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Announcements

• Homework 6 is due on Thursday Nov 27

• Read Chapters 3 and 8 (Economic Dispatch and 

Optimal Power Flow)

• Linear Programming is covered in Appendix 3B; the 

Interior Point Method is covered in Appendix 8A

• Course evaluations are now available.  Goto

pica.tamu.edu

• Please do the evaluation!!
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Quick Coverage of Linear Programming

• Linear programming (LP) is probably the most 

widely used mathematical programming technique

• It is used to solve linear, constrained minimization 

(or maximization) problems in which the objective 

function and the constraints can be written as linear 

functions

• Initial concepts for LP were developed during World 

War 2 to optimize logistics 

• In 1947 George Danzig developed the Simplex 

Method, that allowed large programs to be solved

• Interior point methods were developed in 1984
3



Example Problem 1

• Assume that you operate a lumber mill which 

makes both construction-grade and finish-grade 

boards from the logs it receives.  Suppose it takes 2 

hours to rough-saw and 3 hours to plane each 1000 

board feet of construction-grade boards.  Finish-

grade boards take 2 hours to rough-saw and 5 hours 

to plane for each 1000 board feet.  Assume that the 

saw is available 8 hours per day, while the plane is 

available 15 hours per day.  If the profit per 1000 

board feet is $100 for construction-grade and $120 

for finish-grade, how many board feet of each 

should you make per day to maximize your profit?
4



Problem 1 Setup

1 2

1 2

1 2

1 2

1 2

Let x =amount of cg, x = amount of fg

Maximize    100 120

s.t.                2 2 8

                     3 5 15

                     , 0

x x

x x

x x

x x



 

 



Notice that all of the equations are linear, but

they are inequality, as opposed to equality, constraints;

we are seeking to determine the values of x1 and x2
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Example Problem 2

• A nutritionist is planning a meal with 2 foods: A 

and B.  Each ounce of A costs $ 0.20, and has 2 

units of fat, 1 of carbohydrate, and 4 of protein. 

Each ounce of B costs $0.25, and has 3 units of fat, 

3 of carbohydrate, and 3 of protein.  Provide the 

least cost meal which has no more than 20 units of 

fat, but with at least 12 units of carbohydrates and 

24 units of protein. 
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Problem 2 Setup

1 2

1 2

1 2

1 2

1 2

1 2

Let x =ounces of A, x = ounces of B

Minimize    0.20 0.25

s.t.                2 3 20

                     3 12

                     4 3 24

                     , 0

x x

x x

x x

x x

x x



 

 

 

Again all of the equations are linear, but

they are inequality, as opposed to equality, constraints;

we are again seeking to determine the values of x1 and x2;

notice there are also more constraints then solution

variables 

7



Three Bus Case Formulation

• For the earlier three bus system given the initial 

condition of an overloaded transmission line, 

minimize the cost of generation such that the 

change in generation 

is zero, and the flow 

on the line between

buses 1 and 3 is not 

violating its limit

• Can be setup consider-

ing the change in

generation, (DPG1, DPG2, DPG3) 

Bus 2 Bus 1

Bus 3

Total Cost

0.0 MW

  0 MW

180 MW

10.00 $/MWh

 60 MW  60 MW

 60 MW

 60 MW
120 MW

120 MW

10.00 $/MWh

10.00 $/MWh

180.0 MW

  0 MW

1800 $/hr 

120%

120%
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Three Bus Case Problem Setup

1 G1 2 G2 3 G3

1 2 3

1 2

1 2 3

1 2 3

Let x = P , x = P , x = P

Minimize    10 12 20

2 1
s.t.                20

3 3

                     0

                     enforcing limits on ,  ,  

x x x

x x

x x x

x x x

D D D

 

  

  

Line flow constraint

Power balance constraint
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LP Standard Form

The standard form of the LP problem is 

Minimize    

s.t.               

