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Abstract—Dynamic Mode Decomposition (DMD) is a relatively
new method for simultaneous modal analysis of multiple time-
series signals. In this paper, DMD is successfully applied towards
transmission-level power system data in an implementation that
is able to run quickly. Since power systems are considered as
non-linear and time-varying, modal identification is capable of
monitoring the evolution of large-scale power system dynamics by
providing a breakdown of the constituent oscillation frequencies
and damping ratios, and their respective amplitudes. DMD is an
efficient algorithm for both off-line and on-line processing of large
volumes of time-series measurements, which can enable spatio-
temporal analyses, improve situational awareness, and could
even contribute towards control strategies. This paper applies
DMD on a set of simulated measurements consisting of both
frequency and voltage magnitude data. The key advantage of this
implementation is its relatively fast computation; for example,
it is able to process a 7 s time-window, consisting of 3392
signals with 211 time points, in 0.185 s. Automated processing
of transient contingency results, and on-line mode tracking are
two proposed applications.

Index Terms—Modal identification, power system dynamics,
transient stability, situational awareness, and visualization.

I. INTRODUCTION

Electric power systems are never truly in steady state
due to continuous small load fluctuations. However, control
devices are able to keep a system’s operating point within
a narrow band during these small variations in load, which
can be referred to as a pseudo-steady state. Sometimes
planned/unplanned events can cause large perturbations that
might result in more oscillatory behavior, and eventually lead
to a new pseudo-steady state. These dynamics are known
to occur in the Transient Stability time frame. Knowledge
about the dominant oscillation modes characterizes a system’s
temporal evolution and stability attributes ([1]).

Modal identification from measurements provides informa-
tion about oscillation frequencies and damping ratios, and their
respective amplitudes and phase. Identifying poorly damped
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modes can help in tuning control strategies for better stabi-
lization ([1]). In today’s highly interconnected electric grid,
a disturbance originating from one part of the system can
affect the entire system. Moreover, the presence of low-inertia
and intermittent renewable generation units can also result
in greater deviation from a desired operating point. These
practical concerns in stability and control motivate the need
for closer to real-time spatio-temporal awareness of a system’s
dynamic trajectories ([2]), which can be aided with accurate
estimation of modes and mode shapes from measurements.

Modal estimation can be performed using any type of
measurements (ambient, ring-down, or probing), and there are
methods which are better suited for each data type (explained
in Section II). Ring-down analysis methods, such as Prony
([3]), Matrix Pencil (MPM) ([4]), Eigensystem Realization
(ERA) ([5]) and Variable Projection (VPM) ([5]), have been
applied to power system measurements. However in this paper,
a method known as Dynamic Mode Decomposition (DMD) is
implemented for ring-down analysis, which originated from
the Fluid Dynamics field in 2008 ([6], [7]). First applied to
power systems in [8], this work showed that DMD can be
substantially faster than Prony.

This paper focuses on the use of DMD for short time-
interval modal identification for a wide-area interconnected
power system to exhibit DMD’s strength in accommodating
a large set of measurement channels, while still being com-
putationally fast. This paper also shows that if different types
of measurement channels are augmented with each other, it
can help strengthen the precision of calculations, and hence
allow a smaller time-window to be used. Before describing
DMD, the modal analysis problem is briefly described in
Section II, along with references to relevant past and current
work that have been utilized in the industry. Next, the DMD
algorithm is summarized in Section III, followed by Section
IV, which presents an application of DMD. Results, and
spatio-temporal visualization are shown, which conveys the
wealth of information extracted via DMD, so as to inspire its
use by power system operators and in smart grid analytics. A
discussion of DMD’s fast computational speed is presented,
and some applications are proposed.



II. PROBLEM STATEMENT AND LITERATURE REVIEW

If a dynamic model of a power system is available, modal
analysis could be done through the linearization of differential-
algebraic equations (DAEs), representing a system and oper-
ating point of interest ([9]). Apart from calculating modes,
the participation factors (based on the eigenvectors of the
linearized state matrix) reveal the impact of each state on
each mode (and vice-versa). Some modes are affected by
several states, and other modes are only impacted by a few
states. Since different states can be associated with different
geographic locations, modes are said to be local or inter-area
depending on their geographic extent. Local and inter-area
modes have also been observed in measurement data.

