos 1

i

ij ij

V

 





   

i
1

i

1

P ( cos sin )

Which can also be written as 

P
( cos sin )

n

i k ik ik ik ik Gi Di
k

n
Gi Di

k ik ik ik ik
i ik

VV G B P P

P P
V G B

V V

 

 





   


  





To see the impact on the real power equations recall 



FDPF Approximations

• With the approximations for the diagonal term we 

get

• Hence the Jacobian for the real equations can be 

approximated as –B
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FPDF Approximations

• For the reactive power equations we also scale by Vi

• For the Jacobian off-diagonals we get
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FDPF Approximations

• And for the reactive power Jacobian diagonal we get

• As derived the real and reactive equations have a 

constant Jacobian equal to –B

• Usually modifications are made to omit from the real power 

matrix elements that affect reactive flow (like shunts) and from 

the reactive power matrix elements that affect real power flow, 

like phase shifters

• We’ll call the real power matrix B’ and the reactive B”
14
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FDPF Approximations

• It is also common to flip the sign on the mismatch 

equation, by changing it from (summation –

injection) to (injection – summation)

• Other modifications on the B matrix have been presented 

in the literature  (such as in the Bose paper)

• Hence we have
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FDPF Three Bus Example
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Line Z = j0.07

Line Z = j0.05 Line Z = j0.1

One Two

 200 MW

 100 MVR

Three 1.000 pu

 200 MW

 100 MVR

Use the FDPF to solve the following three bus system

34.3 14.3 20

14.3 24.3 10

20 10 30

bus j
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FDPF Three Bus Example, cont’d
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2 2

3 3

34.3 14.3 20
24.3 10
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10 30

20 10 30
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FDPF Three Bus Example, cont’d
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FDPF Region of Convergence
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FDPF Cautions

• The FDPF works well as long as the previous 

approximations hold for the entire system

• With the movement towards modeling larger systems, 

with more of the lower voltage portions of the system 

represented (for which r/x ratios are higher) it is quite 

common for the FDPF to get stuck because small 

portions of the system are ill-behaved

• The FDPF is commonly used to provide an initial 

guess of the solution or for contingency analysis 
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DC Power Flow

• The “DC” power flow makes the most severe 

approximations:

• completely ignore reactive power, assume all the voltages are 

always 1.0 per unit, ignore line conductance

• This makes the power flow a linear set of equations, 

which can be solved directly

• The term dc power flow actually dates from the time of 

the old network analyzers (going back into the 1930’s)

• Not to be confused with the inclusion of HVDC lines in 

the standard NPF 21

P sign convention is 

generation is positive 
1 θ B P



DC Power Flow References

• I don’t think a classic dc power flow paper exists; a 

nice formulation is given in our book Power 

Generation and Control book by Wood and 

Wollenberg

• The August 2009 paper in IEEE Transactions on Power 

Systems, “DC Power Flow Revisited” (by Stott, Jardim

and Alsac) provides good coverage

• T. J. Overbye, X. Cheng, and Y. Sun, “A comparison of 

the AC and DC power flow models for LMP 

Calculations,” in Proc. 37th Hawaii Int. Conf. System 

Sciences, 2004, compares the accuracy of the approach
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DC Power Flow Example
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Example from Power System Analysis and Design, by 

Glover, Overbye, Sarma



DC Power Flow in PowerWorld

• PowerWorld allows for easy switching between the 

dc and ac power flows
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To use the 

dc approach

in PowerWorld

select Tools,

Solve, DC

Power Flow

Notice there

are no 

losses
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  44 MW
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  67 MW
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  26 MW
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  38 MW
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  0.0 Mvar   21 MW
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  66 MW
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Mvar  0.0

  25 MW
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   0 Mvar   16 MW
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  0.0 Mvar
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  0.0 Mvar
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   0 Mvar

  19 MW

   0 Mvar
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   0 Mvar

  35 MW

   0 Mvar

   0 MW

   0 Mvar

TULIP69

Total Losses: 0.00 MW

 46%
A

MVApu 1.000

tap0.9812

Load Scalar:1.00

Total Load:   999 MW



Modeling Transformers with Off-
Nominal Taps and Phase Shifts

• If transformers have a turns ratio that matches the ratio 

of the per unit voltages than transformers are modeled 

in a manner similar to transmission lines.

