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Announcements

 Homework 6 iIs due on Thursday Nov 27
* Read Chapters 3 and 8 (Economic Dispatch and

Optimal Power Flow)

- Linear Programming is covered in Appendix 3B; the
Interior Point Method is covered in Appendix 8A

 Course evaluations are now available. Goto
pica.tamu.edu
- Please do the evaluation!!

o



Quick Coverage of Linear Programming
T
* Linear programming (LP) is probably the most
widely used mathematical programming technique

* |tis used to solve linear, constrained minimization
(or maximization) problems in which the objective
function and the constraints can be written as linear
functions

 Initial concepts for LP were developed during World
War 2 to optimize logistics

* In 1947 George Danzig developed the Simplex
Method, that allowed large programs to be solved

 Interior point methods were developed in 1984



Example Problem 1
T

« Assume that you operate a lumber mill which

makes both construction-grade and finish-grade
poards from the logs it receives. Suppose it takes 2
nours to rough-saw and 3 hours to plane each 1000
poard feet of construction-grade boards. Finish-
grade boards take 2 hours to rough-saw and 5 hours
to plane for each 1000 board feet. Assume that the
saw Is available 8 hours per day, while the plane is
available 15 hours per day. If the profit per 1000
board feet is $100 for construction-grade and $120
for finish-grade, how many board feet of each
should you make per day to maximize your profit?




Problem 1 Setup

Let x,=amount of cg, X,= amount of fg
Maximize 100x; +120x,
S.t. 2% +2X, <8
3% +5X%, <15
X(, Xo 20
Notice that all of the equations are linear, but

they are inequality, as opposed to equality, constraints;
we are seeking to determine the values of x; and x,

o



Example Problem 2

A nutritionist Is planning a meal with 2 foods: A
and B. Each ounce of A costs $ 0.20, and has 2
units of fat, 1 of carbohydrate, and 4 of protein.
Each ounce of B costs $0.25, and has 3 units of fat,
3 of carbohydrate, and 3 of protein. Provide the
least cost meal which has no more than 20 units of
fat, but with at least 12 units of carbohydrates and
24 units of protein.

o



Problem 2 Setup
T

Let x,=ounces of A, X,= ounces of B
Minimize 0.20x; +0.25X,
S.t. 2% + 3%y <20
X +3X, 212
A% +3X, = 24
Again all of the equations are linear, but
they are inequality, as opposed to equality, constraints;
we are again seeking to determine the values of x; and x,;

notice there are also more constraints then solution
variables



Three Bus Case Formulation

&M
* For the earlier three bus system given the initial
condition of an overloaded transmission line,

minimize the cost of generation such that the

180.0 Mw

change in generation Bus 2 S0 ow L
IS zero, and the flow - 10.00 $/Mih
on the line between  ©.0 M [10.00 s/man =)

60 MW

buses 1 and 3 IS not
ViOIating itS Iimit Total Cost
1800 $/hr

« Can be setup consider- Bus 3
Ing the change In =
generation, (APsq, APg,, APgs)

60 MW '



Three Bus Case Problem Setup

Al
Let X;= APgq, Xo= APg,, X3= APg,
Minimize 10x; +12X, + 20X,
2 1 . .
S.t. 3 X, + 2 X, <20  Line flow constraint
Xy + X + Xg = 0 Power balance constraint

enforcing limits on x;, X,, Xs



LP Standard Form
T

The standard form of the LP problem is

Minimize cX Maximum problems can
S.t. Ax =D be treated as minimizing
x>0 the negative
where X = n-dimensional column vector
¢ = n-dimensional row vector
b = m-dimensional column vector
A = mxn matrix

For the LP problem usually n>>m

The previous examples were not in this form!
10



Replacing Inequality Constraints
with Equality Constraints

Alw
e The LP standard form does not allow inequality
constraints

 |Inequality constraints can be replaced with equality
constraints through the introduction of slack variables,
each of which must be greater than or equal to zero

