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Announcements

• Homework 3 is due Thursday Oct 11

• Midterm exam is Oct 18 in class

• Off campus students should work with Iyke to get their 

exam proctoring setup

• Closed book, closed notes, but calculators and one 8.5 by 

11 inch note sheet allowed
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Tinney Scheme 2

• The Tinney Scheme 2 usually combines adding the fills 

with the ordering in order to update the valence on-the-

fly as the fills are added

• As before the nodes are chosen based on their valence, 

but now the valence is the actual valence they have 

with the added lines (fills)

– This is also known as the Minimum Degree Algorithm (MDA)

– Ties are again broken using the lowest node number

• This method is quite effective for power systems, and is 

highly recommended; however it is certainly not 

guaranteed to result in the fewest fills (i.e. not optimal)
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Tinney Scheme 2 Example

• Consider the previous network:

• Nodes 1,2,3 are chosen as before.  But once these 

nodes are eliminated the valence of 4 is 1, so it is 

chosen next.  Then 5 (with a new valence of 2 tied with 

7), followed by 6 (new valence of 2), 7 then 8.  

1 2 3

4 5
6

78
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Coding Tinney 2

• The following slides show how to code Tinney 2 

for an n by n sparse matrix A

• First we setup linked lists grouping all the nodes by 

their original valence

• vcHead is a pointer vector [0..mvValence] 

– If a node has no connections its incidence is 0

– Theoretically mvValence should be n-1, but in practice a 

much smaller number can be used, putting nodes with 

valence values above this into the vcHead[mvValence] is
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Coding Tinney 2, cont.

• Setup a boolean vectors chosenNode[1..n] to 

indicate which nodes are chosen and BSWR[1..n] 

as a sparse working row; initialize both to all false

• Setup an integer vector rowPerm[1..n] to hold the 

permuted rows; initialize to all zeros

• For i := 1 to n Do Begin

– Choose node from valence data structure with the lowest 

current valence; let this be node k

• Go through vcHead from lastchosen level (last chosen level may 

need to be reduced by one during the following elimination 

process;

– Set rowPerm[i] = k; set chosenNode[k] = true
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Coding Tinney 2, cont.

– Modify sparse matrix A to add fills between all of k’s adjacent 

nodes provided 

1. a branch doesn’t already exist

2. both nodes have not already been chosen (their chosenNode

entries are false)

• These fills are added by going through each element in row k; for 

each element set the BSWR elements to true for the incident nodes; 

add fills if a connection does not already exist (this requires adding 

two new elements to A)

– Again go through row k updating the valence data structure 

for those nodes that have not yet been chosen

• These values can either increase or go down by one (because of the 

elimination of node k)
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Coding Tinney 2, cont.

• This continues through all the nodes; free all vectors 

except for rowPerm

• At this point in the algorithm the rowPerm vector 

contains the new ordering and matrix A has been 

modified so that all the fills have been added

– The order of the rows in A has not been changed, and its 

columns are no longer sorted 
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Coding Tinney 2, cont

• Sort the rows of A to match the order in rowPerm

– Surprising sorting A is of computational order equal to the 

number of elements in A

• Go through A putting its elements into column linked lists; these 

columns will be ordered by row

• Then through the columns linked lists in reverse order given by 

rowPerm

– That is For i := n downto 1 Do Begin

p1 := TSparmatLL(colHead[rowPerm[i]).Head;

….

• That’s it – the matrix A is now readying for factoring

• Pivoting may be required, but usually isn’t needed in 

the power flow  
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Some Example Values for Tinney 2

Number of 

buses

Nonzeros

before fills

Fills Total 

nonzeros

Percent

nonzeros

37 63 72 135 9.86%

118 478 168 646 4.64%

18,190 64,948 31,478 96,426 0.029%

62,605 228,513 201,546 430,059 0.011%
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Tinney Scheme 3

• “Number the rows so that at each step of the process 

the next row to be operated upon is the one that will 

introduce the fewest new nonzero terms.” 

• “If more than one row meets this criterion, select any 

one. This involves a trial simulation of every feasible 

alternative of the elimination process at each step. 

Input information is the same as for scheme 2).”

• Tinney 3 takes more computation and in general does 

not give fewer fills than the quicker Tinney 2

• Tinney got  into the NAE in 1998

These are direct quotes from the Tinney-Walker 1967 IEEE Proceedings Paper



Sparse Forward Substitution with  a 
Permutation Vector

Pass in b in bvector

For i := 1 to n Do Begin 

k = rowPerm[i];  // this is the only change, except using k

p1 := rowHead[k];  // the row needs to be ordered correctly!

