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Announcements

• Homework 6 is due now

• Course evaluations are now available.  Goto

pica.tamu.edu

• Please do the evaluation!!

• Final exam is Wednesday Dec 12, 1 to 3pm 

• Closed book, closed notes.  Two 8.5 by 11 inch notesheets

allowed; calculators allowed 
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LP OPF Introductory Example, cont

• On use Options, Constraint Options to enable the 

enforcement of the Line/Transformer MVA limits 
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LP OPF Introductory Example, cont
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Bus 2 Bus 1

Bus 3

slack

Total Cost

12.00 $/MWh

 20 MW  20 MW

 80 MW

 80 MW

100 MW

100 MW

10.00 $/MWh

14.00 $/MWh
1920 $/h

60.0 MW

  0 MW

MW180

120.0 MW

MW  0

100%

100%



Example 6_23 Optimal Power Flow

In the example the load is gradually increased
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Locational Marginal Costs (LMPs)

• In an OPF solution, the bus LMPs tell the marginal 

cost of supplying electricity to that bus

• The term “congestion” is used to indicate when there 

are elements (such as transmission lines or 

transformers) that are at their limits; that is, the 

constraint is binding

• Without losses and without congestion, all the LMPs 

would be the same

• Congestion or losses causes unequal LMPs

• LMPs are often shown using color contours; a 

challenge is to select the right color range!
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Example 6_23 Optimal Power Flow 
with Load Scale = 1.72
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• LP Sensitivity Matrix (A Matrix)

Example 6_23 Optimal Power Flow 
with Load Scale = 1.72

The first row is the power balance constraint, while

the second row is the line flow constraint.  The matrix

only has the line flows that are being enforced.  
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Example 6_23 Optimal Power Flow 
with Load Scale = 1.82

• This situation is infeasible, at least with available 

controls.  There is a solution because the OPF is 

allowing one of the constraints to violate (at high 

cost)

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

0.95 pu1.04 pu

0.99 pu1.05 pu

 58%
A

MVA

 48%
A

MVA

 57%
A

MVA

 57%
A

MVA

133 MW

133 MW

 80 MW  80 MW 124 MW 124 MW

 64 MW

 64 MW

176 MW

176 MW

 42 MW

42 MW

 56 MW

11297.88 $/h

713.4 MW

235.47 $/MWh

1.82

16.82 $/MWh 20.74 $/MWh 22.07 $/MWh

15.91 $/MWh 1101.78 $/MWh

MW213

MW220

268 MW

 71 Mvar

143 MW

 54 Mvar

MW231.9

 71.3 Mvar

 71 MW

 36 Mvar

MW280

AGC ON

AGC ON

AGC ON

 89%
A

MV A

100%
A

MVA

100%
A

MVA
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Generator Cost Curve Modeling

• LP algorithms require linear cost curves, with 

piecewise linear curves used to approximate a 

nonlinear cost function

• Two common ways

of entering cost 

information are 

– Quadratic function

– Piecewise linear curve

• The PowerWorld OPF

supports both types 
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Security Constrained OPF

• Security constrained optimal power flow (SCOPF) 

is similar to OPF except it also includes 

contingency constraints

– Again the goal is to minimize some objective function, 

usually the current system cost, subject to a variety of 

equality and inequality constraints

– This adds significantly more computation, but is required 

to simulate how the system is actually operated (with N-1 

reliability)

• A common solution is to alternate between solving 

a power flow and contingency analysis, and an LP
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Security Constrained OPF, cont.

• With the inclusion of contingencies, there needs to 

be a distinction between what control actions must 

be done pre-contingent, and which ones can be 

done post-contingent

– The advantage of post-contingent control actions is they 

would only need to be done in the unlikely event the 

contingency actually occurs

• Pre-contingent control actions are usually done for 

line overloads, while post-contingent control 

actions are done for most reactive power control 

and generator outage re-dispatch 
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SCOPF Example

• We’ll again consider Example 6_23, except now it has 

been enhanced to include contingencies and we’ve also 

greatly increased the capacity on the line between buses 

4 and 5 

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

0.82 pu1.04 pu

1.00 pu1.05 pu

 36%
A

MVA

 80%
A

MVA

 57%
A

MVA

 12%
A

MVA

 53 MW

 53 MW

 82 MW  82 MW  26 MW  26 MW

 91 MW

 91 MW

  0 MW

  0 MW

 96 MW

96 MW

127 MW

5729.74 $/h

392.0 MW

14.70 $/MWh

1.00

14.33 $/MWh 14.87 $/MWh 15.05 $/MWh

14.20 $/MWh 15.05 $/MWh

MW135

MW173

147 MW

 39 Mvar

 78 MW

 29 Mvar

MW127.4

 39.2 Mvar

 39 MW

 20 Mvar

MW 84

AGC ON

AGC ON

AGC ON
 80%

A

MVA
100%

A

MVA

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

0.82 pu1.04 pu

1.00 pu1.05 pu

 36%
A

MVA

 80%
A

MVA

 57%
A

MVA

 12%
A

MVA

 53 MW

 53 MW

 82 MW  82 MW  26 MW  26 MW

 91 MW

 91 MW

  0 MW

  0 MW

 96 MW

96 MW

127 MW

5729.74 $/h

392.0 MW

319.73 $/MWh

1.00

14.33 $/MWh 14.87 $/MWh 15.05 $/MWh

14.20 $/MWh 1540.19 $/MWh

MW135

MW173

147 MW

 39 Mvar

 78 MW

 29 Mvar

MW127.4

 39.2 Mvar

 39 MW

 20 Mvar

MW 84

AGC ON

AGC ON

AGC ON100%
A

MVA

268%
A

MVA

Original with line 4-5 limit

of 60 MW with 2-5 out 

Modified with line 4-5 limit

of 200 MVA with 2-5 out 
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PowerWorld SCOPF Application