Zbl —)...—yi :bi Wlth yi ZO

 Slack variables have no cost associated with them; they
merely tell how far a constraint is from being binding,

which will occur when its slack variable 1s zero
11



Lumber Mill Example with Slack

Variables

T
Let the slack variables be x; and x,, so
Minimize -(100x, +120x,) Minimize the negative
S.t. 2X; +2Xy + X3 =8
3% + 9%y + X, =15
Xy X9, Xg,%X4 20

12



LP Definitions

A

A vector x 1s said to be basic iIf

1. Ax=D

2. At most m components of X are non-zero; these
are called the basic variables; the rest are non basic

variables: If there as less than m non-zeros then

X 1S called o

Define x =

egenerate A js called the basis matrix

Xg |, . _
y (with xg basic) and A=[Ag Ay
N

X

XN
13



Fundamental LP Theorem
T
e Given an LP In standard form with A of rank m
then

—If there is a feasible solution, there iIs a basic feasible
solution

— If there is an optimal, feasible solution, then there is an
optimal, basic feasible solution

 Note, there could be a LARGE number of basic,
feasible solutions

—- Simplex algorithm determines the optimal,
basic feasible solution usually very quickly

14



LP Graphical Interpretation

Alw
* The LP constraints define a polyhedron in the
solution space

— This is a polytope if the polyhedron is bounded and

nonempty APPENDIX 36: LINEAR PROGRANMING (7)1
— The basic, feasible 1 Gortours of inear uncton |
solutions are I EPS—
vertices of this ey
polyhedron N
- With the linear cost > Zwe=
function the solution  ©& | oseee o o |
will be at one of LATTIED « S
vertices e s e

FIGURE 3.26 x_, x. plane with cost contours and the optimal solution shown.

Image: Figure 3.26 from course text 15



Simplex Algorithm
T
« The key Is to move intelligently from one basic

feasible solution (i.e., a vertex) to another, with the
goal of continually decreasing the cost function

* The algorithm does this by determining the “best”
variable to bring into the basis; this requires that
another variable exit the basis, while always
retaining a basic, feasible solution

« This is called pivoting

16



Determination of Variable to
Enter the Basis

To determine which non-basic variable should
enter the basis (I.e., one which currently 0), look at
how the cost function changes w.r.t. to a change In
a non-basic variable (i.e., one that is currently zero)

Xg Elements of

X\ X, are all

| 9 Zero, but we
one to

decrease the

cost

Definez=cx=[cg Cy]

A



Determination of Variable to
Enter the Basis
—_—————————— i

« Define the reduced (or relative) cost coefficients as

I 1S an n-m dimensional

-1
row vector

 Elements of this vector tell how the cost function
will change for a change In a currently non-basic
variable

« The variable to enter the basis Is usually the one
with the most negative relative cost

 |f all the relative costs are nonnegative then we are
at an optimal solution

18



Determination of Variable
to Exit Basis

Al
« The new variable entering the basis, say a position |,
causes the values of all the other basic variables to
change. In order to retain a basic, feasible solution, we
need to insure no basic variables become negative.
The change In the basic variables is given by
X =Xg —Aga

j E

where ¢ 1s the value of the variable entering the
basis, and a; IS ItS associated column in A

19



Determination of Variable
to Exit Basis

We find the largest value ¢ such

i€ 2 0

If no such & exists then the problem is un

-1

hounded:

otherwise at least one component of Xz g
The associated variable exits the basis.

uals zero.

o

20



Canonical Form
T
* The Simplex Method works by having the problem in
what I1s known as canonical form

« Canonical form is defined as having the m basic
variables with the property that each appears in only
one eguation, its coefficient in that equation is unity,
and none of the other basic variables appear in the
same equation

« Sometime canonical form is readily apparent

Minimize -(100x; +120x,) Note that with x,
s.t. 2% +2Xy + X3 =8 and X, as basic
3% +5X, + X, =15 variables Ag Is the

X, X5, Xg, X4 =0 Identity matrix 21



Canonical Form

Al
« Other times canonical form is achieved by initially
adding artificial variables to get an initial solution

« Example of the nutrition problem in canonical form
with slack and artificial variables (denoted as y) used
to get an initial basic feasible solution

