ECEN 615 Methods of Electric Power Systems Analysis

Lecture 25: Optimal Power Flow, Linear Programming

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- Homework 6 is due on Thursday Nov 27
- Read Chapters 3 and 8 (Economic Dispatch and Optimal Power Flow)
 - Linear Programming is covered in Appendix 3B; the Interior Point Method is covered in Appendix 8A
- Course evaluations are now available. Goto pica.tamu.edu
 - Please do the evaluation!!

Quick Coverage of Linear Programming

- Linear programming (LP) is probably the most widely used mathematical programming technique
- It is used to solve linear, constrained minimization (or maximization) problems in which the objective function and the constraints can be written as linear functions
- Initial concepts for LP were developed during World War 2 to optimize logistics
- In 1947 George Danzig developed the Simplex Method, that allowed large programs to be solved
- Interior point methods were developed in 1984

Example Problem 1

- A M
- Assume that you operate a lumber mill which makes both construction-grade and finish-grade boards from the logs it receives. Suppose it takes 2 hours to rough-saw and 3 hours to plane each 1000 board feet of construction-grade boards. Finishgrade boards take 2 hours to rough-saw and 5 hours to plane for each 1000 board feet. Assume that the saw is available 8 hours per day, while the plane is available 15 hours per day. If the profit per 1000 board feet is \$100 for construction-grade and \$120 for finish-grade, how many board feet of each should you make per day to maximize your profit?

Problem 1 Setup

Let x_1 =amount of cg, x_2 = amount of fg Maximize $100x_1 + 120x_2$ s.t. $2x_1 + 2x_2 \le 8$ $3x_1 + 5x_2 \le 15$ $x_1, x_2 \ge 0$

Notice that all of the equations are linear, but they are inequality, as opposed to equality, constraints; we are seeking to determine the values of x_1 and x_2

Example Problem 2

A nutritionist is planning a meal with 2 foods: A and B. Each ounce of A costs \$ 0.20, and has 2 units of fat, 1 of carbohydrate, and 4 of protein. Each ounce of B costs \$0.25, and has 3 units of fat, 3 of carbohydrate, and 3 of protein. Provide the least cost meal which has no more than 20 units of fat, but with at least 12 units of carbohydrates and 24 units of protein.

Problem 2 Setup

Let x_1 =ounces of A, x_2 = ounces of B Minimize $0.20x_1 + 0.25x_2$ s.t. $2x_1 + 3x_2 \le 20$ $x_1 + 3x_2 \ge 12$ $4x_1 + 3x_2 \ge 24$

Again all of the equations are linear, but they are inequality, as opposed to equality, constraints; we are again seeking to determine the values of x_1 and x_2 ; notice there are also more constraints then solution variables

Three Bus Case Formulation

• For the earlier three bus system given the initial condition of an overloaded transmission line, minimize the cost of generation such that the

change in generation is zero, and the flow on the line between buses 1 and 3 is not violating its limit

• Can be setup considering the change in generation, $(\Delta P_{G1}, \Delta P_{G2}, \Delta P_{G3})$

Three Bus Case Problem Setup

Let
$$x_1 = \Delta P_{G1}$$
, $x_2 = \Delta P_{G2}$, $x_3 = \Delta P_{G3}$
Minimize $10x_1 + 12x_2 + 20x_3$

s.t.

 $\frac{2}{3}x_1 + \frac{1}{3}x_2 \le -20$ Line flow constraint

 $x_1 + x_2 + x_3 = 0$

Power balance constraint

enforcing limits on x_1 , x_2 , x_3

The standard form of the LP problem is

- Minimize $\mathbf{c} \mathbf{x}$ Maximum problems cans.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$ be treated as minimizing $\mathbf{x} \ge \mathbf{0}$ the negative
- where $\mathbf{x} = \mathbf{n}$ -dimensional column vector
 - $\mathbf{c} = \mathbf{n}$ -dimensional row vector
 - \mathbf{b} = m-dimensional column vector
 - $\mathbf{A} = \mathbf{m} \times \mathbf{n}$ matrix

For the LP problem usually n>> m The previous examples were not in this form!