Just click the button to solve

Number of times

to redo 

contingency

analysis
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LP OPF and SCOPF Issues

• The LP approach is widely used for the OPF and 

SCOPF, particularly when implementing a dc power 

flow approach

• A key issue is determining the number of binding 

constraints to enforce in the LP tableau

– Enforcing too many is time-consuming, enforcing too few 

results in excessive iterations

• The LP approach is limited by the degree of linearity 

in the power system

– Real power constraints are fairly linear, reactive power 

constraints much less so  

15



OPF Solution by Newton’s Method

• An alternative to using the LP approach is to use 

Newton’s method, in which all the equations are 

solved simultaneously

• Key paper in area is

– D.I. Sun, B. Ashley, B. Brewer, B.A. Hughes, and W.F. 

Tinney, "Optimal Power Flow by Newton Approach", IEEE 

Trans. Power App and Syst., October 1984

• Problem is 

Minimize ( )

s.t.           ( )=

                ( )

f



x

g x 0

h x 0

For simplicity x

represents all the 

variables and we can 

use h to impose limits 

on individual variables
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OPF Solution by Newton’s Method

• During the solution the inequality constraints are 

either binding (=0) or nonbinding (<0)

– The nonbinding constraints do not impact the final 

solution

• We’ll modify the problem to split the h vector into 

the binding constraints, h1 and the nonbinding 

constraints, h2

1

2

Minimize ( )

s.t.           ( )=

                ( )

                ( )

f





x

g x 0

h x 0

h x 0
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OPF Solution by Newton’s Method

• To solve first define the Lagrangian

• A necessary condition for a minimum is that the 

gradient is zero 

 
1 2 1( , , ) ( ) ( )+ ( )

Let  = 

T TL f x λ λ x μ g x λ h x

z x μ λ
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1

2

( )

( )
( )

L

z

L
L

z

 
 
 
 

    
 
 
 
 

z

z
z 0

Both  and  are 

Lagrange Multipliers



OPF Solution by Newton’s Method

• Solve using Newton’s method.  To do this we need 

to define the Hessian matrix

• Because this is a second order method, as opposed 

to a first order linearization, it can better handle 

system nonlinearities 

2 2 2

2 2
2

2

( ) ( ) ( )

( ) ( )
( ) ( )

( )

i j i j i j

i i j

j i

L L L

x x x x

L L
L

z z x

L

x

 





   
 
      

   
     

     
 
 
   

z z z

z z
z H z 0 0

z
0 0
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OPF Solution by Newton’s Method

• Solution is then via the standard Newton’s method.  

That is
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   

 

max

(k)

max

1(k 1) (k)

Set iteration counter k=0, set k

Set convergence tolerance 

Guess 

While ( )  and k < k

    ( ) ( )

    k = k + 1

End While

L

L







 

  

z

z

z z H z z

No iteration is 

needed for a 

quadratic 

function with 

linear 

constraints



Example

• Solve 

   

 

   

2 2

1 2 1 2

2 2

1 2 1 2

1
1

2

2

1 2

2

Minimize x x  such that x 2 0

Solve initially assuming the constraint is binding

L , x x 3x 2

2x 3

L , 2x     

3x 2

2 0 3

L , , 0 2 1

3 1

x

x

L

x

L

x
x

L

 



 



 

   

    

 
 
   
   

      
     
 
 
 

  

x

x

x H x

1

1

2

1 2 0 1 2 0.6

1 0 2 1 2 0.2

0 0 1 1 0 2 0.4

x

x





           
           

   
           
                      

No iteration is 

needed so any 

“guess” is fine.  

Pick (1,1,0)

Because  is positive the constraint is binding 21



Newton OPF Comments

• The Newton OPF has the advantage of being better 

able to handle system nonlinearities

• There is still the issue of having to deal with 

determining which constraints are binding

• The Newton OPF needs to implement second order 

derivatives plus all the complexities of the power 

flow solution

– The power flow starts off simple, but can rapidly get 

complex when dealing with actual systems 

• There is still the issue of handling integer variables 
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Mixed-Integer Programming

• A mixed-integer program (MIP) is an optimization 

problem of the form

23

Minimize    

s.t.               

