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Announcements

• Read Chapter 7 from the book

• Homework 2 is due on Thursday September 26
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ECEN 615 Sparsity Limitations

• Sparse matrices arise in many areas, and can have 

domain specific structures

– Symmetric matrices

– Structurally symmetric matrices

– Tridiagnonal matrices

– Banded matrices

• ECEN 615 is focused on problems that arise in the 

electric power; it is not a general sparse matrix 

course
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Full Matrix versus Sparse Matrix 
Storage

• Full matrices are easily stored in arrays with just one 

variable needed to store each value since the value’s 

row and column are implicitly available from its matrix 

position

• With sparse matrices two or three elements are needed 

to store each value

– The zero values are not explicitly stored

– The value itself, its row number and its column number

– Storage can be reduced by storing all the elements in a 

particular row or column together

• Because large matrices are often quite sparse, the total 

storage is still substantially reduced
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Sparse Matrix Usage Can 
Determine the Optimal Storage

• How a sparse matrix is used can determine the best 

storage scheme to use

– Row versus column access; does structure change 

• Is the matrix essentially used only once? That is, its 

structure and values are assumed new each time used 

• Is the matrix structure constant, with its values changed

– This would be common in the N-R power flow, in which the  

structure doesn’t change each iteration, but its values do

• Is the matrix structure and values constant, with just the 

b vector in Ax=b changing

– Quite common in transient stability solutions
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Numerical Precision

• Required numerical precision determines type of 

variables used to represent numbers

– Specified as number of bytes, and whether signed or not

• For Integers

– One byte is either 0 to 255 or -128 to 127

– Two bytes is either smallint (-32,768 to 32,767) or word (0 to 

65,536)

– Four bytes is either Integer (-2,147,483,648 to 2,147,483,647) 

or Cardinal (0 to 4,294,967,295)

• This is usually sufficient for power system row/column numbers

– Eight bytes (Int64) if four bytes is not enough
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Numerical Precision, cont.

• For floating point values using choice is between 

four bytes (single precision) or eight bytes (double 

precision); extended precision has ten bytes

– Single precision allows for 6 to 7 significant digits

– Double precision allows for 15 to 17 significant digits

– Extended allows for about 18 significant digits

– More bytes requires more storage

– Computational impacts depend on the underlying device; 

on PCs there isn’t much impact; GPUs can be 3 to 8 

times slower for double precision

• For most power problems double precision is best
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General Sparse Matrix Storage

• A general approach for storing a sparse matrix would be 

using three vectors, each dimensioned to number of 

elements
– AA: Stores the values, usually in power system analysis as double precision 

values (8 bytes)

– JR: Stores the row number; for power problems usually as an integer (4 

bytes)

– JC: Stores the column number, again as an integer

• If unsorted then both row and column are needed

• New elements could easily be added, but costly to delete

• Unordered approach doesn’t make for good computation since 

elements used next computationally aren’t necessarily nearby

• Usually ordered, either by row or column 
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Sparse Storage Example

• Assume

• Then 

5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

− 
 −
 =

− 
 
− − − 

A

 

 

 

5 4 4 3 3 2 4 3 2 10

1 1 2 2 3 3 4 4 4 4

1 4 2 4 3 4 1 2 3 4

= − − − − − −

=

=

AA

JR

JC

Note, this example is a symmetric matrix, but the technique 

is general
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Compressed Sparse Row Storage

• If elements are ordered (as was case for previous 

example) storage can be further reduced by noting we 

do not need to continually store each row number

• A common method for storing sparse matrices is 

known as the Compressed Sparse Row (CSR) format

– Values are stored row by row

– Has three vector arrays:

• AA: Stores the values as before

• JA: Stores the column index (done by JC in previous 

example)

• IA: Stores the pointer to the index of the beginning of each 

row 



10

CSR Format Example

• Assume as before

• Then

5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

− 
 −
 =

− 
 
− − − 

A

 

 

 

5 4 4 3 3 2 4 3 2 10

1 4 2 4 3 4 1 2 3 4

1 3 5 7

= − − − − − −

=

=

AA

JA

IA
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CSR Comments

• The CSR format reduces the storage requirements by 

taking advantage of needing only one element per row

• The CSR format has good advantages for computation 

when using cache since (as we shall see) during matrix 

operations we are often sequentially going through the 

vectors

• An alternative approach is Compressed Sparse Column 

(CSC), which identical, except storing the values by 

column

• It is difficult to add values.  

• We’ll mostly use the linked list approach here, which 

makes matrix manipulation simpler 



12

Linked Lists: Classes and Objects

• In explaining the linked list approach it is helpful 

to use the concepts from object oriented 

programming (OOP) of classes and objects

– Approach can also be used in non-OOP programming

• OOP can be thought of as a collection of objects 

interacting with each other

• Objects are instances of classes.

• Classes define the object fields and actions 

(methods)

• We’ll define a class called sparse matrix element, 

with fields of value, column and next; each sparse 

matrix element is then an object of this class
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Linked Lists

• A linked list is just a group of objects that represent 

a sequence

– We’ll used linked lists to represent a row or column of a 

sparse matrix

• Each linked list has a head pointer that points to the 

first object in the list

– For our sparse matrices the head pointer will be a vector 

of the rows or columns

Column a 

Value a 

Next a

Column b 

Value b 

Next b

Column c 

Value c 

Nil

Head
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Sparse Matrix Storage with 
Linked Lists by Rows

• If we have an n by n matrix, setup a class called 

TSparseElement with fields column, value and next

• Setup an n-dimensional head pointer vector that points 

to the first element in each row

• Each nonzero corresponds to an object of class (type) 

TSparseElement

• We do not need to store the row number since it is 

given by the object’s row

• For power system sparse matrices, which have nonzero 

diagonals, we also have a header pointer vector that 

points to the diagonal objects 
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Linked Lists, cont.

