ECEN 615 Methods of Electric Power Systems Analysis

Lecture 16: Sensitivity Analysis

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- Exam average was 85.7, with a high of 100
- Read Chapter 7 (the term reliability is now used instead of security)
- Homework 4 is assigned today, due on Thursday Nov 1

Linearized Sensitivity Analysis

- By using the approximations from the fast decoupled power flow we can get sensitivity values that are independent of the current state. That is, by using the B' and B'' matrices
- For line flow we can approximate

$$h_{\ell}(\underline{s}) = g_{\ell}\left[\left(V^{i}\right)^{2} - V^{i}V^{j}cos(\theta^{i} - \theta^{j})\right] - b_{\ell}V^{i}V^{j}sin(\theta^{i} - \theta^{j}), \ \ell = (i, j)$$

By using the FDPF appxomations

$$h_{\ell}(\underline{s}) \approx -b_{\ell}(\theta^{i} - \theta^{j}) = \frac{(\theta^{i} - \theta^{j})}{X_{\ell}}, \ \ell = (i, j)$$

Linearized Sensitivity Analysis

• Also, for each line ℓ

$$\frac{\partial h_{\ell}}{\partial \theta} \approx -b_{\ell} a_{\ell} \qquad \qquad \frac{\partial h_{\ell}}{\partial V} \approx 0$$

Sensitivity Analysis: Recall the Matrix Notation

- The series admittance of line ℓ is $g_{\ell} + jb_{\ell}$ and we define $\tilde{\mathbf{B}} \triangleq -diag\{b_1, b_2, \cdots, b_L\}$
- We define the L×N incidence matrix

where the component j of \mathbf{a}_i is nonzero whenever line ℓ_i is coincident with node j. Hence **A** is quite sparse, with at most two nonzeros per row

Linearized Active Power Flow Model

• Under these assumptions the change in the real power line flows are given as

$$\Delta \mathbf{f} \approx \begin{bmatrix} \tilde{\mathbf{B}} \mathbf{A} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{B'} & \mathbf{0} \\ \mathbf{0} & \mathbf{B''} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{I} \\ \mathbf{0} \end{bmatrix} \Delta \mathbf{p} = \underbrace{\tilde{\mathbf{B}} \mathbf{A} \begin{bmatrix} \mathbf{B'} \end{bmatrix}^{-1} \Delta \mathbf{p}}_{-1} = \Psi \Delta \mathbf{p}$$

• The constant matrix $\Psi \triangleq \tilde{\mathbf{B}}\mathbf{A}[\mathbf{B'}]^{-1}$ is called the injection shift factor matrix (ISF)

Injection Shift Factors (ISFs)

- The element ψ_{ℓ}^{n} in row ℓ and column n of Ψ is called the injection shift factor (*ISF*) of line ℓ with respect to the injection at node n
 - Absorbed at the slack bus, so it is slack bus dependent
- Terms generation shift factor (GSF) and load shift factor (LSF) are also used (such as by NERC)
 - Same concept, just a variation in the sign whether it is a generator or a load
 - Sometimes the associated element is not a single line, but rather a combination of lines (an interface)
- Terms used in North America are defined in the NERC glossary (http://www.nerc.com/files/glossary_of_terms.pdf)

ISF Interpretation

 Ψ_{ℓ}^{n} is the fraction of the additional 1 *MW* injection at node *n* that goes though line ℓ

ISF Properties

- By definition, ψ_{ℓ}^{n} depends on the location of the slack bus
- By definition, $\psi_{\ell}^{slackbus} \equiv 0$ for $\forall \ell \in L$ since the injection and withdrawal buses are identical in this case and, consequently, no flow arises on any line ℓ
- The magnitude of ψ_{ℓ}^{n} is at most 1 since

$$-1 \leq \psi_{\ell}^{n} \leq 1$$

Note, this is strictly true only for the linear (lossless) case. In the nonlinear case, it is possible that a transaction decreases losses. Hence a 1 MW injection could change a line flow by more than 1 MW.

