
Lecture 13: Sparse Matrix Ordering, Sparse

Vector Methods

ECEN 615
Methods of Electric Power Systems Analysis

Prof. Tom Overbye

Dept. of Electrical and Computer Engineering

Texas A&M University

overbye@tamu.edu

mailto:overbye@tamu.edu

Announcements

• Homework 3 is due Thursday Oct 11

• Midterm exam is Oct 18 in class

• Off campus students should work with Iyke to get their

exam proctoring setup

• Closed book, closed notes, but calculators and one 8.5 by

11 inch note sheet allowed

2

Tinney Scheme 2

• The Tinney Scheme 2 usually combines adding the fills

with the ordering in order to update the valence on-the-

fly as the fills are added

• As before the nodes are chosen based on their valence,

but now the valence is the actual valence they have

with the added lines (fills)

– This is also known as the Minimum Degree Algorithm (MDA)

– Ties are again broken using the lowest node number

• This method is quite effective for power systems, and is

highly recommended; however it is certainly not

guaranteed to result in the fewest fills (i.e. not optimal)

3

Tinney Scheme 2 Example

• Consider the previous network:

• Nodes 1,2,3 are chosen as before. But once these

nodes are eliminated the valence of 4 is 1, so it is

chosen next. Then 5 (with a new valence of 2 tied with

7), followed by 6 (new valence of 2), 7 then 8.

1 2 3

4 5
6

78

4

Coding Tinney 2

• The following slides show how to code Tinney 2

for an n by n sparse matrix A

• First we setup linked lists grouping all the nodes by

their original valence

• vcHead is a pointer vector [0..mvValence]

– If a node has no connections its incidence is 0

– Theoretically mvValence should be n-1, but in practice a

much smaller number can be used, putting nodes with

valence values above this into the vcHead[mvValence] is

5

Coding Tinney 2, cont.

• Setup a boolean vectors chosenNode[1..n] to

indicate which nodes are chosen and BSWR[1..n]

as a sparse working row; initialize both to all false

• Setup an integer vector rowPerm[1..n] to hold the

permuted rows; initialize to all zeros

• For i := 1 to n Do Begin

– Choose node from valence data structure with the lowest

current valence; let this be node k

• Go through vcHead from lastchosen level (last chosen level may

need to be reduced by one during the following elimination

process;

– Set rowPerm[i] = k; set chosenNode[k] = true

6

Coding Tinney 2, cont.

– Modify sparse matrix A to add fills between all of k’s adjacent

nodes provided

1. a branch doesn’t already exist

2. both nodes have not already been chosen (their chosenNode

entries are false)

• These fills are added by going through each element in row k; for

each element set the BSWR elements to true for the incident nodes;

add fills if a connection does not already exist (this requires adding

two new elements to A)

– Again go through row k updating the valence data structure

for those nodes that have not yet been chosen

• These values can either increase or go down by one (because of the

elimination of node k)

7

Coding Tinney 2, cont.

• This continues through all the nodes; free all vectors

except for rowPerm

• At this point in the algorithm the rowPerm vector

contains the new ordering and matrix A has been

modified so that all the fills have been added

– The order of the rows in A has not been changed, and its

columns are no longer sorted

8

Coding Tinney 2, cont

• Sort the rows of A to match the order in rowPerm

– Surprising sorting A is of computational order equal to the

number of elements in A

• Go through A putting its elements into column linked lists; these

columns will be ordered by row

• Then through the columns linked lists in reverse order given by

rowPerm

– That is For i := n downto 1 Do Begin

p1 := TSparmatLL(colHead[rowPerm[i]).Head;

….

• That’s it – the matrix A is now readying for factoring

• Pivoting may be required, but usually isn’t needed in

the power flow

9

Some Example Values for Tinney 2

Number of

buses

Nonzeros

before fills

Fills Total

nonzeros

Percent

nonzeros

37 63 72 135 9.86%

118 478 168 646 4.64%

18,190 64,948 31,478 96,426 0.029%

62,605 228,513 201,546 430,059 0.011%

10

Tinney Scheme 3

• “Number the rows so that at each step of the process

the next row to be operated upon is the one that will

introduce the fewest new nonzero terms.”

• “If more than one row meets this criterion, select any

one. This involves a trial simulation of every feasible

alternative of the elimination process at each step.

Input information is the same as for scheme 2).”

• Tinney 3 takes more computation and in general does

not give fewer fills than the quicker Tinney 2

• Tinney got into the NAE in 1998

These are direct quotes from the Tinney-Walker 1967 IEEE Proceedings Paper

Sparse Forward Substitution with a
Permutation Vector

Pass in b in bvector

For i := 1 to n Do Begin

k = rowPerm[i]; // this is the only change, except using k

p1 := rowHead[k]; // the row needs to be ordered correctly!