However, from a practical perspective, model-based modal
analysis is challenging due to the time-varying nature of
power systems. Approximate values can be obtained from
calculations using planning models that usually run in an
off-line manner. To reduce the dependency on models, and
as an alternate approach, most measurement-driven modal
analysis schemes calculate values of σi (damping), ωi (angular
frequency), ci (amplitude) and φi (phase), and ultimately seek
to reconstruct a signal as a sum of damped sinusoids,

ŷ(t) =

I∑
i=1

cie
σit cos(ωit+ φi), (1)

given the measurement signal y(t). Typically this is done for
a duration of time, 0 ≤ t ≤ T . Methods like Prony, MPM,
and ERA assume that the signal is an output of a linear time-
invariant system, while VPM in [10] does not require this
assumption, because non-linear basis functions can be chosen
as part of VPM. Nevertheless, a signal can be expressed in
terms of eigenvalues, λi = σi ± jωi. Similar to equation (1),
a sum of damped sinusoids can be represented in discrete-time,

ŷ[n] =

J∑
j=1

dj (µj)
n
, (2)

for n ∈ [0, N ], n ∈ Z, dj ∈ C, µj ∈ C, and where
the sample number, n, and the sampling interval, ∆t are
related by the equation n = t/∆t. Typically, measurements
are recorded with evenly-spaced samples, and therefore, the
reconstructed signals in equations (1) and (2) are practically
equivalent. The number of summation terms in equations (1)
and (2) are I and J respectively. They satisfy the relation-
ship J − I = Number of complex conjugate eigenvalue pairs,
because terms arising from complex conjugate pairs of the
discrete-time eigenvalues (µj and µj) map to a single term in
the continuous time summation in equation (1), i.e.,

dj(µj)
n + dj(µj)

n = cie
σin∆t cos(ωin∆t+ φi). (3)

Many methods calculate λi by finding µj from a discrete-
time series, and require the time-series signal(s) to be uni-
formly sampled. If there are missing measurements, or signals

are being combined from two or more sources, then interpo-
lation and re-sampling are needed. Some implementations of
these methods have incorporated an optional pre-processing
step for removing the initial/final/mean value of the signal
and/or removing linear or quadratic trends ([11], [12]). Some
methods also incorporate the filtering of noise, and this also
has proven useful in improving accuracy in some cases.

Methods like Prony ([13]), MPM ([14], [15]), and ERA
([16]) use a two-step procedure to first estimate the eigenvalues
and then estimate the mode shapes ([17], [18]). The industry
has continued to seek alternatives so as to monitor system
dynamics more closely, and for maintaining good operating
points ([19]). Work has been done using a system identification
approach ([20]), and also with ambient measurements ([21],
[22]). Methods like stepwise-regression ([23]) have also been
formulated as an add-on to Prony analysis. Newer methods
have been designed to better understand the error bounds in
mode estimation ([24]), and also provide an understanding of
the transfer-function representation of power systems ([25]).
Some of these measurement-based methods have also been
tested with measurements taken during probing conditions.
The concept of modal energy trending has recently been
used, which utilizes a combination of frequency-domain and
Singular Value Decomposition (SVD) methods ([26], [27]).

Similar to some other methods, DMD also consists of two
steps, which first estimates the modal frequency and damp-
ing, and then their respective amplitude and phase. One by-
product of DMD’s first step is a mapping between underlying
dynamics and measurements, which is strategically used in
simplifying the second optimization step (not done in Prony,
MPM, and ERA). An assumption in DMD is an approximately
constant linear mapping between consecutive measurement
samples during one time-window. Despite this assumption,
there is firm theoretical foundation for applying DMD towards
analyzing nonlinear dynamics ([28]) in power systems. DMD
is considered as a numerical algorithm for finding the modes
of the infinite-dimensional linear Koopman operator, which
is defined for any nonlinear system ([29]). Koopman modes
are closed related to the system modes, and hence DMD
modes accurately represent the system modes ([30]). Arnoldi
schemes in [31] and [32] are related to DMD via a similarity
transformation ([7]), and in theory can also estimate Koopman
modes; however, they are less robust than DMD, and hence not
suitable for practical implementations. These Arnoldi schemes
have been applied towards power systems ([33], [34]), but
DMD has only been recently applied in [8].