Five Bus Example Reference

Five Bus ISF, Line 4, Bus 2 (to Slack)

Five Bus Example

0

0

0

1

0

$\tilde{B} = -diag\{6.25, 12.5, 12.5, 12.5, 12.5, 12.5, 10\}$

0

0

0

0

0

-1

0

0

0

-1

1

The row of **A** correspond to the lines and transformers, the columns correspond to the non-slack buses (buses 2 to 5); for each line there is a 1 at one end, a -1 at the other end (hence an assumed sign convention!). Here we put a 1 for the lower numbered bus, so positive flow is assumed from the lower numbered bus to the higher number

Five Bus Example

With bus 1 as the slack, the buses (columns) go for 2 to 5

Five Bus Example Comments

• At first glance the numerically determined value of (128-118)/20=0.5 does not match closely with the analytic value of 0.5455; however, in doing the subtraction we are losing numeric accuracy

- Adding more digits helps (128.40 - 117.55)/20 = 0.5425

- The previous matrix derivation isn't intended for actual computation; Ψ is a full matrix so we would seldom compute all of its values
- Sparse vector methods can be used if we are only interested in the ISFs for certain lines and certain buses

Distribution Factors

- Various additional distribution factors may be defined
 - power transfer distribution factor (PTDF)
 - line outage distribution factor (LODF)
 - line addition distribution factor (LADF)
 - outage transfer distribution factor (OTDF)
- These factors may be derived from the ISFs making judicious use of the superposition principle

Definition: Basic Transaction

- A basic transaction involves the transfer of a specified amount of power t from an injection node m to a withdrawal node n

Definition: Basic Transaction

• We use the notation

to denote a basic transaction

Definition: PTDF

- NERC defines a PTDF as
 - "In the pre-contingency configuration of a system under study, a measure of the responsiveness or change in electrical loadings on transmission system Facilities due to a change in electric power transfer from one area to another, expressed in percent (up to 100%) of the change in power transfer"
 - Transaction dependent
- We'll use the notation $\varphi_{\ell}^{(w)}$ to indicate the PTDF on line ℓ with respect to basic transaction w
- In the lossless formulation presented here (and commonly used) it is slack bus independent

PTDF Evaluation in Two Parts

PTDF Evaluation

Calculating PTDFs in PowerWorld

- PowerWorld provides a number of options for calculating and visualizing PTDFs
 - Select Tools, Sensitivities, Power Transfer Distribution Factors (PTDFs)

💽 🖫 - 👺 🐻 🗮 🗄 🗐 😣 🎆 🗸 🧧 Power Transfer Distribution											
File	Case Information	Draw On	elines	Tools Opt	ions Add O	ns Window	w				
Edit Mode Run Mode Mode	⊗ Abort Uog Koript → Log	Single Solution - Full <u>N</u> ewton Pow	Simulato Options	Solve - Restore	Continge Analysis	df dx dx ₹√7 ncy Sensitivi i ₹	ties Line Load	Analysis 👻 Step Simulation ing Replicator	Limit Monitori		
Linear Calculation Method Linearized AC Lossless DC Lossless DC With Phase Shifters Calculate PTDFs Automatically recalculate after each power flow Linearized AC Seller Type Area Seller Type Area Seller Type Area Seller Type Area Seller Type Area Seller Type Area Super Area Super Area											
Increase in Losses (%) O.0 List Display Options One line Display Options One line Display Options One line Display Options Visualize PTDFs Visualize PTDFs											
Lines/Transformers Interfaces Areas Zones Generators Phase Shifters											
1 🛄 🏗 州* 108 🕫 🗰 鶴 🤮 🛱 Records * Geo * Set * Columns * 📴 * 👹 * 👹 * 🎆 f(x) * 田 Options *											
From	Number From N	Name To Number	To Na	me Circuit	% PTDF From	% PTDF To	% Losses	Nom kV (Max)	Nom kV (Min)		
1	2 Two		1 One	1	27.27	-27.27	0.00	138.0	138.0		
- 2	1 One		4 Four	1	18,18	-18,18	0.00	138.0	138.0		
4	2 Two		3 Three	1	72.73	-72.73	0.00	138.0	138.0		
5	4 Four		3 Three	1	9.09	-9.09	0.00	138.0	138.0		

Results are shown for the five bus case for the Bus 2 to Bus 3 transaction

Five Bus PTDF Visualization

PowerWorld Case: B5_DistFact_PTDF

Nine Bus PTDF Example

Display shows the PTDFs for a basic transaction from Bus A to Bus I. Note that 100% of the transaction leaves Bus A and 100% arrives at Bus I