                     

where         n-dimensional column vector

                   n-dimensional row vector

            









cx

Ax b

x 0

x

c

       m-dimensional column vector

                   m×n matrix

For the LP problem usually n>> m





b

A

Maximum problems can

be treated as minimizing

the negative

The previous examples were not in this form!
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Replacing Inequality Constraints 
with Equality Constraints

• The LP standard form does not allow inequality 

constraints

• Inequality constraints can be replaced with equality 

constraints through the introduction of slack variables, 

each of which must be greater than or equal to zero

• Slack variables have no cost associated with them; they 

merely tell how far a constraint is from being binding, 

which will occur when its slack variable is zero 

  with 0

  with 0

i i i i

i i i i

b y b y

b y b y

    

    
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Lumber Mill Example with Slack 
Variables

• Let the slack variables be x3 and x4, so

1 2

1 2 3

1 2 4

1 2 3 4

Minimize    -(100 120 )

s.t.                2 2 8

                     3 5 15

                     , , , 0

x x

x x x

x x x

x x x x



  

  



Minimize the negative
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LP Definitions

A vector  is said to be basic if 

1.  

2.  At most m components of  are non-zero; these

are called the basic variables; the rest are non basic 

variables; if there as less than m non-zeros then 

 is



x

Ax b

x

x

 

   

B
B

N

B 1
B N

N

 called degenerate

Define   (with  basic) and 

With    so    

B N

B N B N


 
  
 

 
   

 

x
x x A A A

x

x
A A b x A b A x

x

AB is called the basis matrix
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Fundamental LP Theorem

• Given an LP in standard form with A of rank m 

then

– If there is a feasible solution, there is a basic feasible 

solution

– If there is an optimal, feasible solution, then there is an 

optimal, basic feasible solution

• Note, there could be a LARGE number of basic, 

feasible solutions

– Simplex algorithm determines the optimal, 

basic feasible solution usually very quickly
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LP Graphical Interpretation 

• The LP constraints define a polyhedron in the 

solution space

– This is a polytope if the polyhedron is bounded and 

nonempty

– The basic, feasible 

solutions are

vertices of this

polyhedron

– With the linear cost

function the solution

will be at one of

vertices

15Image: Figure 3.26 from course text



Simplex Algorithm

• The key is to move intelligently from one basic 

feasible solution (i.e., a vertex) to another, with the 

goal of continually decreasing the cost function

• The algorithm does this by determining the “best” 

variable to bring into the basis; this requires that 

another variable exit the basis, while always 

retaining a basic, feasible solution

• This is called pivoting
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Determination of Variable to 
Enter the Basis 

• To determine which non-basic variable should 

enter the basis (i.e., one which currently 0), look at 

how the cost function changes w.r.t. to a change in 

a non-basic variable (i.e., one that is currently zero)

 

 

1
B N

1 1
N

Define [ ]

With  

Then 

B
B N

N

B N

B B N B B N

z

z



 

 
   

 

 

  

x
cx c c

x

x A b A x

c A b c c A A x
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Elements of 

xn are all 

zero, but we 

are looking 

to change 

one to 

decrease the 

cost



Determination of Variable to 
Enter the Basis 

• Define the reduced (or relative) cost coefficients as

• Elements of this vector tell how the cost function 

will change for a change in a currently non-basic 

variable

• The variable to enter the basis is usually the one 

with the most negative relative cost

• If all the relative costs are nonnegative then we are 

at an optimal solution

1
N B B N

 r c c A A

18

r is an n-m dimensional

row vector  



Determination of Variable 
to Exit Basis

• The new variable entering the basis, say a position j, 

causes the values of all the other basic variables to 

change.  In order to retain a basic, feasible solution, we 

need to insure no basic variables become negative.  

The change in the basic variables is given by 

1

where  is the value of the variable entering the

basis, and  is its associated column in 

B B B j

j





 x x A a

a A
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Determination of Variable 
to Exit Basis

1

We find the largest value  such 

If no such  exists then the problem is unbounded; 

otherwise at least one component of equals zero.

The associated variable exits the basis.  