Le-t >_<1:_ounces of A, X,=ounces of B Note that with v,
Minimize y;+y,+y; Y., and y, as basic
s.t. 2% +3X, + X3ty =20 variables Ag is the
X, + 3%, — X4 + Y, =12 Identity matrix
AXg +3Xy — X5 + Y3 =24

X1: X0, X35 X4, X5, Y1, Y2, Y3 = 0 -



LP Tableau

T
With the system in canonical form, the Simplex

solution process can be illustrated by forming what is
known as the LP tableau

— Initially this corresponds to the A matrix, with a column
appended to include the b vector, and a row added to give the
relative cost coefficients; the last element is the negative of the
cost function value

~ Define the tableau as Y, with elements Y;

— In canonical form the last column of the tableau gives the
values of the basic variables

During the solution the tableau is updated by pivoting

23



LP Tableau for the Nutrition
Problem with Artificial Variables

AlM
 \When In canonical form the relative costs vector Is

0T pvall
0 (2 31 0 0] |-9
r=/0| -[1 111 3 0 -1 0|=|-1
0 4 30 0 -1| |1
_O_ _1_
« The initial tableau for the artificial problem is then
X, X X, X% Y. Y, Vs Note the last

1 0 0 1 0 0 20 column gives the
0 12  values of the basic

1
0 1 24 variables
0

0
3 0 0 -1 0
0 0 -56

24



LP Tableau Pivoting
T

 Pivoting is used to move from one basic feasible
solution to another

~ Select the pivot column (i.e., the variable coming into the basis,
say () as the one with the most negative relative cost

— Select the pivot row (i.e., the variable going out of the basis) as
the one with the smallest ratio of x;/Y;, for Y;, >0; define this
as row p (x; is given in the last column)

That Is, we find the largest value & such
If no such & exists then the problem is unbounded,;

otherwise at least one component of Xz equals zero.

The associated variable exits the basis.
25



LP Tableau Pivoting for Nutrition
Problem

Starting at

Xl X2 X3 X4 X5 yl y2 y3

2 3 1 0 0 1 0 0 20
1 3 0 -1 0 0 0 12
4

Pivot on column g=2; for row get minimum of
{20/3, 12/3, 24/3), which is row p=2

A

26



LP Tableau Pivoting

Al
Pivoting on element Y, Is done by
- First dividing row p by Y ,, to change the pivot element to unity.

~ Then subtracting from the k™ row Y, /Y, times the p™ row for
all rows with Y, <>0
XK X X XN Y, Vs

2 3 1.0 0 1 0 0 20 I’m only

1 3 0 -1 0 0 1 0 12 showing

4 3 0 0 -1 0 0 1 24 fractions

-7 -9 -1 1 1 0 0 0 -56 i

X1 XZ X3 X4 X5 yl y2 y3 Wlth tV\/.O -

1 0 1 1 0 1 -1 0 8 ROD digits
Pivotinggives 033 1 0 -033 0 0 033 0 4

3 00 1 -10 -1 1 12

4 0 -1 -2 1 0 3 0 -20

27



LP Tableau Pivoting, Example, cont.

A

Next pivot on column 1, row 3

Xl X2 X3 X4 X5 yl y2 y3

1 0 1 1 0 1 -1 0 8
033 1 0 -033 0 0 033 0 4
3 00 1 -10 -1 1 12
4 0 -1 -2 1 0 3 0 -2
Which gives
X2 X3 X4 X5 yl y2 y3

1 067 033 1 067 033 4

0O 044 011 O 044 -011 267
0 033 033 0 -033 033 40
-1 067 033 0 167 133 -4

O - o o X
O O L O

28



LP Tableau Pivoting, Example, cont.

o O o X

O - o o X

Next pivot on column 3, row 1

X2 X3 X4 X5 yl y2 y3
0 1 067 033 1 -067 -0.33
1 0 -044 011 0 044 -0.11
0 0 033 -033 0 -0.33 0.33
0 -1 -067 -033 0 1.67 1.33
Which gives