• However it is common for transformers to have a 

variable tap ratio; this is known as an “off-nominal” tap 

ratio

• The off-nominal tap is t, initially we’ll consider it a real 

number

• We’ll cover phase shifters shortly in which t is complex
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Transformer Representation

• The one–line diagram of a branch with a variable tap 

transformer

• The network representation of a branch with off–

nominal turns ratio transformer is

26
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Transformer Nodal Equations

• From the network representation

• Also
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Transformer Nodal Equations

• We may rewrite these two equations as
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This approach was first presented in F.L. Alvarado, 

“Formation of Y-Node using the Primitive Y-Node 

Concept,” IEEE Trans. Power App. and Syst., 

December 1982

Ybus is still symmetric

here (though this will

change with phase

shifters)



The p-Equivalent Circuit for a 
Transformer Branch
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Variable Tap Voltage Control

• A transformer with a variable tap, i.e., the variable t is 

not constant, may be used to control the voltage at 

either the bus on the side of the tap or  at the bus on the 

side away from the tap 

• This constitutes an example of single criterion control 

since we adjust a single control variable (i.e., the 

transformer tap t) to achieve a specified criterion: the 

maintenance of a constant voltage at a designated bus

• Names for this type of control are on-load tap changer 

(LTC) transformer or tap changing under load (TCUL)

• Usually on low side; there may also be taps on high 

side that can be adjusted when it is de-energized 
30



Variable Tap Voltage Control

• An LTC is a discrete control, often with 32 incremental 

steps of 0.625% each, giving an automatic range of 

10%

• It follows from the p–equivalent model for the 

transformer that the transfer admittance between the 

buses of the transformer branch and the contribution to 

the self admittance at the bus away from the tap 

explicitly depend on t

• However, the tap changes in discrete steps; there is also 

a built in time delay in how fast they respond 

• Voltage regulators are devices with a unity nominal 

ratio, and then a similar tap range
31



Ameren Champaign (IL) Test 
Facility Voltage Regulators
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These are connected

on the low side of a 

69/12.4 kV 

transformer; each

phase can be

regulated separately 



Variable Tap Voltage Control

• LTCs (or voltage regulators) can be directly included 

in the power flow equations by modifying the 

Ybus entries; that is by scaling the terms by 1, 1/t or 1/t2

as appropriate

• If t is fixed then there is no change in the number of 

equations

• If t is variable, such as to enforce a voltage equality, 

then it can be included either by adding an additional 

equation and variable (t) directly, or by doing an “outer 

loop” calculation in which t is varied outside of the NR 

solution
• The outer loop is used in PowerWorld because of limit issues 
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Five Bus PowerWorld Example
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PowerWorld Case: B5_Voltage

With an impedance

of j0.1 pu between

buses 4 and 5, the 

y node primitive 

with t=1.0 is
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 
 
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If t=1.1 then it is

.

. .

j10 j9 09

j9 09 j8 26

 
 

 



Circulating Reactive Power

• Unbalanced transformer taps can cause large amounts 

of reactive power to circulating, increasing power 

system losses and overloading transformers

35

slack

1  1.00 pu

2 3

 33.9 MW

 33.7 MW

 33.3 Mvar

-30.9 Mvar

 1.000 tap tap 1.056

 30.5 MW

-17.6 Mvar

 30.3 MW
 18.9 Mvar

A

MVA

A

MVA

 1.02 pu 1.02 pu

A

MVA

MW  24

  12 Mvar

  64 MW

  16 Mvar

  40 MW

   0 Mvar

  0.0 Mvar



LTC Tap Coordination

• Changing tap ratios can affect the voltages and var flow 

at nearby buses; hence coordinated control is needed

36

PowerWorld 

Case:

Aggieland37
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