III. DYNAMIC MODE DECOMPOSITION

DMD is inherently an ensemble spectral analysis technique,
and therefore modal identification is done using a multi-
signal approach. As shall be shown, a key advantage in the
application of DMD to power systems is its computational
speed. DMD is known to be able to extract coherent structures
in either simulated or real measurements (even with noise)
and associate them to single oscillation frequencies ([30]),
i.e. modes. DMD requires uniformly sampled measurements;



for this, N + 1 samples are gathered for a time-window of
interest, T[t−T,t], with a sample interval of ∆t and duration of
T . Therefore, T = N∆t. Given M signals, each with N + 1
samples, these values are cast into a matrix,

Y =
[
y0 y1 . . . yn . . . yN

]
∈ CM×(N+1). (4)

For generality, and from the perspective of the DMD algo-
rithm, these measurements could be complex valued. Next, Y
is separated into two matrices:
Y0 =

[
y0 . . . yN−1

]
, and Y1 =

[
y1 . . . yN

]
.

By assuming an approximately constant linear mapping, A,
consecutive measurement samples can be related by,

yn ≈ Ayn−1, for n = [1, N ], n ∈ Z, (5)

for a time duration, T , and hence Y1 and Y0 are related by,

Y1 = AY0 + ρηT
N , (6)

where ρηT
N is the residual error. The work in [29] and [30]

elaborate on the orthogonality of ρ to the measurement space
spanned by the columns of Y0. Based on the projection
theorem, this is the smallest possible error ([29]).

In what follows, the key steps of the DMD algorithm are
described. For a detailed discussion on the theory of DMD,
linear algebra manipulations and the estimation of DMD
modes for nonlinear systems, please refer to articles [7], [30],
[28], and [35]. DMD consists of two parts – (i) estimation
of discrete-time eigenvalues, and (ii) estimation of complex
amplitudes of respective modes. Algorithm 1 summarizes the
steps of DMD. In part I, R discrete-time eigenvalues are
calculated, followed by the calculation of the corresponding R
complex amplitudes in part II. These values are encapsulated
in µ and α respectively. These discrete-time eigenvalues can
be conveniently converted to continuous-time eigenvalues:
σi + jωi = λi = ln(µj)/∆t = (ln |µj | + j∠µj)/∆t for

Algorithm 1 Dynamic Mode Decomposition

Data: Y =
[
y0 y1 . . . yN

]
∈ CM×(N+1)

Result: U, E, α, and µ

1: Y0 ←
[
y0 . . . yN−1

]
, and Y1 ←

[
y1 . . . yN

]
Part I Estimation of discrete-time eigenvalues

2: UΣVH ← economy size SVD of Y0, and retain R non-
zero singular values

3: Ã← UHY1VΣ−1

4: EDµE−1 ← eigen decomposition of Ã
5: µ← diag(Dµ)

Part II Estimation of complex amplitudes
6: α← E−1ΣVH

[1,∗]

Notes:
(i) U,V ∈ CM×R, UHU = I, and VHV = I

(ii) Ã ∈ CR×R

Figure 1: Spatial visualization of 1696 measurement
locations from an interconnected power grid, with 5
locations labeled

−π < ∠µj ≤ π. Additionally, matrix E with columns er, and
matrix U with rows um, are by-products that help reconstruct
measurement m at time point n. It is given by a summation of
the individual modes weighted by their respective amplitudes,
then mapped to R hidden states by the eigenvectors of Ã, and
then mapped via the appropriate left singular vector to the mth

signal. Similar to (2), each reconstructed signal is,

ŷm[n] = uT
m

R∑
r=1

erαrµ
n
r =

R∑
r=1

ŷ(m,r)[n], (7a)

where ŷ(m,r)[n] = uT
merαrµ

n
r , (7b)

is the contribution of each mode. This allows for efficient
spatio-temporal slicing and dicing of an array of measurement
signals. Since DMD is inherently an ensemble spectral analysis
technique, modal analysis is carried out using a multi-signal
approach. Although not detailed in this paper, DMD utilizes a
least-squares optimization approach ([35]). Hence, the optimal
values of µ and α are the closed-form expressions shown
in Algorithm 1 that help minimize the least-squares residue
between all the measurement and reconstructed signals.