IR X X Y1 Y, Y3
0 1 067 033 1 -067 -0.33
1 0 -044 011 0 044 -011
0 0 033 -033 0 -033 0.33
0 0 O 0 1 1 1

2.67
4
0

A

Since there
are no

negative
relative
COSts we
are done
with getting
a starting

solution
29



LP Tableau Full Problem
AlM

* The tableau from the end of the artificial problem is
used as the starting point for the actual solution

— Remove the artificial variables

— Update the relative costs with the costs from the original
problem and update the bottom right-hand corner value

c=[02 025 0 0 O]

-1

: 0.67 0.33 :
0 0.04
r=| | -[0 025 02]-044 0.11 |=
0 0.04
0.33 —0.33

» Since none of the relative costs are negative we are

done with x,=4, X,=2.7 and x,=4 30



Marginal Costs of Constraint
Enforcement

o

If we would like to determine how the cost function
will change for changes in b, assuming the set

of basic variables does not change

then we need to calculate

2 _0(cexg) _ A(CeAgb) _ CgAg = A
ob ob ob

So the values of A tell the marginal cost of enforcing
each constraint.

The marginal costs will be used to determine the OPF

locational marginal costs (LMPs)
31



Nutrition Problem Marginal Costs

In this problem we had basic variables 1, 2, 3;

nonbasic variables of 4 and 5

2 3 1720
xg=At(b-Ayxy)=[1 3 0| |12
4 3 0] |24
2 3 17"
h=cgA =[0.2 025 0][1 3 O
4 3 0

There is no marginal cost with the first constraint
since It Is not binding; values tell how cost changes

If the b values were changed

0.044

0.039

o

32



Lumber Mill Example Solution

A

Minimize -(100x, +120x,)

S.t. 2X; +2Xy + X3 =8

_ An initial basic feasible solution
3X +9Xy + X4 =15

Xy X9, X3, X4 = 0

The solution is X, =2.5,X, =1.5,X3=0,%x, =0

2 27t 35
Then % =[100 120] 2 5| |10

Economic interpretation of A is the profit is increased by
35 for every hour we up the first constraint (the saw) and
by 10 for every hour we up the second constraint (plane) L



Complications
T
« Often variables are not limited to being > 0

— Variables with just a single limit can be handled by
substitution; for example if X > 5 then x-5=z >0

— Bounded variables, high > x > 0 can be handled with a slack
variable so x +y = high, and x,y > 0
« Unbounded conditions need to be detected (i.e., unable
to pivot); also the solution set could be null
Minimize X, —X, S.t. X+ X, >8
— X + X, — y; =8 > X, =8 Is a basic feasible solution
X X W
1 1 -1 8
2 0 -1 8 24



Complications
Al
« Degenerate Solutions
— Occur when there are less than m basic variables > 0

~ When this occurs the variable entering the basis could also
have a value of zero; it is possible to cycle, anti-cycling
techniques could be used

 Nonlinear cost functions

— Nonlinear cost functions could be approximated by assuming
a piecewise linear cost function

* Integer variables

— Sometimes some variables must be integers; known as integer
programming; we’ll discuss after some power examples

35



LP Optimal Power Flow
T

« LP OPF was introduced In

— B. Stott, E. Hobson, “Power System Security Control
Calculations using Linear Programming,” (Parts 1 and 2) IEEE
Trans. Power App and Syst., Sept/Oct 1978

- 0. Alsac, J. Bright, M. Prais, B. Stott, “Further Developments
In LP-based Optimal Power Flow,” IEEE Trans. Power
Systems, August 1990

|t is awidely used technique, particularly for real power
optimization; it is the technique used in PowerWorld

36



LP Optimal Power Flow

o

dea Is to Iterate between solving the power flow, and

solving an LP with just a selected number of
constraints enforced

t

The power flow (which could be ac or dc) enforces

ne standard power flow constraints

The LP equality constraints include enforcing area

nterchange, while the inequality constraints include

enforcing line limits; controls include changes in
generator outputs

LP results are transferred to the power flow, which is

t

hen resolved
37



LP OPF Introductory Example
T
* In PowerWorld load the B3LP case and then
display the LP OPF Dialog (select Add-Ons, OPF
Options and Results)

e Use Solve LP OPF to
solve the OPF, initially ‘ 1.
with no line limits
enforced; this is similar
to economic dispatch
with a single power
balance equality constraint