While p1 <> rowDiag[k] Do Begin 

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

End;
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Sparse Backward Substitution with 
Permutation Vector

Pass in b in bvector

For i := n downto 1 Do Begin 

k = rowPerm[i]; 

p1 := rowDiag[k].next;  

While p1 <> nil Do Begin 

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

bvector[k] := bvector[k]/rowDiag[k].value;

End;

• Note, numeric problems such as matrix singularity are 

indicated with rowDiag[k].value being zero!
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Sparse Vector Methods

• Sparse vector methods are useful for cases in 

solving Ax=b in which

– A is sparse

– b is sparse

– only certain elements of x are needed

• In these right circumstances sparse vector methods 

can result in extremely fast solutions!

• A common example is to find selected elements of 

the inverse of A, such as diagonal elements.  

14



Sparse Vector Methods

• Often times multiple solutions with varying b

values are required

– A only needs to be factored once, with its factored form 

used many times 

• Key reference is 

W.F. Tinney, V. Brandwajn, and S.M. Chan, "Sparse Vector 

Methods", IEEE Transactions on Power Apparatus and 

Systems, vol. PAS-104, no. 2, February 1985, pp. 295-300

15



Sparse Vector Methods Introduced

• Assume we are solving Ax = b with A factored so 

we solve LUx = b by first doing the forward 

substitution to solve Ly = b and then the backward 

substitution to solve Ux = y

• A key insight: In the solution of Ly = b if b is 

sparse then only certain columns of L are required, 

and y is often sparse 
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Fast Forward Substitution

• If b is sparse, then the fast forward (FF) 

substitution takes advantage of the fact that we 

only need certain columns of L

• We define {FF} as the set of columns of L needed 

for the solution of Ly = b; this is equal to the 

nonzero elements of y

• In general the solution of Ux = y will NOT result in 

x being a sparse vector 

• However, oftentimes only certain elements of x are 

desired

– E.g., the sensitivity of the flows on certain lines to a 

change in generation at a single bus; or a diagonal of A-1
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Fast Backward Substitution

• In the case in which only certain elements of x are 

desired, then we only need to use certain rows in U

below the desired elements of x; define these columns 

as {FB}

• This is known as a fast backward substitution (FB), 

which is used to replace the standard backward 

substitution
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Factorization Paths

• We observe that 

– {FF} depends on the sparsity structures of L and b

– {FB} depends on the sparsity structures of U and x

• The idea of the factorization path provides a 

systematic way to construct these sets

• A factorization path is an ordered set of nodes 

associated with the structure of the matrix

• For FF the factorization path provides an ordered 

list of the columns of L

• For FB the factorization path provides an ordered 

list of the rows of U
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Factorization Path

• The factorization path (f.p.) is traversed in the 

forward direction for FF and in the reverse direction 

for FB

– Factorization paths should be built using doubly linked 

lists       

• A singleton vector is a vector with just one nonzero 

element.  If this value is equal to one then it is a unit 

vector as well..
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Factorization Path, cont.

• With a sparse matrix structure ordered based upon 

the permutation vector order the path for a singleton 

with  a now zero at position arow is build using the 

following code:

p1:= rowDiag[arow]; 

While p1 <> nil Do Begin 

AddToPath(p1.col);   // Setup a doubly linked list!

p1 := rowDiag[p1.col].next;  

End;
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Path Table and Path Graph

• The factorization path table is a vector that tells the 

next element in the factorization path for each row 

in the matrix

• The factorization path graph shows a pictorial view 

of the path table 
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20 Bus Example
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20 Bus Example
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20 Bus Example

node k p(k) node k p(k)
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20 Bus Example

• Suppose we wish to evaluate a sparse vector with the 

nonzero elements for components 2, 6, 7, and 12

• From the path table or path graph, we obtain the 

following

• This gives the following path elements

2 {2, 11, 12, 15, 17, 18, 19, 20}f.p. 

6 {6, 16, 17, 18, 19, 20}f.p. 

7 {7, 14, 17, 18, 19, 20}f.p. 