IV. APPLICATION OF DMD
In the past, small sets of transient contingencies were sim-

ulated and analyzed. With advances in the modeling of power
system dynamics, focus has been shifting towards running
longer simulations and many more transient contingencies.
Distributed computing has also enabled the running multiple
simulations in parallel. The industry seems to be quickly
approaching a point where running a large set of transient
contingencies is no longer a bottleneck, but interpreting their
simulations results is. Power system engineers also face the
task of deciphering all the data that is available from sensors
such as Phasor Measurement Units (PMUs), Frequency Dis-
turbance Recorders (FDRs) ([36]), and Digital Fault Recorders
(DFRs). Modal analysis via DMD fits this need.

A. Synthetic Measurement Data, via Simulation

To emulate data from actual PMUs, a transient stability
simulation of an industry-grade dynamic model of a large-
scale interconnected power grid was used to collect synthetic



frequency measurements at 1696 high-voltage locations span-
ning a wide-area (but a small portion of the total buses in the
system). All load models were augmented with a Gaussian
load noise model (7% standard deviation) with a low pass filter
(τ = 0.5 s) to capture the effect of random load fluctuations, so
as to mimic the aggregate effect of load variations that occur in
an actual power system. In this simulation a large perturbation
was introduced through the loss of a large generation unit at
t = 1 s, and transient behavior was recorded for 30 s. Figure
2 shows the spread of frequencies at 1696 locations during
the fault, with one signal highlighted. Frequency and voltage
magnitude measurements were gathered at 30 samples/second,
which is equivalent to 6.21 Mbits/s, if they were to be available
as a stream. With reference to DAE models for transient
stability analysis, and participation factor analysis [9], voltage
magnitude and frequency quantities could be thought of as
different outputs of the same underlying dynamic system.
Hence, time-series voltage magnitude and frequency signals
are expected to contain the same modal constituents, but with
different coefficients.

For generality, this set of measurements is treated as a
streaming data source input. The DMD algorithm was im-
plemented in a software code, which accepts this data stream.
A trailing T -second time-window concept was utilized, such
that the output data reflects the modal content in the prior T
seconds of measurements. This time-window was advanced
with a step-size, tstep. The idea of sliding time-windows is
common for speech recognition, where the signal content
is time-varying, and has also been utilized in power sys-
tems literature ([37]). The power system measurements being
processed in this example originate from a non-linear time-
varying system. Therefore, frequency-domain information is
expected to vary with time. The choice of the window length,
T is application specific ([38]) as it presents a trade-off
between resolutions in time-domain or frequency-domain. For
power system measurements, this value of T can be tuned,
based on historical knowledge of the approximate system
eigenvalues. In the example being presented here, T = 7 s,
and tstep = 1

30 s were chosen. However, these are suggested
values, which could be modified based on the application or
preference. This significant overlap between consecutive time-
windows and the fast solution of DMD is hoped to allow for
continual short-interval mode tracking.

Figure 2: Frequency measurements from 1696 locations

B. Results from One Time-Window

As discussed in Section III, DMD is capable of analyzing
multiple signals simultaneously. In this example, all 3392
measurement signals (frequency and voltage magnitude) were
analyzed concurrently for each time-window. The dominant 3
modes for the time-window T[4.0,11.0] are summarized in Table
I. Similar to the observations in [8], DMD is able to perform
well and provides meaningful results. For this time-window
and others (and with other data sets), DMD consistently
yielded very small least squares normalized residues on the
order of 10−10 or lower. In this particular time-window, modes
1 and 2 have low damping ratios, while the damping ratio for
mode 3 is significantly greater. Only mode 3 can be considered
to be well damped.

C. Tracking the Dominant Mode using a Moving Window

The DMD analysis is repeated using a moving window
implementation on the simulated streaming voltage magnitude
and frequency measurements. Using a trailing time-window
of T = 7 s, and tstep = 1

30 s. Once again, these are user-
defined. The choice of tstep = 1

30 s is the smallest possible
value, and is intentional so that variation in the dominant ac
mode can be studied. Figure 3 shows the variation of the
dominant ac mode with time, i.e., the points at t = 11.2
s are calculated based on a trailing time window T[4.2,11.2].
Since tstep = 1