* The LP results are available from various pages on
the dialog 3g




LP OPF Introductory Example, cont

LP OPF Dialog

w -Options

- Common Options
- Constraint Qptions
- Contral Options
- Advanced Options
w -Results

=

All LP variables

LP Solution Details

LP Basic Variables
B ol %8 5%

Constraint ID

# 4,

LP Basis Matrix  Inverse of LP Basis Trace Solution

-

AliE _ AURE
BT T

Records = Set~ Columns « '

Contingency 1D RHS b value | Lambda

ZORT
124
RELD

feo - EH

Slack Pos

Cptions =

Gen 1#1 MW
Control

- Solution Summary

=

rea 1 MW Constraint

Base Case

- Bus MW Marginal Price Details
- Bus Mvar Marginal Price Details
-~ Bus Marginal Controls
“ - LP Solution Details
- All LP Wariables
--LP Basic Variables
- LP Basis Matrix
- Inverse of LP Basis
- Trace Solution

LP OPF Dialog

“ - Options

- Common Options
- Constraint Options
- Control Options

- Adwvanced Options
w - Results

LP Solution Details

All LP Variables

=

= DRI,

==

LP Basic Variables

LP Basis Matrix

4.0 .00
<00 4.0

M ?&n

I Org. Value

Inverse of LP Basis

Records = Set~ Columns ~ ' 1= o

Trace Solution

AURE L AUSE
=g

v 10~ B
Cost{Down]

Options =

Value Delta WValue BasicVar MonBasicWar Cost{Up)

Down Range

Up Range |Reduced Cost Up

o EEN

Reduced Cost

Down

- Solution Summary

Gen 1 #1 MW Contral

180,000

- Bus MW Marginal Price Details
- Buz Mvar Marginal Price Details
- Bug Marginal Controls

* -LP Solution Details

- All LP Variables

- LP Basic Variables

- LP Basis Matrix

- Inverse of LP Basis

-1 - Trace Solution

[

o]

e

Gen 2 #1 MW Contral
Gen 3 #1 MW Contral
Slack-Area Home

oo
=5
28
28

10,00

2 At Min
3
1

-
co
=N~
=]
=]
=

(=N ===

EE=N=N=]
[=N=N=N=]
=R=N=N=]
(===

At Min

100
12,
At Min 20,
At Max

oo
oo
o0

20,000
At Min
At Min

At Min

60,000
&0.000
&0.000

At Max

0,000
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LP OPF Introductory Example, cont

AlM

®

On use Options, Constraint Options to enable the
enforcement of the Line/Transformer MV A limits

LP OPF Dialog

w - Options

- Commeon Oplions

- Constraint Options

- Control Options

- Advanced Options

“ . Results

- Solution Summary

- Bus MW Marginal Price Details
- Bus Mvar Marginal Price Details
- Bus Marginal Controls

w - LP Solution Details

- All LP Variables

- LP Basic Variables

- LP Basis Matrix

- Inverse of LP Basis

- Trace Solution

Options
Common Options  Constraint Options  Control Options
Line/Transformer Constraints
[ ] Disable Line/Transformer MY A Limit Enforcement
Percent Correction Tolerance 2.0 :

MY A Auto Release Percentage 3
Maximum Violation Cost ($/MWhr) 1000.0 =

=
=]
i

[JEnforce Line/Transformer My Flow Limits {not MyAa)

Interface Constraints
[ ] isable Interface MW Limit Enforcement

-

Percent Correction Tolerance =
MW Auto Release Percentage 75.0(=
Maximum Violation Cost [£MWhr) 1000.0 =

Phase Shifting Transformer Regulation Limits
[[] isable Phase Shifter Regulation Limit Enforcement

In Range Cost (§MWhr) =
Maximum Violation Cost {$/MWhr) 1000.0|=

Advanced Options

If you want to change enforcement percentages,
modify the Limit Monitoring Settings

Limit Monitoring Settings ...