B B B j

B







  x x A a 0

x
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Canonical Form

• The Simplex Method works by having the problem in 

what is known as canonical form

• Canonical form is defined as having the m basic 

variables with the property that each appears in only 

one equation, its coefficient in that equation is unity, 

and none of the other basic variables appear in the 

same equation

• Sometime canonical form is readily apparent 

1 2

1 2 3

1 2 4

1 2 3 4

Minimize    -(100 120 )

s.t.                2 2 8

                     3 5 15

                     , , , 0

x x

x x x

x x x

x x x x



  

  

 21

Note that with x3

and x4 as basic 

variables AB is the 

identity matrix



Canonical Form 

• Other times canonical form is achieved by initially 

adding artificial variables to get an initial solution

• Example of the nutrition problem in canonical form 

with slack and artificial variables (denoted as y) used 

to get an initial basic feasible solution

22

1 2

1 2 3

1 2 3 1

1 2 4 2

1 2 5 3

1 2 3 4 5

Let x =ounces of A, x = ounces of B

Minimize    y +y +y

s.t.                2 3 20

                     3 12

                     4 3 24

                     , , , , ,

x x x y

x x x y

x x x y

x x x x x

   

   

   

1 2 3, , 0y y y 

Note that with y1, 

y2, and y3 as basic 

variables AB is the 

identity matrix



LP Tableau

• With the system in canonical form, the Simplex 

solution process can be illustrated by forming what is 

known as the LP tableau

– Initially this corresponds to the A matrix, with a column 

appended to include the b vector, and a row added to give the 

relative cost coefficients; the last element is the negative of the 

cost function value

– Define the tableau as Y, with elements Yij

– In canonical form the last column of the tableau gives the 

values of the basic variables

• During the solution the tableau is updated by pivoting

23



LP Tableau for the Nutrition 
Problem with Artificial Variables

• When in canonical form the relative costs vector is

• The initial tableau for the artificial problem is then

 

1

0 7

2 3 1 0 00 9

1 1 1 1 3 0 1 00 1

4 3 0 0 10 1

0 1

N B B N B N

T T

  

   
    
   

        
 

        
      

r c c A A c A

r

1 2 3 4 5 1 2 3

2 3 1 0 0 1 0 0 20

1 3 0 1 0 0 1 0 12

4 3 0 0 1 0 0 1 24

7 9 1 1 1 0 0 0 56

x x x x x y y y





   
24

Note the last 

column gives the 

values of the basic 

variables



LP Tableau Pivoting

• Pivoting is used to move from one basic feasible 

solution to another

– Select the pivot column (i.e., the variable coming into the basis, 

say q) as the one with the most negative relative cost

– Select the pivot row (i.e., the variable going out of the basis) as 

the one with the smallest ratio of xi/Yiq for Yiq >0; define this 

as row p (xi is given in the last column)

1

That is, we find the largest value  such 

If no such  exists then the problem is unbounded; 

otherwise at least one component of equals zero.

The associated variable exits the basis.

B B B q

B







  x x A a 0

x
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LP Tableau Pivoting for Nutrition 
Problem

• Starting at

• Pivot on column q=2; for row get minimum of 

{20/3, 12/3, 24/3), which is row p=2 

1 2 3 4 5 1 2 3

2 3 1 0 0 1 0 0 20

1 3 0 1 0 0 1 0 12

4 3 0 0 1 0 0 1 24

7 9 1 1 1 0 0 0 56

x x x x x y y y





   
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LP Tableau Pivoting

• Pivoting on element Ypq is done by 

– First dividing row p by Ypq to change the pivot element to unity.

– Then subtracting from the kth row Ykq/Ypq times the pth row for 

all rows with Ykq <> 0

1 2 3 4 5 1 2 3

2 3 1 0 0 1 0 0 20

1 0 1 0 0 1 0 12

4 3 0 0 1 0 0 1 24

7 9 1 1 1 0 0 0 56

x x x x x y y y





   

3

1 2 3 4 5 1 2 3

1 0 1 1 0 1 1 0 8

Pivoting gives   0.33 0 0.33 0 0 0.33 0 4

3 0 0 1 1 0 1 1 12

4 0 1 2 1 0 3 0 20

1

x x x x x y y y





 

   
27

I’m only 

showing

fractions 

with two

ROD digits



LP Tableau Pivoting, Example, cont.

• Next pivot on column 1, row 3

• Which gives

1 2 3 4 5 1 2 3

1 0 1 1 0 1 1 0 8

0.33 0 0.33 0 0 0.33 0 4

0 0 1 1 0 1 1 12

4 0 1 2 1 0 3 0 20

1

x x x x x y y y





 

   

3

1 2 3 4 5 1 2 3

0 0 1 0.67 0.33 1 0.67 0.33 4

0 0 0.44 0.11 0 0.44 0.11 2.67

0 0 0.33 0.33 0 0.33 0.33 4.0

0 0 1 0.67 0.33 0 1.67 1.33 4

1

1

x x x x x y y y

 

 

 

   
28



LP Tableau Pivoting, Example, cont.