30 s, there are 31 data points in this plot. This
can be compared to the dominant ac mode in Table I, which
is about 0.19886 Hz, and shows small variations over time,
as expected due to system non-linearity and DMD estimation
error from using a finite time-window. Experiments were also
conducted by using only frequency or only voltage magnitude
data, and the observed variations were found to an order of
magnitude higher. In the case of the dominant mode, it was
relatively easy to track visually, or a nearest-neighbor type
of algorithm could be implemented for automated tracking.
Nevertheless, the variation in modes is relatively smooth. Note,
the above discussion was on the dominant oscillation mode
in the entire system. However during dynamic behavior, the
dominant mode in one part of the system might differ from
another location in the same system. In other words, the
amplitude (or the energy content) of a particular mode can
vary based on the location, the fault, and the operating point.

D. Spatio-Temporal Results from Frequency and Voltage Mag-
nitude Data

Since both frequency and voltage magnitude data have been
utilized for this analysis, each location is associated with two

TABLE I: Modal analysis of frequency and voltage
magnitude measurements during time-window T[4.0,11.0].

Modes Oscillation frequency (Hz) Damping ratio

1 0.19886 0.074679
2 0.31007 0.027697
3 0.40178 0.46923



Figure 3: Variation in oscillation frequency and damping
ratio of the dominant ac mode, using a trailing time window,
T = 7 s, and tstep = 1

30 s, and input data at 30 samples/s.
Standard deviation of oscillation frequency: 0.00764 Hz.
Standard deviation of damping ratio: 0.0324.

types of signals. From a geographic viewpoint, one could
imagine two layers of data associated with the footprint of the
system being studied. Modal estimation with DMD has been
done simultaneously for all these signals, which expresses
each layer of measurement data as a location-wise sum of
several modes. If there are R modes, then that corresponds to
R mode layers for each layer of measurement data. Table II
shows the temporal evolution of two such mode layers, which
corresponds to modes 1 and 2 from Table I. The area shown
corresponds to that from Figure 1, and is able to capture
wide-area effects of individual modes. For confidentiality
reasons the absolute values of amplitudes have been excluded;
however, the snapshots show modal amplitudes varying in time
and space. These holistic contour animations provide a more

intuitive approach than looking at numerical values of modal
amplitudes and phase shifts.

The series of snapshots shown in Table II is from an anima-
tion of the mode amplitudes during time-window T[4.0,11.0].
Recall from Equation 7b that the amplitude of rth mode
present in mth signal is uT

merαr. As seen here, the spatio-
temporal variation of each mode can be observed. The spatial
variation of mode amplitudes is gradual in the frequency layer.
From a system-level view, there is a phase difference between
the two modes, and this is expected due to the presence
of many dynamic components in the system. The contour
animations associated with the voltage magnitude layer are
more interesting, as they exhibit the inter-area manifestation
of modes, but also show localized effects. The spatial variation
in modes is more pronounced in the voltage layer, which ties in
well with the idea that voltage dynamics are often in localized
clusters.

From the perspective of the frequency layer, mode 1 is seen
to divide the system into two areas, and mode 2 divides the
system into 3 areas. These are usually known as inter-area
modes. However for each of these modes, the corresponding
voltage layer exhibits different spatial areas. So if an inter-
area mode is observed between a particular set of areas in the
frequency layer, the areas observed in the voltage layer can
be different. This indicates that the amplitude and the phase
of a particular mode can be different between the frequency
and voltage magnitude signals measured at the same location.

Modal-content-based criteria could be used to automatically
monitor all the signals being analyzed by DMD. This can
enable selective saving of transient stability results that violate
said criteria, and hence reduce data storage needs. Similar

TABLE II: Spatial visualization of mode amplitudes during time-window T[4.0,11.0] (modes 1 and 2 are listed in Table I).

Mode Signal t = 4.0 s t = 4.1 s t = 4.3 s t = 4.6 s t = 5.1 s t = 5.9 s t = 7.2 s t = 9.3 s

1 f

|V |

2 f

|V |

Relative Scale: negative zero positive



criteria could be used in an on-line setting to intelligently
sieve out the most relevant modes or signals, which can then
be used in control rooms. Animation (as illustrated in Table
II) could be created and destroyed on-the-fly to aid in system-
wide situational awareness of dynamic trajectories.