PowerWorld Case: B9_PTDF

Eastern Interconnect Example: Wisconsin Utility to TVA PTDFs

In this example multiple generators contribute for both the seller and the buyer

Contours show lines that would carry at least 2% of a power transfer from Wisconsin to TVA

Line Outage Distribution Factors (LODFs)

- Power system operation is practically always limited by contingencies, with line outages comprising a large number of the contingencies
- Desire is to determine the impact of a line outage (either a transmission line or a transformer) on other system real power flows without having to explicitly solve the power flow for the contingency
- These values are provided by the LODFs
- The LODF d_{ℓ}^{k} is the portion of the pre-outage real power line flow on line k that is redistributed to line ℓ as a result of the outage of line k

Best reference is Chapter 7 of the course book

LODF Evaluation

Ă,

We simulate the impact of the outage of line k by adding the basic transaction $w_k = \{i', j', \Delta t_k\}$

and selecting Δt_k in such a way that the flows on the dashed lines become exactly zero

In general this Δt_k is not equal to the original line flow

• We select Δt_k to be such that

$$f_k + \Delta f_k - \Delta t_k = 0$$

where Δf_k is the active power flow change on the line k due to the transaction w_k

• The line k flow from w_k depends on its PTDF

$$\Delta f_k = \varphi_k^{(w_k)} \Delta t_k$$

it follows that $\Delta t_k = \frac{f_k}{1 - \varphi_k^{(w_k)}} = \frac{f_k}{1 - \left(\psi_k^{i'} - \psi_k^{j'}\right)}$

30

LODF Evaluation

• For the rest of the network, the impacts of the outage of line k are the same as the impacts of the additional basic transaction w_k

$$\Rightarrow \Delta f_{\ell} = \varphi_{\ell}^{(w_k)} \Delta t_k = \frac{\varphi_{\ell}^{(w_k)}}{1 - \varphi_k^{(w_k)}} f_k$$

• Therefore, by definition the LODF is

$$d_{\ell}^{k} = \frac{\Delta f_{\ell}}{f_{k}} = \frac{\varphi_{\ell}^{(w_{k})}}{1 - \varphi_{k}^{(w_{k})}}$$

Five Bus Example

• Assume we wish to calculate the values for the outage of line 4 (between buses 2 and 3); this is line k

Say we wish to know the change in flow on the line 3 (Buses 3 to 4). PTDFs for a transaction from 2 to 3 are 0.7273 on line 4 and 0.0909 on line 3

Five Bus Example

• Hence we get

$$\Delta t_k = \frac{f_k}{1 - \varphi_k^{(w_k)}} = \frac{128}{1 - 0.7273} = 469.4$$

$$d_{3}^{4} = \frac{\Delta f_{3}}{f_{4}} = \frac{\varphi_{3}^{(w_{4})}}{1 - \varphi_{4}^{(w_{4})}} = \frac{0.0909}{1 - 0.7273} = 0.333$$
$$\Delta f_{3} = (0.333) f_{4} = 0.333 \times 128 = 42.66 \text{MW}$$

Five Bus Example Compensated

Here is the system with the compensation added to bus 2 and removed at bus 3; we are canceling the impact of the line 4 flow for the reset of the network.

Five Bus Example

• Below we see the network with the line actually outaged

The line 3 flow changed from 63 MW to 106 MW, an increase of 43 MW, matching the LODF value

Developing a Critical Eye

• In looking at the below formula you need to be thinking about what conditions will cause the formula to fail $\Rightarrow \Delta f_{\ell} = \varphi_{\ell}^{(w_k)} \Delta t_k = \frac{\varphi_{\ell}^{(w_k)}}{1 - \varphi_{k}^{(w_k)}} f_k$

Here the obvious situation is when the denominator is zero

- That corresponds to a situation in which the contingency causes system islanding
 - An example is line 6 (between buses 4 and 5)
 - Impact modeled by injections at the buses within each viable island

Calculating LODFs in PowerWorld

- Select Tools, Sensitivities, Line Outage Distribution Factors
 - Select the Line using dialogs on right, and click Calculate LODFS; below example shows values for line 4