While p1 <> rowDiag[k] Do Begin

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

End;

12

Sparse Backward Substitution with
Permutation Vector

Pass in b in bvector

For i := n downto 1 Do Begin

k = rowPerm[i];

p1 := rowDiag[k].next;

While p1 <> nil Do Begin

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

bvector[k] := bvector[k]/rowDiag[k].value;

End;

• Note, numeric problems such as matrix singularity are

indicated with rowDiag[k].value being zero!
13

Sparse Vector Methods

• Sparse vector methods are useful for cases in

solving Ax=b in which

– A is sparse

– b is sparse

– only certain elements of x are needed

• In these right circumstances sparse vector methods

can result in extremely fast solutions!

• A common example is to find selected elements of

the inverse of A, such as diagonal elements.

14

Sparse Vector Methods

• Often times multiple solutions with varying b

values are required

– A only needs to be factored once, with its factored form

used many times

• Key reference is

W.F. Tinney, V. Brandwajn, and S.M. Chan, "Sparse Vector

Methods", IEEE Transactions on Power Apparatus and

Systems, vol. PAS-104, no. 2, February 1985, pp. 295-300

15

Sparse Vector Methods Introduced

• Assume we are solving Ax = b with A factored so

we solve LUx = b by first doing the forward

substitution to solve Ly = b and then the backward

substitution to solve Ux = y

• A key insight: In the solution of Ly = b if b is

sparse then only certain columns of L are required,

and y is often sparse
y1

.

.

.

yn

.

.

.
x
.
.
.
x
.
.
.
x

=

16

Fast Forward Substitution

• If b is sparse, then the fast forward (FF)

substitution takes advantage of the fact that we

only need certain columns of L

• We define {FF} as the set of columns of L needed

for the solution of Ly = b; this is equal to the

nonzero elements of y

• In general the solution of Ux = y will NOT result in

x being a sparse vector

• However, oftentimes only certain elements of x are

desired

– E.g., the sensitivity of the flows on certain lines to a

change in generation at a single bus; or a diagonal of A-1
17

Fast Backward Substitution

• In the case in which only certain elements of x are

desired, then we only need to use certain rows in U

below the desired elements of x; define these columns

as {FB}

• This is known as a fast backward substitution (FB),

which is used to replace the standard backward

substitution
.
.
.

x
.
.
.

x
.
.
.

x
.
.

y1

y2

.

.

.

yn

=

18

Factorization Paths

• We observe that

– {FF} depends on the sparsity structures of L and b

– {FB} depends on the sparsity structures of U and x

• The idea of the factorization path provides a

systematic way to construct these sets

• A factorization path is an ordered set of nodes

associated with the structure of the matrix

• For FF the factorization path provides an ordered

list of the columns of L

• For FB the factorization path provides an ordered

list of the rows of U
19

Factorization Path

• The factorization path (f.p.) is traversed in the

forward direction for FF and in the reverse direction

for FB

– Factorization paths should be built using doubly linked

lists

• A singleton vector is a vector with just one nonzero

element. If this value is equal to one then it is a unit

vector as well..

20

Factorization Path, cont.

• With a sparse matrix structure ordered based upon

the permutation vector order the path for a singleton

with a now zero at position arow is build using the

following code:

p1:= rowDiag[arow];

While p1 <> nil Do Begin

AddToPath(p1.col); // Setup a doubly linked list!

p1 := rowDiag[p1.col].next;

End;

21

Path Table and Path Graph

• The factorization path table is a vector that tells the

next element in the factorization path for each row

in the matrix

• The factorization path graph shows a pictorial view

of the path table

22

20 Bus Example

23

20 Bus Example

24

Only showing L

20 Bus Example

node k p(k) node k p(k)

25

20 Bus Example

• Suppose we wish to evaluate a sparse vector with the

nonzero elements for components 2, 6, 7, and 12

• From the path table or path graph, we obtain the

following

• This gives the following path elements

2 {2, 11, 12, 15, 17, 18, 19, 20}f.p.

6 {6, 16, 17, 18, 19, 20}f.p.

7 {7, 14, 17, 18, 19, 20}f.p.