V. DISCUSSION AND SUMMARY

The software code was also evaluated by varying the number
of measurement signals and the number of samples in each
time-window. CPU timing tests with the current code showed
that the DMD computation time scaled at about O(N3) with
respect to the number of samples in the time-window of
interest, and at about O(M) with respect to the number of
measurement channels, similar to as published in [39]. This is
even true when M � N . Figure 4 shows a plot of this trend.
Given the computational complexity and absolute time needed
to solve, DMD is efficient for modal identification, especially
in being able to accommodate a large number of measurement
channels. Results from the previous sections show that DMD is
able to track the dominant oscillation mode during a transient
contingency.

DMD is inherently an ensemble analysis method, and it
is computationally cheap to incorporate a large number of
measurement channels. Some publications suggest using a
subset of the measurement channels that have been pre-
selected based on historical information or heuristics for fast
modal estimation using methods such as Prony, MPM, or
ERA. However, in the case of DMD, using many measurement
channels is actually useful as it helps with noisy data, and
also mitigates data quality issues (as shown in [39]). If one
of many signals being used is “bad”, then the effect on
modal estimation would be minimal, as opposed to, if data is
corrupted in one out of a small set of pre-selected measurement
channels. Another reason for using multiple signals is to be
able to process them in parallel and detect instability in a small
number of signals during their initial unstable growth.

As stated in [39], having measurement channels that capture
a full phase cycle is helpful for DMD’s performance. Although
not shown in this paper, augmenting frequency with voltage

Figure 4: Computation times using a 2.7 GHz dual core
processor vs. variations in number of signals, M , and
number of time points, N .

magnitude signals did help in reducing the rapid change
in modal estimation, as compared to only using frequency
data. Using a longer time window could have also helped
in averaging out the modes and reducing the fluctuations
further. For example, in [8], time-windows of about 20− 40 s
are utilized. However, using longer time window in DMD
is computationally more expensive (O(N3)) than using extra
measurement signals (O(M)). So instead of using longer time-
windows, multiple measurement channels of different data
types should be used in DMD analyses. The result is better
precision, even though a smaller time-window is used, and fast
modal estimation. By using a smaller time-window, the time-
varying estimates of a dominant mode are less influenced by
averaging over a longer time-window. Also, using multiple
channels can help maintain the quality of modal estimates;
therefore, using smaller time-windows would be sufficient.

PMUs and PMU-like devices are being installed in large
numbers, and infrastructure is being commissioned to collect
and store this data. Since the computational cost associated
with DMD is low, it may be of interest to process multiple
channels of measurements at data concentrator locations or
control centers, and then broadcast holistic measures such as
oscillation frequencies, damping ratios, and respective ampli-
tudes. In this way, the circulation of raw measurement data
would be reduced, and wide-area closed loop control schemes
could be designed by incorporating the above-mentioned holis-
tic metrics. Although the algorithm presented in this paper
assumes a central processing style, it is possible to implement
DMD in a distributed and incremental manner, which will be
explored in future research.

As an example, DMD is able to process 3392 measurement
channels with 211 time points in 0.185 s. This implies that
DMD can be repeated with new time points as soon as the
previous DMD calculation is completed. Once a particular
time-window of measurement channels has been gathered at a
data concentrator, the algorithmic latency of a moving window
DMD analysis would be 0.185 s in an on-line setting. The
efficiency of DMD can also aid in fast off-line processing
of results from multiple transient contingency simulations.
Intelligent ways of adaptively down-sampling and/or varying
the length of the time-window are topics of practical interest
that could make DMD more precise and robust.

There are other tools which automatically calculate and
monitor the modal content of a collection of power system
measurements. DMD is hoped to be a good addition to the
list of such tools, and to be especially useful for simultaneous
analysis of thousands of measurement channels. DMD might
also prove useful in the case of a series of transient contingen-
cies, or possibly a cascading failure scenario. Since the “ring-
down” duration will be relatively short for each consecutive
fault, DMD could be able to accommodate short-time interval
data (from many channels), and still give good modal estimates
in a fast computation time. With DMD, it is no longer
computationally prohibitive to do modal analysis for a large
set of a measurement data. In conclusion, this paper exhibits
DMD’s strength in accommodating a large set of measurement



channels, while using different types of measurement channels
to strengthen the precision of calculations. This allow a smaller
time-window to be used, and hence results in low latency
calculations.
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