29

• Next pivot on column 3, row 1

• Which gives

1 2 3 4 5 1 2 3

0 0 1 0.67 0.33 1 0.67 0.33 4

0 0 0.44 0.11 0 0.44 0.11 2.67

0 0 0.33 0.33 0 0.33 0.33 4

0 0 0 0 0 1 1 1 0

1

1

x x x x x y y y

 

 

 

Since there 

are no

negative 

relative 

costs we 

are done 

with getting 

a starting 

solution

1 2 3 4 5 1 2 3

0 0 0.67 0.33 1 0.67 0.33 4

0 0 0.44 0.11 0 0.44 0.11 2.67

0 0 0.33 0.33 0 0.33 0.33 4

0 0 1 0.67 0.33 0 1.67 1.33 4

1

1

x x x x x y y y

 

 

 

   

1



LP Tableau Full Problem

• The tableau from the end of the artificial problem is 

used as the starting point for the actual solution

– Remove the artificial variables

– Update the relative costs with the costs from the original 

problem and update the bottom right-hand corner value 

• Since none of the relative costs are negative we are 

done with x1=4, x2=2.7 and x3=4

 

1

[0.2 0.25 0 0 0]

0.67 0.33
0 0.04

0 0.25 0.2 0.44 0.11
0 0.04

0.33 0.33

N B B N B N

T T





  

 
              

  

c

r c c A A c A

r
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Marginal Costs of Constraint 
Enforcement

1
1

If we would like to determine how the cost function

will change for changes in , assuming the set

of basic variables does not change 

then we need to calculate 

( ) ( )

So the

B B B B
B B

z 
  

   
  

b

c x c A b
c A λ

b b b

 values of  tell the marginal cost of enforcing

each constraint. 

λ

31

The marginal costs will be used to determine the OPF 

locational marginal costs (LMPs)



Nutrition Problem Marginal Costs

• In this problem we had basic variables 1, 2, 3; 

nonbasic variables of 4 and 5

32

 

 

B

B

1

1
B N N

1

1
B

2 3 1 20 4

1 3 0 12 2.67

4 3 0 24 4

2 3 1 0

0.2 0.25 0 1 3 0 0.044

4 3 0 0.039









     
        
     
          

   
     
   
      

x A b A x

λ c A

There is no marginal cost with the first constraint 

since it is not binding; values tell how cost changes 

if the b values were changed



Lumber Mill Example Solution

 

1 2

1 2 3

1 2 4

1 2 3 4

1 2 3 4

1

Minimize    -(100 120 )

s.t.                2 2 8

                     3 5 15

                     , , , 0

The solution is  2.5, 1.5, 0, 0

2 2 35
Then  = 100 120

3 5 10

x x

x x x

x x x

x x x x

x x x x





  

  



   

  
  

  
λ





Economic interpretation of l is the profit is increased by

35 for every hour we up the first constraint (the saw) and

by 10 for every hour we up the second constraint (plane)  

1 2 3 4

An initial basic feasible solution

is 0, 0, 8, 15x x x x   
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Complications

• Often variables are not limited to being  0

– Variables with just a single limit can be handled by 

substitution;  for example if x  5 then x-5=z  0

– Bounded variables, high  x  0 can be handled with a slack 

variable so x + y = high, and x,y  0 

• Unbounded conditions need to be detected (i.e., unable 

to pivot); also the solution set could be null 

34

1 2 1 2

1 2 1 2

1 2 1

Minimize     s.t.  8

8 8 is a basic feasible solution

1 1 1 8

2 0 1 8

x x x x

x x y x

x x y

  

     







Complications

• Degenerate Solutions

– Occur when there are less than m basic variables > 0

– When this occurs the variable entering the basis could also 

have a value of zero; it is possible to cycle, anti-cycling 

techniques could be used

• Nonlinear cost functions

– Nonlinear cost functions could be approximated by assuming 

a piecewise linear cost function 

• Integer variables

– Sometimes some variables must be integers; known as integer 

programming; we’ll discuss after some power examples 
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LP Optimal Power Flow