Replacing Inequality Constraints with Equality Constraints

- The LP standard form does not allow inequality constraints
- Inequality constraints can be replaced with equality constraints through the introduction of slack variables, each of which must be greater than or equal to zero

$$\dots \le b_i \to \dots + y_i = b_i \quad \text{with } y_i \ge 0$$

$$\dots \ge b_i \longrightarrow \dots - y_i = b_i \text{ with } y_i \ge 0$$

• Slack variables have no cost associated with them; they merely tell how far a constraint is from being binding, which will occur when its slack variable is zero

Lumber Mill Example with Slack Variables

• Let the slack variables be x_3 and x_4 , so Minimize $-(100x_1 + 120x_2)$ Minimize the negative s.t. $2x_1 + 2x_2 + x_3 = 8$ $3x_1 + 5x_2 + x_4 = 15$ $x_1, x_2, x_3, x_4 \ge 0$

LP Definitions

A vector \mathbf{x} is said to be basic if

1. $\mathbf{A}\mathbf{x} = \mathbf{b}$

2. At most m components of x are non-zero; these are called the basic variables; the rest are non basic variables; if there as less than m non-zeros then **x** is called degenerate $A_{\rm B}$ is called the basis matrix Define $\mathbf{x} = \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{bmatrix}$ (with \mathbf{x}_B basic) and $\mathbf{A} = \begin{bmatrix} \mathbf{A}_B & \mathbf{A}_N \end{bmatrix}$ With $\begin{bmatrix} \mathbf{A}_B & \mathbf{A}_N \end{bmatrix} \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{bmatrix} = \mathbf{b}$ so $\mathbf{x}_B = \mathbf{A}_B^{-1} (\mathbf{b} - \mathbf{A}_N \mathbf{x}_N)$

Fundamental LP Theorem

- Given an LP in standard form with A of rank m then
 - If there is a feasible solution, there is a basic feasible solution
 - If there is an optimal, feasible solution, then there is an optimal, basic feasible solution
- Note, there could be a LARGE number of basic, feasible solutions
 - Simplex algorithm determines the optimal,
 basic feasible solution usually very quickly

LP Graphical Interpretation

- The LP constraints define a polyhedron in the solution space
 - This is a polytope if the polyhedron is bounded and nonempty
 - The basic, feasible solutions are vertices of this polyhedron
 - With the linear cost function the solution will be at one of vertices

FIGURE 3.26 x_1, x_2 plane with cost contours and the optimal solution shown.

11 APPENDIX 3B: LINEAR PROGRAMMING (LP)

Simplex Algorithm

- A M
- The key is to move intelligently from one basic feasible solution (i.e., a vertex) to another, with the goal of continually decreasing the cost function
- The algorithm does this by determining the "best" variable to bring into the basis; this requires that another variable exit the basis, while always retaining a basic, feasible solution
- This is called pivoting

Determination of Variable to Enter the Basis

• To determine which non-basic variable should enter the basis (i.e., one which currently 0), look at how the cost function changes w.r.t. to a change in a non-basic variable (i.e., one that is currently zero)

Define
$$z = \mathbf{c} \mathbf{x} = [\mathbf{c}_B \quad \mathbf{c}_N] \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{bmatrix}$$

With $\mathbf{x}_B = \mathbf{A}_B^{-1} (\mathbf{b} - \mathbf{A}_N \mathbf{x}_N)$
Then $z = \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{b} + (\mathbf{c}_N - \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{A}_N) \mathbf{x}_N$

Elements of \mathbf{x}_n are all zero, but we are looking to change one to decrease the cost

7

Determination of Variable to Enter the Basis

• Define the reduced (or relative) cost coefficients as

$$\mathbf{r} = \mathbf{c}_N - \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{A}_N$$

r is an n-m dimensional row vector

- Elements of this vector tell how the cost function will change for a change in a currently non-basic variable
- The variable to enter the basis is usually the one with the most negative relative cost
- If all the relative costs are nonnegative then we are at an optimal solution

Determination of Variable to Exit Basis

The new variable entering the basis, say a position j, causes the values of all the other basic variables to change. In order to retain a basic, feasible solution, we need to insure no basic variables become negative. The change in the basic variables is given by

$$\tilde{\mathbf{x}}_B = \mathbf{x}_B - \mathbf{A}_B^{-1} \mathbf{a}_j \,\varepsilon$$

where ε is the value of the variable entering the basis, and \mathbf{a}_j is its associated column in **A**

Determination of Variable to Exit Basis

We find the largest value ε such

$$\tilde{\mathbf{x}}_B = \mathbf{x}_B - \mathbf{A}_B^{-1} \mathbf{a}_j \varepsilon \ge \mathbf{0}$$

If no such ε exists then the problem is unbounded; otherwise at least one component of $\tilde{\mathbf{x}}_B$ equals zero. The associated variable exits the basis.