Bus Constraints
Disable Bus Angle Enforcement

Maximum Violation Cost (§/deg-h)

oot

D-FACTS Constraints
[JEnforce Limits on Mumber of D-FACTS Devices in OPF

Maximum Number of D-FACTS Devices 1000
1000.0|=

Maximum Violation Cost ($/num-h)

40



LP OPF Introductory Example, cont

LP OPF Dialog

- Options

| Common Options

- Constraint Options

- Control Options

i - Advanced Options
-Results

All LP Variables

LP Solution Details

LP Basic Variables

BT B A #h 2,

4.0 .00
W00 +.0

o]

LP Basis Matrix

Records ~ Set ~ Columns ~

Org. Value

Inverse of LP Basis  Trace Solution
= ﬁ Options =

Cost{Down)

Al AR
v g

Reduced Cost
Down

Value Delta Value BasicVar MonBasicVar Cost{Up) Down Range | Up Range

Reduced Cost Up‘

AlM

®

At
Ereakpoint?

- Solution Summary

Gen 1#1 MW Control

- Bus MW Marginal Price Details
- Bus Mvar Marginal Price Details
i i Bus Marginal Controls
w -LP Solution Details
- All LP Variables
LP Basic Variables
- LP Basis Matrix
- Inverse of LP Basis
- Trace Solution

LP OPF Dialog

P

Gen 2 #1 MW Contral
Gen 3 #1 MW Contral
Slack-Area Home
Slack-Line 1 7O 3 CKT1

w

v - Options

- Commeon Options

- Constraint Options

- Control Options

- Advanced Options

v -Results

- Solution Summary

- Bus MW Marginal Price Details
- Bus Mvar Marginal Price Details
- Bug Marginal Controls

~ - LP Solution Details

- All LP Variables

- LP Basic Variables

- LP Basis Matrix

-Inverse of LP Basis

- Trace Solution

LP Solution Details

All LP Variables
D OPT.

& clkE Gl 5%

LP Basic Variables

&4

RECD

&4

Constraint ID

LP Basis Matrix  Inverse of LP Basis

12.00
At Min
At Min
At Min

12,00
At Max

===
EE=N=]
ISR=N=]
[ER=R=]

At Max

EN-R=a

2
1
3

ER=-R=-EK=XK-]

EE=N=E=X=]

At Min

Trace Solution

AUE . ALRE
- e S

ZORT
A (R

Slack Pos

Records = Set~ Columns = Options =

Gen 1#1 MW
Control

Gen 2 #1 MW
Control

Contingency ID Lambda

RHS b value ‘

o

rea 1 MW Constraint

[

Line from 1to

Fokt 1

i} 0.002

5.995

Base Case
Base Case

-0.333

20 MW
Bus 1

10.00 $/MWh

12.00 $/MWh

Total Cost

192 h
220REY] 14.00 $/MWh

180w

MO
MO
YES
YES
YES
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Example 623 Optimal Power Flow

A

Examplef_23 - Case: Examplef_23.PWB Status: Initialized | Simulator 20 Beta
62 MW 62 MW 27 MW A\ 18 MW
e > 29 Mvar
1.05 pu A , Y100 p 127
1 : 14.52 $/MWh 14.52 $/MwWh 14.52 $/MWh
79 MW 1415MW 57 My 147 MW 53
AGC ON 39 Mvar
539% - 52% ; - 5 69 MW
MVA 'MVA _1 SMSV:)/O F 2MZA /0 AGC ON
57 MW
16 MW
79 MW 111 Mw ]
3 MW 600/0>
1.04 P MVA 111 0.99 pu
5 " 14.52 $/MWh 5 14.52 $/MWh
39 MW fA 182w 127 . 4fMw
20 Mvar AGC ON 39.2 Mvar
Total Hourly Cost: 5724.32 $/h Load Scalar: 1.00%
Total Area Load: 392.0 MW

Marginal Cost ($/Mwh): 14.52 $/MWh

In the example the load is gradually increased

42



Locational Marginal Costs (LMPs)
Al
In an OPF solution, the bus LMPs tell the marginal
cost of supplying electricity to that bus

The term “congestion” 1s used to indicate when there
are elements (such as transmission lines or
transformers) that are at their limits; that is, the
constraint Is binding