12 2f.p. already contained in that for node

{ }7,14,6,16, 2,11,12,15,17,18,19, 20

26

20 Bus Example

Full path Desired subset

27

Remarks

• Since various permutations may be used to order a

particular path subgroup, a precedence rule is

introduced to make the ordering valid

• This involves some sorting operation; for the FF, the

order value of a node cannot be computed until the

order values of all lower numbered nodes are defined

• The order of processing branches above a junction node

is arbitrary; for each branch, however, the precedence

rule in force applies

• We can paraphrase this statement as: perform first

everything above the junction point using the

precedence ordering in each branch
28

Nine Bus Example

• We next consider the example of the 9-bus network

shown below

• For the given ordering, the sparsity structure leads to

the following path graph and the table

29

Nine Bus Example

k p(k)

1

2

3

4

5

6

7

8

9

4

3

6

7

7

8

8

9

0

30

Nine Bus Example

• Suppose next we are interested in the value

determination of only component, node 1

– That is, calculating a diagonal of the inverse of the

original matrix

• FF involves going down the path from 1-4-7-8-9,

and the FB requires coming back up, 9-8-7-4-1

• This example makes evident the savings in

operations we may realize from the effective use of

a sparse vector scheme

31

Nine Bus Example

32

Example Application

• In ongoing geomagnetic disturbance modeling work we

need to determine the sensitivity of the results to the

assumed substation grounding resistance

– Since the induced voltages are quasi-dc, the network is

modeled by setting up the conductance matrix G = R-1

– Initial work focused on calculating the driving point

impedance values, which required knowing diagonal elements

of R, which were easily calculated with sparse vector methods

– But Rii depends on the assumed grounding values are nearby

substations, so we need to determine this impact as well; so

we’d like small blocks of the inverse of R, which will require

using the unions of the factorization paths to get some Rij

33

Ordering for Shorter Paths

• The paper 1990 IEEE Transactions on Power

Systems paper “Partitioned Sparse A-1 Methods”

(by Alvarado, Yu and Betancourt) they introduce

ordering methods for decreasing the length of the

factorization paths

• Factorization paths also

indicate the degree to which

parallel processing could be

used in solving Ax = b by

LU factorization

– Operations in the various paths

could be performed in parallel
Image from Alvarado 1990 paper

34

Computation with Complex and
Blocked Matrices

• In the previous analysis we have implicitly

assumed that the values involved were real

numbers (stored as singles or doubles in memory)

• Nothing in the previous analysis prevents using

other data structures for analysis

– Complex numbers would be needed if factoring the bus

admittance matrix (Ybus); this is directly supported in

some programming languages and can be easily added to

others; all values are complex numbers

– Two by two block matrices are common for power flow

Jacobian factorization; for this we use 2 by 2 blocks in

the matrices and 2 by 1 blocks in the vectors

35

2 by 2 Block Matrix Computation

• By treating our data structures as two by two

blocks, we reduce the computation required to add

fills substantially

– Half the number of rows, and four times fewer elements

• Overall computation is reduced somewhat since we

have four times fewer elements, but we do have

more computation per element

36

2 by 2 Block Matrix Example

• In the backward substitution we had

For i := n downto 1 Do Begin

k = rowPerm[i];

p1 := rowDiag[k].next;

While p1 <> nil Do Begin

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

bvector[k] := bvector[k]/rowDiag[k].value;

End;

37

2 by 2 Block Matrix Example

• We replace the scalar bvector entries by objects with

fields .r and .i (for the real and imaginary parts) and we

replace the p1.value field with four fields .ul, .ur, .ll

and .lr corresponding to the upper left, upper right,

lower left and lower right values.

• The first multiply goes from

bvector[k] = bvector[k] – p1.value*bvector[p1.col]

to
bvector[k].r bvector[k].r p1.ul p1.ur bvector[p1.col].r

bvector[k].i bvector[k].i p1.ll p1.lr bvector[p1.col].i

       
         

       

38

2 by 2 Block Matrix Example

• The second numeric calculation changes from
bvector[k] := bvector[k]/rowDiag[k].value

• To

• Which can be coded by directly doing the inverse as

bvector[k].r bvector[k].r rowDiag[k].lr -rowDiag[k].ur bvector[p1.col].r

bvector[k].i bvector[k].i -rowDiag[k].ll rowDiag[k].ul bvector[p1.col].idet

with

det=rowDiag[k].ul rowDiag[k].

1       
         

       

 lr - rowDiag[k].ll rowDiag[k].ur

bvector[k].r bvector[k].r rowDiag[k].ul rowDiag[k].ur bvector[p1.col].r

bvector[k].i bvector[k].i rowDiag[k].ll rowDiag[k].lr bvector[p1.col].i

1

       
         

       

39

Sparse Matrix and Vector Method
Summary

• Previous slides have presented sparse matrix and

sparse vector methods commonly used in power

system and some circuit analysis applications

• These methods are widely used, and have the

ability to substantially speed up power system

computations

• They will be applied as necessary throughout the

remainder of the course

• We’ll now move on to sensitivity analysis with a

quick introduction of contingency analysis

40