O 🐮	- 👺 🎼 🐺 🔚	🗄 🗐 😣 🐺 -	₽		-			Line Outage D	istribution Factor	s (LODFs) - Ca	se: B5_Dist	Fact_PTDF.P	WB Status: Initia	lized Simu	ator 18 Beta
File	Case Information	n Draw Onel	lines Tools	Optio	ns Add Ons	Window									
Edit Mo Run Mo	de X Abort Log M Script + Log	Single Solution - Full <u>N</u> ewton Powe	Simulator Options er Flow Tools	D	Contingency Analysis	df ∓ dx ∓ y Sensitivities Run	∲ <u>F</u> ault An	alysis 👻 ep Simulation g Replicator	85% 110% Limit Monitoring	Difference Flows ≠	<u>S</u> cale Case Other	Model Explorer Tools	Connections	Other 👻	Equivaler ModifyCi Renumbe EditMi
Output	Option	Linear Calculation Met	thod	💌 Sor	t by 🔘 Name	Number			·						
Sing	le LODF	Linearized AC													
C LODF Matrix				Search For Near Bus											
Action		Lossless DC		1(0	ne) [138 kV]									1 (Or	e) [138 kV] O
 Outage Sensitivities Closure Sensitivities 		🔘 Lossless DC With P) Lossless DC With Phase Shifters		2 (Two) [138 kV] 3 (Three) [138 kV]									ree) [138 kV]	
Calculate LODFs Advanced LODF Calculation DC Model Options			4 (Fi 5 (Fi	ve) [34.5 kV]											
LODFs	Interface LODFs														
	₩ %: %: **	ABCD THE Records	Geo 🔹 Set 🤊	Columns	s • 📴 • 🛗 •	· 👺 • 👎 🇮	▼ ^{SORT} f(x) ▼	Options •							
	From Number From	Name To Number	To Name	Circuit	% LODF	MW From	MW To	CTG MW From	CTG MW To						
1	2 Two		1 One	1	100.0	51.6	-51.6	180.0	-180.0						
2 1 One			3 Three	1	66.7	26.3	-26.3	111.9	-111.9						
3 1 One			4 Four	1	33.3	63.3	-63.3	106.1	-106.1						
4 2 Two			3 Inree 2 Three	1	-100.0	128.4	-128.4	0.0	0.0						
5 4 Four 6 5 Five			4 Four	1	0.0	-100.0	100.0	-100.0	100.0						
	01110			-	0.0	10010	20010	10010	10010						

Blackout Case LODFs

- One of the issues associated with the 8/14/03 blackout was the LODF associated with the loss of the Hanna-Juniper 345 kV line (21350-22163) that was being used in a flow gate calculation was not correct because the Chamberlin-Harding 345 kV line outage was missed
 - With the Chamberlin-Harding line assumed in-service the value was 0.362
 - With this line assumed out-of-service (which indeed it was) the value increased to 0.464

2000 Bus LODF Example

💽 쀁 - 👺 🖪 👯 🧾 🚟 📃 😣 🎇 - = Case Information Draw Options Add Ons Window Onelines Tools df dx T 4 Eault Analysis + 🗙 Abort ***** Edit Mode $\langle \rangle$ ΔX 📙 Log Solve -() Time Step Simulation... Other Modify Case Solve Power Simulator Contingency RAS + CTG Sensitivities Limit Difference Scale Model Connections Run Mode Script Line Loading Replicator... Renumber Restore -Flow - Newton Options... Analysis... Case Info Monitoring... Case * Case Explorer... Mode Loa Power Flow Tools Run Mode Other Tools Edit Mode Output Option Linear Calculation Method Sort by O Name O Number Single LODF 3048 Linearized AC O LODF Matrix Search For Near Bus Select Far Bus, CKT Lossless DC Action 3041 (SILVER 0) [230.0 kV] 1079 (ODESSA 1 8) [500.0 kV] CKT 1 Outage Sensitivities 3042 (SILVER 1) [115.0 kV] 1079 (ODESSA 1 8) [500.0 kV] CKT 2 O Lossless DC With Phase Shifters O Closure Sensitivities 3043 (SILVER 2) [13.80 kV] 3046 (ROSCOE 5 0) [230.0 kV] CKT 1 3044 (SILVER 3) [13,80 kV] 3046 (ROSCOE 5 0) [230.0 kV] CKT 2 Line Closure Options 3045 (SILVER 4) [13.80 kV] 5045 (STEPHENVILLE 0) [500.0 kV] CKT 1 3046 (ROSCOE 5 0) [230.0 kV] 5045 (STEPHENVILLE 0) [500.0 kV] CKT 2 3047 (ROSCOE 5 1) [115.0 kV] 5120 (BROWNWOOD 0) [500.0 kV] CKT Calculate based on post-closure flow (LCDF) 5394 (ALBANY 1 0) [500.0 kV] CKT 1 3049 (ANSON 0) [115.0 kV] Calculate based on pre-closure flow (MLCDF) 3050 (DEL RIO 0) [230.0 kV] 3051 (DEL RIO 1) [115.0 kV] Calculate LODFs Advanced LODF Calculation 3052 (HUNT 0) [115.0 kV] 3053 (WINGATE 0) [230.0 kV] DC Model Options. 3054 (WINGATE 1) [115.0 kV]