Without losses and without congestion, all the LMPs
would be the same

Congestion or losses causes unequal LMPs

LMPs are often shown using color contours; a

challenge is to select the right color range!
43



Example 6_23 Optimal Power Flow
with Load Scale =1.72

Example6_23 - Case: Example6_23.pwb Status: Initialized | Simulator 20

B -BRHER OF -

Add Ons Window

92 MW . 92 MW 82 MW 82 MW 135 MW
: - (65% 39% 51 Mvar
1i05 - x 17.35v$/MWh 2 10.99 i g 18.54 ;/MWh . 11'00 s | 18.94 $/MWh
230§MW 99 My 253 MW 65 MW N

67 Mvar

= & 1930w
'73:% -y AGC ON
MW >» >
1.04 p ? 0.96 pu
2 17.08 $/MWh 25.37 $/MwWh
67 MW 252[ghw 219. 1MW
34 Mvar AGC ON 67.4 Mvar
Total Hourly Cost: 10308.49 $/h Load Scalar: 1,72%
Total Area Load: 674.2 MW
19.46 $/MWh

Marginal Cost ($/MWh) :

I Viewing Present

Solution Animation Running

A

44



Example 6_23 Optimal Power Flow
with Load Scale =1.72

BE - SRHTHEQR- -
“ Case Information

Draw Onelines Tools Options

Add Ons

LP Sensitivity Matrix (A Matrix)

LP OPF Dialog - Case: Example6_23.pwb Status: Paused | Simulator 20

Window

[®] Lr OPF Dialog

w - Options
Common Options
Constraint Options

LP Solution Details

All LP Variables LP Basic Variables LP Basis Matrix

Inverse of LP Basis  Trace Solution

Control Options D E’E’E 1k %50 5% ¢4 5?;‘;,, Records * Set~ Columns ~ ' F' ﬂ&@' :=: 0 ';‘%"E‘n fg~ B | Options -
Advanced Options .
v .Results Constraint ID Contingency ID RHS b value Lambda Slack Pos Gen 1#1 MW Gen 2 #1 MW Gen 4 #1 MW Slack-Area Top |Slack-Line2TO 5
Control Control Control CKT 1
Solution Summary 7 TIW Coreram = TET T ;
- . Area 1 MW Constrain ase Case L0C 7.352 4 .000 ) 000
Bus MW Marginal Price Details Zllinefrom  2te Skt 1 Bace Case 0.000 10,541 5 1,000

Bus Mvar Marginal Price Details
Bus Marginal Controls
w - P Solution Details
All LP Variables
LP Basic Variables
LP Basis Matrix
Inverse of LP Basis
Trace Solution

The first row Is the power balance constraint, while
the second row Is the line flow constraint. The matrix
only has the line flows that are being enforced.

AlM

45
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Example 6_23 Optimal Power Flow
with Load Scale = 1.82

« This situation iIs infeasible, at least with available
controls. There iIs a solution because the OPF is
allowing one of the constraints to violate (at high
COSt) e AT T e A B

o

“-"|‘

46



Generator Cost Curve Modeling

LP algorithms require linear cost curves, with
piecewise linear curves used to approximate a

nonlinear cost function

 Two common ways
of entering cost
Information are

— Quadratic function

— Piecewise linear curve

* The PowerWorld OPF
supports both types

Generator Information for Present

bel [no labet
Generator MVA Base| 100 .00

Power and Voltage | Costs  QpF Faults Ownel
Output Cost Model  Bid Scale fShift id

Cost Model

ONone

(® Cubic Co: del

(O Piecewise Linear

Unit Fuel Cost (§/MBtu)

Variable Q&M (gMwh)

Fixed Costs (costs at zero MW output)
Fuel Cost Independent Value ($/hr)

Fuel Cost Dependent Value (Mbtu/hr)

Total Fixed Costs ($/hr)

Cubic Input/Output Model (MBtu/h)
A (Enter as Fixed Cost)

B 10.00
0.00001

DDDDDDDD

Convert to Linear Cost

CCCCC

Print

A
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