Canonical Form

- The Simplex Method works by having the problem in what is known as canonical form
- Canonical form is defined as having the m basic variables with the property that each appears in only one equation, its coefficient in that equation is unity, and none of the other basic variables appear in the same equation
- Sometime canonical form is readily apparent Minimize $-(100x_1 + 120x_2)$ Note that w

s.t. $2x_1 + 2x_2 + x_3 = 8$

$$3x_1 + 5x_2 + x_4 = 15$$

 $x_1, x_2, x_3, x_4 \ge 0$

Note that with x_3 and x_4 as basic variables A_B is the identity matrix

Canonical Form

- Other times canonical form is achieved by initially adding artificial variables to get an initial solution
- Example of the nutrition problem in canonical form with slack and artificial variables (denoted as y) used to get an initial basic feasible solution

Let
$$x_1$$
=ounces of A, x_2 = ounces of B
Minimize $y_1+y_2+y_3$

s.t. $2x_1 + 3x_2 + x_3 + y_1 = 20$

$$x_1 + 3x_2 - x_4 + y_2 = 12$$

$$4x_1 + 3x_2 - x_5 + y_3 = 24$$

$$x_1, x_2, x_3, x_4, x_5, y_1, y_2, y_3 \ge$$

Note that with y_1 , y_2 , and y_3 as basic variables A_B is the identity matrix

LP Tableau

- With the system in canonical form, the Simplex solution process can be illustrated by forming what is known as the LP tableau
 - Initially this corresponds to the A matrix, with a column appended to include the b vector, and a row added to give the relative cost coefficients; the last element is the negative of the cost function value
 - Define the tableau as **Y**, with elements \mathbf{Y}_{ij}
 - In canonical form the last column of the tableau gives the values of the basic variables
- During the solution the tableau is updated by pivoting

LP Tableau for the Nutrition Problem with Artificial Variables

• When in canonical form the relative costs vector is $\mathbf{r} = \mathbf{c}_N - \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{A}_N = \mathbf{c}_B \mathbf{A}_N$

$$\mathbf{r} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}^{T} \begin{bmatrix} 2 & 3 & 1 & 0 & 0 \\ 1 & 3 & 0 & -1 & 0 \\ 4 & 3 & 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -7 \\ -9 \\ -1 \\ 1 \\ 1 \end{bmatrix}^{T}$$

• The initial tableau for the artificial problem is then

Note the last column gives the values of the basic variables

LP Tableau Pivoting

- Pivoting is used to move from one basic feasible solution to another
 - Select the pivot column (i.e., the variable coming into the basis, say q) as the one with the most negative relative cost
 - Select the pivot row (i.e., the variable going out of the basis) as the one with the smallest ratio of x_i/Y_{iq} for $Y_{iq} >0$; define this as row p (x_i is given in the last column)

That is, we find the largest value ε such

$$\tilde{\mathbf{x}}_B = \mathbf{x}_B - \mathbf{A}_B^{-1} \mathbf{a}_q \varepsilon \ge \mathbf{0}$$

If no such ε exists then the problem is unbounded; otherwise at least one component of $\tilde{\mathbf{x}}_B$ equals zero. The associated variable exits the basis.