• LP OPF was introduced in 

– B. Stott, E. Hobson, “Power System Security Control 

Calculations using Linear Programming,” (Parts 1 and 2) IEEE 

Trans. Power App and Syst., Sept/Oct 1978

– O. Alsac, J. Bright, M. Prais, B. Stott, “Further Developments 

in LP-based Optimal Power Flow,” IEEE Trans. Power 

Systems, August 1990

• It is a widely used technique, particularly for real power 

optimization; it is the technique used in PowerWorld

36



LP Optimal Power Flow

• Idea is to iterate between solving the power flow, and 

solving an LP with just a selected number of 

constraints enforced

• The power flow (which could be ac or dc) enforces 

the standard power flow constraints

• The LP equality constraints include enforcing area 

interchange, while the inequality constraints include 

enforcing line limits; controls include changes in 

generator outputs

• LP results are transferred to the power flow, which is 

then resolved 

37



LP OPF Introductory Example

• In PowerWorld load the B3LP case and then 

display the LP OPF Dialog (select Add-Ons, OPF 

Options and Results)

• Use Solve LP OPF to

solve the OPF, initially

with no line limits 

enforced; this is similar

to economic dispatch

with a single power 

balance equality constraint

• The LP results are available from various pages on 

the dialog 38

Bus 2 Bus 1

Bus 3

slack

Total Cost

10.00 $/MWh

 60 MW  60 MW

 60 MW

 60 MW

120 MW

120 MW

10.00 $/MWh

10.00 $/MWh
1800 $/h

0.0 MW

  0 MW

MW180

180.0 MW

MW  0

120%

120%



LP OPF Introductory Example, cont
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LP OPF Introductory Example, cont

• On use Options, Constraint Options to enable the 

enforcement of the Line/Transformer MVA limits 

40



LP OPF Introductory Example, cont

41

Bus 2 Bus 1

Bus 3

slack

Total Cost

12.00 $/MWh

 20 MW  20 MW

 80 MW

 80 MW

100 MW

100 MW

10.00 $/MWh

14.00 $/MWh
1920 $/h

60.0 MW

  0 MW

MW180

120.0 MW

MW  0

100%

100%



Example 6_23 Optimal Power Flow

In the example the load is gradually increased

42



Locational Marginal Costs (LMPs)

• In an OPF solution, the bus LMPs tell the marginal 

cost of supplying electricity to that bus

• The term “congestion” is used to indicate when there 

are elements (such as transmission lines or 

transformers) that are at their limits; that is, the 

constraint is binding

• Without losses and without congestion, all the LMPs 

would be the same

• Congestion or losses causes unequal LMPs

• LMPs are often shown using color contours; a 

challenge is to select the right color range!
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Example 6_23 Optimal Power Flow 
with Load Scale = 1.72

44



• LP Sensitivity Matrix (A Matrix)

Example 6_23 Optimal Power Flow 
with Load Scale = 1.72

The first row is the power balance constraint, while

the second row is the line flow constraint.  The matrix

only has the line flows that are being enforced.  
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Example 6_23 Optimal Power Flow 
with Load Scale = 1.82

• This situation is infeasible, at least with available 

controls.  There is a solution because the OPF is 

allowing one of the constraints to violate (at high 

cost)

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

0.95 pu1.04 pu

0.99 pu1.05 pu

 58%
A

MVA

 48%
A

MVA

 57%
A

MVA

 57%
A

MVA

133 MW

133 MW

 80 MW  80 MW 124 MW 124 MW

 64 MW

 64 MW

176 MW

176 MW

 42 MW

42 MW

 56 MW

11297.88 $/h

713.4 MW

235.47 $/MWh

1.82

16.82 $/MWh 20.74 $/MWh 22.07 $/MWh

15.91 $/MWh 1101.78 $/MWh

MW213

MW220

268 MW

 71 Mvar

143 MW

 54 Mvar

MW231.9

 71.3 Mvar

 71 MW

 36 Mvar

MW280

AGC ON

AGC ON

AGC ON

 89%
A

MV A

100%
A

MVA

100%
A

MVA
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Generator Cost Curve Modeling

• LP algorithms require linear cost curves, with 

piecewise linear curves used to approximate a 

nonlinear cost function

• Two common ways

of entering cost 

information are 

– Quadratic function

– Piecewise linear curve

• The PowerWorld OPF

supports both types 
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