Line Outage Distribution Factors (LODFs) - Case: ECE615_2000.PWB Status: Initialized | Simulator 20

LODFs Interface LODFs

	🔄 🏥 카 🕻	8 👬 🕅 💏	Record	s ▼ Geo ▼ Set	 Colu 	mns 🕶 🔤 🕶 📲	188 - HINS - 📥 Ĥ			
	From Number	From Name	To Number	To Name	Circuit	% LODF	MW From	MW To	CTG MW From	CTG MW To
1	3048	ROSCOE 5 2	5120	BROWNWOOD	1	-100.0	519.5	-516.1	0.0	3.4
2	5045	STEPHENVILLE	5120	BROWNWOOD	1	61.6	-403.1	405.1	-83.3	85.3
3	3048	ROSCOE 5 2	5045	STEPHENVILLE	1	37.6	5 1070.1	-1057.9	1265.6	-1253.4
4	3048	ROSCOE 5 2	5045	STEPHENVILLE	2	37.6	5 1070.1	-1057.9	1265.6	-1253.4
5	5120	BROWNWOOD	5239	GOLDTHWAITE	1	-34.0) 82.4	-82.3	-94.2	94.2
6	5451	COPPERAS CO	5239	GOLDTHWAITE	1	21.2	-907.1	912.2	-797.0	802.1
7	3048	ROSCOE 5 2	5394	ALBANY 1 0	1	14.6	-152.9	153.2	-76.8	77.1
8	5137	WACO 1 0	5388	WACO 2 0	1	-12.3	426.7	-426.3	362.9	-362.6
9	5236	OLNEY 1 0	5394	ALBANY 1 0	1	-12.2	-720.5	726.8	-784.1	790.4
10	5137	WACO 1 0	5451	COPPERAS CO	1	12.0	-674.5	679.6	-611.9	617.0
11	5260	GLEN ROSE 1 0	5045	STEPHENVILLE	1	-11.5	-1590.6	1603.3	-1650.6	1663.3
12	5239	GOLDTHWAITE	6210	MARBLE FALLS	1	-10.5	-808.9	816.3	-863.2	870.7
13	5358	RIESEL 1 0	5179	CORSICANA 2 (1	-10.1	1275.3	-1266.9	1222.6	-1214.3
14	5388	WACO 2 0	5317	GRANBURY 1 0	1	-9.6	5 -8.1	8.1	-58.2	58.2
15	5279	TEMPLE 1 0	5358	RIESEL 1 0	1	-7.6	334.3	-333.4	294.9	-294.1
16	5410	KILLEEN 3 0	5451	COPPERAS CO	1	7.6	5 19.4	-19.4	58.6	-58.6
17	5317	GRANBURY 1 0	5260	GLEN ROSE 1 0	1	-7.5	-2609.4	2612.1	-2648.4	2651.1
18	5131	BELTON 0	5279	TEMPLE 1 0	1	-7.2	2 594.2	-593.4	556.8	-556.1
19	5018	JACKSBORO 1	5413	PALO PINTO 1 (1	6.9	729.1	-727.3	764.9	-763.1
20	5380	ENNIS 0	5384	DALLAS 3 0	1	-6.8	3 1015.6	-1013.0	980.0	-977.4
21	5131	BELTON 0	5410	KILLEEN 3 0	1	6.8	313.3	-313.1	348.6	-348.4
22	5179	CORSICANA 2 (5380	ENNIS 0	1	-6.7	7 911.4	-910.0	876.5	-875.0
23	5018	JACKSBORO 1	5236	OLNEY 1 0	2	-6.1	-691.2	693.0	-722.7	724.4
24	5018	JACKSBORO 1	5236	OLNEY 1 0	1	-6.1	-691.2	693.0	-722.7	724.4
25	5047	MANSFIELD 0	5179	CORSICANA 2 (1	5.7	-313.3	313.9	-283.4	284.0
26	5055	GRAHAM 0	5018	JACKSBORO 1	1	-5.0	-621.5	622.8	-647.3	648.6
27	5021	ALEDO 1 0	5413	PALO PINTO 1 (1	-4.8	-1285.7	1295.0	-1310.8	1320.2
28	5055	GRAHAM 0	5196	BRYSON 1 0	1	4.8	811.4	-809.1	836.4	-834.2
29	5196	BRYSON 1 0	5204	POOLVILLE 0	1	4.7	823.3	-819.4	847.8	-843.9
30	5361	BRIDGEPORT 0	5015	KELLER 2 0	1	4.5	5 1947.4	-1930.7	1970.8	-1954.1
31	5484	CROSS PLAINS	5073	BANGS 0	1	4.5	5 57.4	-57.0	80.6	-80.2
32	5334	CLYDE 0	5484	CROSS PLAINS	1	4.5	64.1	-63.7	87.3	-86.8
33	5121	BROWNWOOD	5073	BANGS 0	1	-4.5	-48.1	48.2	-71.2	71.3
34	5121	BROWNWOOD	5120	BROWNWOOD	1	4.5	-28.6	28.6	-5.4	5.4
35	5361	BRIDGEPORT 0	5204	POOLVILLE 0	1	-4.4	-757.1	757.7	-779.8	780.4
20	C107	DOCKDALE 10	0000	CDA MIKLINI O				C00.0	500.4	50C 4