LP Tableau Pivoting for Nutrition Problem

- Starting at
- Pivot on column q=2; for row get minimum of {20/3, 12/3, 24/3}, which is row p=2

	X_1	X_2	x_3	X_4	X_5	y_1	\mathcal{Y}_2	<i>Y</i> ₃		
	2	3	1	0	0	1	0	0	20	I
	1	3	0	-1	0	0	1	0	12	
	4	3	0	0	-1	0	0	1	24	
	-7	-9	-1	1	1	0	0	0	-56	5
	x_1	<i>x</i> ₂	<i>x</i> ₃	X_4		<i>x</i> ₅	y_1	<i>Y</i> ₂	<i>Y</i> ₃	
	1	0	1	1		0	1	-1	0	8
Pivoting gives	0.33	1	0	-0.3	33	0	0	0.33	0	4
	3	0	0	1		-1	0	-1	1	12
	-4	0	-1	-2)	1	0	3	0	-20

I'm only showing fractions with two ROD digits

LP Tableau Pivoting

- Pivoting on element Y_{pq} is done by
 - First dividing row p by Y_{pq} to change the pivot element to unity.
 - Then subtracting from the k^{th} row Y_{kq}/Y_{pq} times the p^{th} row for all rows with $Y_{kq}<\!\!>0$

LP Tableau Pivoting, Example, cont.

- Next pivot on column 1, row 3
- X_1 X_2 X_{Δ} $x_{5} y_{1}$ X_{3} y_2 y_3 0 1 1 0 1 1 -1 0 8 1 0 -0.33 0 0 0.33 0.33 0 4 3 1 -1 0 0 0 -1 1 12 0 -1 -2 1 0 3 0 -4 -20
- Which gives
- $X_3 \qquad X_4 \qquad X_5$ $y_1 \qquad y_2$ X_1 X_2 y_3 1 0.67 0.33 1 -0.67 0 0 -0.334 1 0 0 -0.440.11 0 0.44 -0.112.67 1 -0.33 0 0 0.33 0 0.33 -0.334.00 0 -1 -0.67 -0.330 1.67 1.33 -4

LP Tableau Pivoting, Example, cont.

- Next pivot on column 3, row 1
- X_1 X_2 X_3 X_{Δ} X_5 y_1 y_2 y_3 -0.67 1 0 0 0.67 0.33 1 -0.334
- 0 1 0 -0.44 0.11 0 0.44 -0.11 2.67
- 1 0 0 0.33 -0.33 0 -0.33 0.33 4
- 0 0 -1 -0.67 -0.33 0 1.67 1.33 -4
- Which gives

X_1	X_2	X_3	X_4	X_5	y_1	y_2	<i>Y</i> ₃	
0	0	1	0.67	0.33	1	-0.67	-0.33	4
0	1	0	-0.44	0.11	0	0.44	-0.11	2.67
1	0	0	0.33	-0.33	0	-0.33	0.33	4
0	0	0	0	0	1	1	1	0

Since there are no negative relative costs we are done with getting a starting solution

LP Tableau Full Problem

- A M
- The tableau from the end of the artificial problem is used as the starting point for the actual solution
 - Remove the artificial variables
 - Update the relative costs with the costs from the original problem and update the bottom right-hand corner value

$$\mathbf{c} = \begin{bmatrix} 0.2 & 0.25 & 0 & 0 & 0 \end{bmatrix}$$
$$\mathbf{r} = \mathbf{c}_N - \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{A}_N = \mathbf{c}_B \mathbf{A}_N$$
$$\mathbf{r} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}^T - \begin{bmatrix} 0 & 0.25 & 0.2 \end{bmatrix} \begin{bmatrix} 0.67 & 0.33 \\ -0.44 & 0.11 \\ 0.33 & -0.33 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix}^T$$

• Since none of the relative costs are negative we are done with $x_1=4$, $x_2=2.7$ and $x_3=4$

Marginal Costs of Constraint Enforcement

A M

If we would like to determine how the cost function will change for changes in **b**, assuming the set of basic variables does not change then we need to calculate

 $\frac{\partial z}{\partial \mathbf{b}} = \frac{\partial (\mathbf{c}_B \mathbf{x}_B)}{\partial \mathbf{b}} = \frac{\partial (\mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{b})}{\partial \mathbf{b}} = \mathbf{c}_B \mathbf{A}_B^{-1} = \lambda$ So the values of λ tell the marginal cost of enforcing each constraint.