                     

where         n-dimensional column vector

                   n-dimensional row vector

                   m-dimensional column vector

   











cx

Ax b

x 0

x

c

b

j

                m×n matrix

                   some or all x  integer

A



Mixed-Integer Programming

• The advances in the algorithms have been substantial  

Notes are partially based on a presentation at Feb 2015 US National Academies Analytic

Foundations of the Next Generation Grid by Robert Bixby from Gurobi Optimization titled

“Advances in Mixed-Integer Programming and the Impact on Managing Electrical Power Grids”

Speedups 

from 2009

to 2015 were

about a factor

of 30!
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Mixed-Integer Programming

• Suppose you were given the following choices?

– Solve a MIP with today’s solution technology on a 1991 

machine

– Solve a MIP with a 1991 solution on a machine from today?

• The answer is to choose option 1, by a factor of 

approximately 300

• This leads to the current debate of whether the OPF 

(and SCOPF) should be solved using generic solvers or 

more customized code (which could also have quite 

good solvers!)

Notes are partially based on a presentation at Feb 2015 US National Academies Analytic

Foundations of the Next Generation Grid by Robert Bixby from Gurobi Optimization titled

“Advances in Mixed-Integer Programming and the Impact on Managing Electrical Power Grids” 25



More General Solvers Overview

• OPF is currently an area of active research

• Many formulations and solution methods exist… 
– As do many tools for highly complex, large-scale 

computing!

• While many options exist, some may work better for 

certain problems or with certain programs you already 

use

• Consider experimenting with a new language/solver!
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Gurobi and CPLEX

• Gurobi and CPLEX are two well-known 

commercial optimization solvers/packages for 

linear programming (LP), quadratic 

programming (QP), quadratically constrained 

programming (QCP), and the mixed integer (MI) 

counterparts of LP/QP/QCP

• Gurobi and CPLEX are accessible through object-

oriented interfaces (C++, Java, Python, C), matrix-

oriented interfaces (MATLAB) and other modeling 

languages (AMPL, GAMS)
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Solver Comparison

Algorithm Type
------------------

Solver

LP/MILP
linear/mixed integer 

linear program

QP/MIQP
quadratic/mixed integer 

quadratic program

SOCP
second order cone 

program

SDP
semidefinite 

program

CPLEX* x x x

GLPK x

Gurobi* x x x

IPOPT x

Mosek* x x x x

SDPT3/SeDuMi x x

Linear programming can be solved by quadratic programming, 

which can be solved by second-order cone programming, which 

can be solved by semidefinite programming. 
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Modeling Tools

AMPL
CVX 

(Matlab)
GAMS

Pyomo 

(Python)

YALMIP 

(Matlab)

CPLEX x x x x

GLPK x x

Gurobi x x x x x

IPOPT x x x

Mosek x x x x

SDPT3/SeDu

Mi
x x x
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Introduction to AMPL

• AMPL (A Mathematical Programming Language) 

is a modeling language that enables the compact 

and logical representation of optimization models

• Visit http://www.ampl.com to download and start 

using a student version.
– To actually solve problems with AMPL, you’ll also 

need a solver!

– CPLEX is a good one to start with (already included in 

Windows download)

• There is an AMPL book and many examples also 

available for download at http://www.ampl.com

30
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Introduction to AMPL

• The model file (.mod) declares the data 

parameters, the variables, the objective function

and the constraints

• The data is provided in the data file (.dat)
– You don’t need to change the model for every small 

change in the data!

• Every declaration ends in a semicolon ;

• Comments begin with a pound sign #

• Parameters in the data file must first be declared in 

the model file
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An AMPL Example

• Example 1 (lumber mill problem) from Lecture 24
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An (Improved) AMPL Example

• Example 1 (lumber mill problem) from Lecture 24

 Can change the values in the .dat 

file, change solver, etc. with just a 

few quick clicks!
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DCOPF in AMPL

• Example 6_23
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DCOPF in AMPL: Parameters

• LOTS of parameters (not all are used in this example, but 

the framework is there for more involved examples)
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DCOPF in AMPL: Parameters, cont.

• Initialization
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DCOPF in AMPL: Model

• Objective: Polynomial
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DCOPF in AMPL: Data

• Bus, Branch, and Generator data saved in .txt files
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DCOPF in AMPL: Solution

MATPOWER ACOPF 

with polynomial objective 

function

AMPL+Gurobi

DCOPF with 

polynomial 

objective 

function and 

linear constraints

PowerWorld OPF 

solution

Ang (deg)

7.454

4.748

-1.128

-0.654

-2.892
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MATPOWER

• Uses data stored in MATLAB struct
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MATPOWER Solvers

• Section 6.5 of manual

– Originally used MATLAB’s Optimization Toolbox

– Now can use MINOPF/TSPOPF packages, IPOPT solver 

(open-source), CPLEX/MOSEK/Gurobi (for DC OPF), 

KNITRO (for AC OPFs)

– Default: own primal-dual interior point method 

implementation MIPS (MATPOWER Interior Point 

Solver) for AC and DC (QP solver)

http://www.pserc.cornell.edu/matpower/

41
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Questions

• What changes would you make to the .mod file to 

do a full ACOPF?

• What sensitivity analysis could you do by only 

changing the .dat/.txt files?

• What might you consider when comparing solvers?

• What tools best fit your needs?
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