LODF is for line between 3048 and 5120; values will be proportional to the PTDF values

Clear LODF Matrix Results

in Mode

2000 Bus LODF Example

- LODFs can also be used to represent multiple device contingencies, but it is usually more involved than just adding the effects of the single device LODFs
- Assume a simultaneous outage of lines k_1 and k_2
- Now setup two transactions, w_{k1} (with value Δt_{k1}) and w_{k2} (with value Δt_{k2}) so

$$\begin{split} f_{k1} + \Delta f_{k1} + \Delta f_{k2} - \Delta t_{k1} &= 0 \\ f_{k2} + \Delta f_{k1} + \Delta f_{k2} - \Delta t_{k2} &= 0 \\ f_{k1} + \varphi \,_{k1}^{(w_{k1})} \Delta t_{k1} + \varphi \,_{k1}^{(w_{k2})} \Delta t_{k2} - \Delta t_{k1} &= 0 \\ f_{k2} + \varphi \,_{k2}^{(w_{k1})} \Delta t_{k1} + \varphi \,_{k2}^{(w_{k2})} \Delta t_{k1} - \Delta t_{k2} &= 0 \end{split}$$

- A M
- Hence we can calculate the simultaneous impact of multiple outages; details for the derivation are given in C.Davis, T.J. Overbye, "Linear Analysis of Multiple Outage Interaction," *Proc. 42nd HICSS*, 2009
- Equation for the change in flow on line ℓ for the outage of lines k_1 and k_2 is

$$\Delta f_{\ell} = \begin{bmatrix} d_{\ell}^{k1} & d_{\ell}^{k2} \end{bmatrix} \begin{bmatrix} 1 & -d_{k1}^{k2} \\ -d_{k2}^{k1} & 1 \end{bmatrix}^{-1} \begin{bmatrix} f_{k1} \\ f_{k2} \end{bmatrix}$$

• Example: Five bus case, outage of lines 2 and 5 to flow on line 4.

$$\Delta f_{\ell} = \begin{bmatrix} d_{\ell}^{k_{1}} & d_{\ell}^{k_{2}} \end{bmatrix} \begin{bmatrix} 1 & -d_{k_{1}}^{k_{2}} \\ -d_{k_{2}}^{k_{1}} & 1 \end{bmatrix}^{-1} \begin{bmatrix} f_{k_{1}} \\ f_{k_{2}} \end{bmatrix}$$
$$\Delta f_{\ell} = \begin{bmatrix} 0.4 & 0.25 \end{bmatrix} \begin{bmatrix} 1 & -0.75 \\ -0.6 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.336 \\ -0.331 \end{bmatrix} = 0.005$$