The marginal costs will be used to determine the OPF locational marginal costs (LMPs)

Nutrition Problem Marginal Costs

A M

• In this problem we had basic variables 1, 2, 3; nonbasic variables of 4 and 5

$$\mathbf{x}_{\mathrm{B}} = \mathbf{A}_{\mathrm{B}}^{-1} (\mathbf{b} - \mathbf{A}_{\mathrm{N}} \mathbf{x}_{\mathrm{N}}) = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 3 & 0 \\ 4 & 3 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 20 \\ 12 \\ 24 \end{bmatrix} = \begin{bmatrix} 4 \\ 2.67 \\ 4 \end{bmatrix}$$
$$\lambda = \mathbf{c}_{\mathrm{B}} \mathbf{A}_{\mathrm{B}}^{-1} = \begin{bmatrix} 0.2 & 0.25 & 0 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 1 & 3 & 0 \\ 4 & 3 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 \\ 0.044 \\ 0.039 \end{bmatrix}$$

There is no marginal cost with the first constraint since it is not binding; values tell how cost changes if the **b** values were changed

Lumber Mill Example Solution

Economic interpretation of λ is the profit is increased by 35 for every hour we up the first constraint (the saw) and by 10 for every hour we up the second constraint (plane)

Complications

- Often variables are not limited to being ≥ 0
 - Variables with just a single limit can be handled by substitution; for example if $x \ge 5$ then $x-5=z \ge 0$
 - Bounded variables, high $\ge x \ge 0$ can be handled with a slack variable so x + y = high, and $x, y \ge 0$
- Unbounded conditions need to be detected (i.e., unable to pivot); also the solution set could be null

Minimize $x_1 - x_2$ s.t. $x_1 + x_2 \ge 8$ $\rightarrow x_1 + x_2 - y_1 = 8 \rightarrow x_2 = 8$ is a basic feasible solution $x_1 \quad x_2 \quad y_1$ $1 \quad 1 \quad -1 \quad 8$ $2 \quad 0 \quad -1 \quad 8$

Complications

- Degenerate Solutions
 - Occur when there are less than m basic variables > 0
 - When this occurs the variable entering the basis could also have a value of zero; it is possible to cycle, anti-cycling techniques could be used
- Nonlinear cost functions
 - Nonlinear cost functions could be approximated by assuming a piecewise linear cost function
- Integer variables
 - Sometimes some variables must be integers; known as integer programming; we'll discuss after some power examples

LP Optimal Power Flow

- LP OPF was introduced in
 - B. Stott, E. Hobson, "Power System Security Control Calculations using Linear Programming," (Parts 1 and 2) *IEEE Trans. Power App and Syst.*, Sept/Oct 1978
 - O. Alsac, J. Bright, M. Prais, B. Stott, "Further Developments in LP-based Optimal Power Flow," *IEEE Trans. Power Systems*, August 1990
- It is a widely used technique, particularly for real power optimization; it is the technique used in PowerWorld

LP Optimal Power Flow

- Idea is to iterate between solving the power flow, and solving an LP with just a selected number of constraints enforced
- The power flow (which could be ac or dc) enforces the standard power flow constraints
- The LP equality constraints include enforcing area interchange, while the inequality constraints include enforcing line limits; controls include changes in generator outputs
- LP results are transferred to the power flow, which is then resolved

LP OPF Introductory Example

- In PowerWorld load the B3LP case and then display the LP OPF Dialog (select Add-Ons, OPF Options and Results)
- Use Solve LP OPF to solve the OPF, initially with no line limits enforced; this is similar to economic dispatch with a single power balance equality constraint

• The LP results are available from various pages on the dialog

LP OPF Introductory Example, cont

Common Options								
Constraint Options	All LP Variables	LP Basic Variables LP	Basis Matrix Inverse of LP Bas	is Trace Solution				
Control Options	📴 📰 🖽 *	ik to8 ₊08 👬	Records • Set • Column	s 🕶 🖅 🖬 🖬 🖉 🖓	Na → Handa → Sori Na → 124 ABCI	f(x) ▼ ⊞	Options 🕶	
Results		Constraint ID	Contingency ID	RHS b value	Lambda	Slack Pos	Gen 1 #1 MW Control	
Bus MW Marginal Price Details	1 Area 1 M	IW Constraint	Base Case	0.000	10.004	4	1.000	
All LP Variables LP Basic Variables LP Basis Matrix Inverse of LP Basis Trace Solution								
LP OPF Dialog								