12  2f.p. already contained in that for node

{ }7,14,6,16, 2,11,12,15,17,18,19, 20
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20 Bus Example

Full path Desired subset
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Remarks

• Since various permutations may be used to order a 

particular path subgroup, a precedence rule is 

introduced to make the ordering valid

• This involves some sorting operation; for the FF, the 

order value of a node cannot be computed until the 

order values of all lower numbered nodes are defined

• The order of processing branches above a junction node 

is arbitrary; for each branch, however, the precedence 

rule in force applies

• We can paraphrase this statement as: perform first 

everything above the junction point using the 

precedence ordering in each branch
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Nine Bus Example

• We next consider the example of the 9-bus network 

shown below

• For the given ordering, the sparsity structure leads to 

the following path graph and the table
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Nine Bus Example

k p(k)

1

2

3

4
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6

7

8

9
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8

9

0

30



Nine Bus Example

• Suppose next we are interested in the value 

determination of only component, node 1

– That is, calculating a diagonal of the inverse of the 

original matrix

• FF involves going down the path from 1-4-7-8-9, 

and the FB requires coming back up, 9-8-7-4-1 

• This example makes evident the savings in 

operations we may realize from the effective use of 

a sparse vector scheme
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Nine Bus Example
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Example Application

• In ongoing geomagnetic disturbance modeling work we 

need to determine the sensitivity of the results to the 

assumed substation grounding resistance

– Since the induced voltages are quasi-dc, the network is 

modeled by setting up the conductance matrix G = R-1

– Initial work focused on calculating the driving point 

impedance values, which required knowing diagonal elements 

of R, which were easily calculated with sparse vector methods

– But Rii depends on the assumed grounding values are nearby 

substations, so we need to determine this impact as well; so 

we’d like small blocks of the inverse of R, which will require 

using the unions of the factorization paths to get some Rij
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Ordering for Shorter Paths

• The paper 1990 IEEE Transactions on Power 

Systems paper “Partitioned Sparse A-1 Methods” 

(by Alvarado, Yu and Betancourt) they introduce 

ordering methods for decreasing the length of the 

factorization paths

• Factorization paths also

indicate the degree to which

parallel processing could be

used in solving Ax = b by 

LU factorization

– Operations in the various paths

could be performed in parallel
Image from Alvarado 1990 paper
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Computation with Complex and 
Blocked Matrices

• In the previous analysis we have implicitly 

assumed that the values involved were real 

numbers (stored as singles or doubles in memory)

• Nothing in the previous analysis prevents using 

other data structures for analysis

– Complex numbers would be needed if factoring the bus 

admittance matrix (Ybus); this is directly supported in 

some programming languages and can be easily added to 

others; all values are complex numbers

– Two by two block matrices are common for power flow 

Jacobian factorization; for this we use 2 by 2 blocks in 

the matrices and 2 by 1 blocks in the vectors
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2 by 2 Block Matrix Computation

• By treating our data structures as two by two 

blocks, we reduce the computation required to add 

fills substantially

– Half the number of rows, and four times fewer elements

• Overall computation is reduced somewhat since we 

have four times fewer elements, but we do have 

more computation per element
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2 by 2 Block Matrix Example

• In the backward substitution we had

For i := n downto 1 Do Begin 

k = rowPerm[i]; 

p1 := rowDiag[k].next;  

While p1 <> nil Do Begin 

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

bvector[k] := bvector[k]/rowDiag[k].value;

End;
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2 by 2 Block Matrix Example

• We replace the scalar bvector entries by objects with 

fields .r and .i (for the real and imaginary parts) and we 

replace the p1.value field with four fields .ul, .ur, .ll

and .lr corresponding to the upper left, upper right, 

lower left and lower right values.  

• The first multiply goes from

bvector[k] = bvector[k] – p1.value*bvector[p1.col]

to 
bvector[k].r bvector[k].r p1.ul p1.ur bvector[p1.col].r

bvector[k].i bvector[k].i p1.ll p1.lr bvector[p1.col].i

       
         

       
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2 by 2 Block Matrix Example

• The second numeric calculation changes from
bvector[k] := bvector[k]/rowDiag[k].value

• To 

• Which can be coded by directly doing the inverse as

bvector[k].r bvector[k].r rowDiag[k].lr -rowDiag[k].ur bvector[p1.col].r

bvector[k].i bvector[k].i -rowDiag[k].ll rowDiag[k].ul bvector[p1.col].idet

with

det=rowDiag[k].ul rowDiag[k].

1       
         

       

 lr - rowDiag[k].ll rowDiag[k].ur

bvector[k].r bvector[k].r rowDiag[k].ul rowDiag[k].ur bvector[p1.col].r

bvector[k].i bvector[k].i rowDiag[k].ll rowDiag[k].lr bvector[p1.col].i

1

       
         

       
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Sparse Matrix and Vector Method 
Summary

• Previous slides have presented sparse matrix and 

sparse vector methods commonly used in power 

system and some circuit analysis applications

• These methods are widely used, and have the 

ability to substantially speed up power system 

computations

• They will be applied as necessary throughout the 

remainder of the course

• We’ll now move on to sensitivity analysis with a 

quick introduction of contingency analysis
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