✓ Results			ID	Org. Value	Value	Delta Value	BasicVar	NonBasicVar	Cost(Down)	Cost(Up)	Down Range	Up Range	Reduced Cost Up	Reduced Cost
Solution Su	mmary													Down
Due MMM Me	united price Details	1	Gen 1 #1 MW Control	180.000	180.000	-0.000	1	0	10.00	10.00	20.000	60.000	0.000	0.000
BUS MIVV MIA	arginal Price Details	2	Gen 2 #1 MW Control	0.000	0.000	0.000	0	2	At Min	12.00	At Min	80.000	1.997	-20010.004
- Bus Mvar M	larginal Price Details	3	Gen 3 #1 MW Control	0.000	0.000	0.000	0	3	At Min	20.00	At Min	80.000	9.997	-20010.004
Bus Margina	al Controls	4	Slack-Area Home	0.000	0.000	0.000	0	1	At Min	At Max	At Min	At Max	4989.996	-5010.004
LP Solution Detail	ails		-											

All LP Variables
 LP Basic Variables
 LP Basis Matrix
 Inverse of LP Basis
 Trace Solution

LP OPF Introductory Example, cont

• On use **Options, Constraint Options** to enable the enforcement of the Line/Transformer MVA limits

Options	Options
Constraint Options Constraint Options Control Options Advanced Options Advanced Options Solution Summary Bus MW Marginal Price Details Bus Mvar Marginal Price Details Bus Marginal Controls LP Solution Details	Common Options Constraint Options Control Options Advanced Options Line/Transformer Constraints
LP Basic Variables LP Basis Matrix Inverse of LP Basis Trace Solution	Interface Constraints Maximum Violation Cost (\$/deg-h) 1000.0 Disable Interface MW Limit Enforcement D-FACTS Constraints Percent Correction Tolerance 2.0 MW Auto Release Percentage 75.0 Maximum Violation Cost (\$/MWhr) 1000.0 Phase Shifting Transformer Regulation Limits Disable Phase Shifter Regulation Limit Enforcement In Range Cost (\$/MWhr) 0.10

LP OPF Introductory Example, cont

A M

¢	🕽 LP	OPF Dialog														-
Г	Y Op	tions	LP Soluti	on Details												
		- Common Options - Constraint Options	All LP Va	ariables LP Basic Variables LF	Basis Matrix	Inverse of LP B	asis Trace Solu	tion								
		Control Options		🛔 🏘 00. 0.* % + 🏥 🔄	Records -	Set - Colum	ins 🔻 📴 👻 🔛	8 - 📖 - 🛗	\star $ABED = f(x) \star$	Dptions •						
	✓ Re	sults		ID	Org. Value	Value	Delta Value	BasicVar	NonBasicVar	Cost(Down)	Cost(Up)	Down Range	Up Range	Reduced Cost Up	Reduced Cost Down	At Breakpoint?
		Solution Summary	1	Gen 1 #1 MW Control	180.000	120.000	-60.000	2	0	10.00	10.00	40.000	40.000	0.000	0.000	NO
		Bus MW Marginal Price Details	2	Gen 2 #1 MW Control	0.000	60.000	60.000	1	0	12.00	12.00	60.000	20.000	0.000	0.000	NO
		Bus Mvar Marginal Price Details	3	Gen 3 #1 MW Control	0.000	0.000	0.000	0	2	At Min	20.00	At Min	80.000	6.002	-20013.999	YES
		Bus Marginal Controls	4	Slack-Area Home	0.000	0.000	0.000	0	1	At Min	At Max	At Min	At Max	4989.998		YES
11	✓ ·LP	Solution Details	5	Slack-Line 1 TO 3 CKT 1	-20.000	0.000	20.000	0	3	At Min	0.00	At Min	200.000	5.995	-994.005	YES
		All LP Variables		-												
		LP Basic Variables														
		LP Basis Matrix														
		Inverse of LP Basis														
		Trace Solution														

Bus 3

0 MV

14.00 \$/MWh

180

Example 6_23 Optimal Power Flow

Example6_23 - Case: Example6_23.PWB Status: Initialized | Simulator 20 Beta

Draw Onelines Tools Options

🗙 🚟 - =

In the example the load is gradually increased

42

Locational Marginal Costs (LMPs)

- In an OPF solution, the bus LMPs tell the marginal cost of supplying electricity to that bus
- The term "congestion" is used to indicate when there are elements (such as transmission lines or transformers) that are at their limits; that is, the constraint is binding
- Without losses and without congestion, all the LMPs would be the same
- Congestion or losses causes unequal LMPs
- LMPs are often shown using color contours; a challenge is to select the right color range!

Example 6_23 Optimal Power Flow with Load Scale = 1.72

Solution Animation Running

Run Mode

AC

Example 6_23 Optimal Power Flow with Load Scale = 1.72

• LP Sensitivity Matrix (A Matrix)

U 🖓	' 🚰 🕕 🏥 📓 🖩 🧾	× 🖬						LP OPF Dialog -	Case: Examp	pieo_23.pwb_5	tatus: Paused Sim	iulator 20			
File	Case Information	Draw	Onelines	Tools	Options	Add Ons	Window								
C LP OF	PF Dialog														
✓ · Optio	ns	LP S	Solution Details	3											
C	ommon Options onstraint Options	All	LP Variables	LP Basic Var	riables LP Ba	sis Matrix Inv	erse of LP Bas	is Trace Solution							
C	ontrol Options		🕎 📄 🖽 ÷	00. 0 4k	8 🦂 🖧	Records + S	et 👻 Column	s 🕶 🏣 🕈 📲 🖓 🖬 🖓		^{RT} ^Y CD f(X) ▼ ⊞	Options -				
✓ Resul	Its			Constrain	t ID	Conting	jency ID	RHS b value	Lambda	Slack Pos	Gen 1 #1 MW Control	Gen 2 #1 MW Control	Gen 4 #1 MW Control	Slack-Area Top	Slack-Line 2 TO 5 CKT 1
	us MW Marginal Price Detail		1 Area 1 M	/W Constra	sint	Base Case		0.000	17.352	4	1.000	1.000	1.000	1.000	
B	us Mwar Marginal Price Detail	ails —	2 Line from	m 2to	5 ckt. 1	Base Case		0.000	10.541	5		0.026	-0.151		1.000
- B	us Marginal Controls														
V LP So	lution Details														
A	ll LP Variables														
LF	P Basic Variables														
· LF	P Basis Matrix														
Ir	nverse of LP Basis														
Ш. П	race Solution														

The first row is the power balance constraint, while the second row is the line flow constraint. The matrix only has the line flows that are being enforced.

Example 6_23 Optimal Power Flow with Load Scale = 1.82

• This situation is infeasible, at least with available controls. There is a solution because the OPF is allowing one of the constraints to violate (at high

0.000

-0.002

993.664

1000.000

Base Case

Base Case

Base Case

Linefrom 2 to 5 ckt. 1

nefrom 4 to 5 ckt.

cost)

Control

1.000

-0.146

0.140

CKT 1

1.000

1.000

Control

1.000

Control

1.000

0.026

-0.024

Generator Cost Curve Modeling

- LP algorithms require linear cost curves, with piecewise linear curves used to approximate a nonlinear cost function
- Two common ways of entering cost information are
 - Quadratic function
 - Piecewise linear curve
- The PowerWorld OPF supports both types

Bus Number Bus Name ID	1 1 1 1	Find Find Find	By Number d By Name Find	Status Open Oclosed Energized NO (O	(fline)	
Labels	no labels Generator MVA Base	100.00		Fuel Type	Unknown	
Power and V Output Cos	oltage Control Costs	OPF Faults	Owners, A	rea, etc. Cu	stom Stability	
Cost Mode None Cubic C Piecew Unit Fuel C Variable C Fixed Cost I Fuel Cost I Fuel Cost I Total Fixed	el Cost Model ise Linear Cost (\$/MBtu) D8M (\$/MWh) ts (costs at zero MW oi ndependent Value (\$/r Dependent Value (Mbtu I Costs (\$/hr)	r) 0.00 /hr) 0.00 /hr) 0.0		ubic Cost Mode Cubic Input/Ou A (Enter a B 10.00 C 0.0000 D 0.0000 Convert Cubic Number of Greak Points Convert to	el Jiput Model (MBtu/h) s Fixed Cost) 1 0 to Linear Cost 0 v b Linear Cost	