• Linked lists can be singly linked, which means they 

just go in one direction (to the next element), or 

doubly linked, pointing to both the previous and next 

elements

– Mostly we’ll just need singularly linked lists

• With linked lists it is quite easy to add new elements 

to the list.  This can be done in sorted order just by 

going down the list until the desired point is reached, 

then changing the next pointer for the previous 

element to the new element, and for the new element 

to the next element (for a singly linked list)
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On Board Example

• Draw the data structures for the matrix

5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

− 
 −
 =

− 
 
− − − 

A
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Example Pascal Code for 
Writing a Sparse Matrix

Procedure TSparMat.SMWriteMatlab(Var ft : Text; variableName : String; digits,rod : Integer; 

ignoreZero : Boolean; local_MinValue : Double); 

Var j : Integer;

p1 : TMatEle;

Begin

For j := 1 to n Do Begin

p1 := Row(j).Head;

While p1 <> nil Do Begin

If (not IgnoreZero) or (abs(p1.value) > local_MinValue) Then Begin

If variableName <> '' Then Writeln(ft,variableName+'(',(j),',',(p1.col),')=',p1.value:digits:rod,';')

Else Writeln(ft,j:5,' ',p1.col:5,' ',p1.value:digits:rod);

End;

p1 := p1.next;

End;

End;

End;

17
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Sparse Working Row

• Before showing a sparse LU factorization it is useful to 

introduce the concept of a working row full vector

• This is useful because sometimes we need direct access 

to a particular value in a row

• The working row approach is to define a vector of 

dimension n and set all the values to zero

• We can then load a sparse row into the vector, with 

computation equal to the number of elements in the row

• We can then unload the sparse row from the vector by 

storing the new values in the linked list, and resetting 

the vector values we changed to zero
18
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Loading the Sparse Working Row

Procedure TSparMat.LoadSWRbyCol(rowJ : Integer; var SWR : PDVectorList); 

Var p1 : TMatEle;

Begin

p1 := rowHead[rowJ];

While p1 <> nil Do Begin

SWR[p1.col] := p1.value;

p1 := p1.next;

End;

End;

19
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Unloading the Sparse Working Row

Procedure TSParMat.UnLoadSWRbyCol(rowJ : Integer; var SWR : 

PDVectorList); 

Var p1 : TMatEle;

Begin

p1 := rowHead[rowJ];

While p1 <> nil Do Begin

p1.value := SWR[p1.col];

SWR[p1.col] := 0;

p1 := p1.next;

End;

End;

Note, there is no need to explicitly zero out all the elements each 

iteration since 1) most are still zero and 2) doing so would make it 

O(n2). The above code efficiently zeros out just the values that have 

changed.  20
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Doing an LU Factorization of a 
Sparse Matrix with Linked Lists

• Now we can show how to do an LU factorization 

of a sparse matrix stored using linked lists

• We will assume the head pointers are in the vector 

RowHead, and the diagonals in RowDiag

• Recall this was the approach for the full matrix
For i := 2 to n Do Begin  // This is the row being processed

For j := 1 to i-1 Do Begin  // Rows subtracted from row i

A[i,j] = A[i,j]/A[j,j]  // This is the scaling 

For k := j+1 to n Do Begin  // Go through each column in i

A[i,k] = A[i,k] - A[i,j]*A[j,k]

End;

End;

End;
21
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Sparse Factorization

• Note, if you know about fills, we will get to that 

shortly; if you don’t know don’t worry about it yet

• We’ll just be dealing with structurally symmetric 

matrices (incidence-symmetric)

• We’ll assume the row linked lists are ordered by 

column; we’ll show how this can be done quickly later

• We will again sequentially going through the rows, 

starting with row 2, going to row n

For i := 2 to n Do Begin  // This is the row being processed

22
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Sparse Factorization, cont.

• The next step is to go down row i, up to but not 

including the diagonal element

• We’ll be modifying the elements in row i, so we 

need to load them into the working row vector

• Key sparsity insight is in doing the below code we 

only need to consider the non-zeros in A[i,j]; for a 

full matrix the code is
For j := 1 to i-1 Do Begin  // Rows subtracted from row 

A[i,j] = A[i,j]/A[j,j]  // This is the scaling

For k := j+1 to n Do Begin  // Go through each column in i

A[i,k] = A[i,k] - A[i,j]*A[j,k]

End;

23
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Sparse Factorization, cont.

For i := 1 to n Do Begin   // Start at 1, but nothing to do in first row

LoadSWRbyCol(i,SWR);   // Load Sparse Working Row }

p2 := rowHead[i]

While p2 <> rowDiag[i] Do Begin    // This is doing the j loop

p1 := rowDiag[p2.col];

SWR[p2.col] := SWR[p2.col] / p1.value;

p1 := p1.next;

While p1 <> nil Do Begin   // Go to the end of the row

SWR[p1.col] := SWR[p1.col] - SWR[p2.col] *p1.value;

p1 := p1.next;

End;

p2 := p2.next;

End;

UnloadSWRByCol(i,SWR);

End; 24
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Sparse Factorization Example

• Believe it or not, that is all there is to it!  The 

factorization code itself is quite simple.

• However, there are a few issues we’ll get to in a 

second.  But first an example

• Notice with this example there is nothing to do with 

rows 1, 2 and 3 since there is nothing before the diag

(p2 will be equal to the diag for the first three rows)

5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

− 
 −
 =

− 
 
− − − 

A

25
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Sparse Factorization Example, Cont.

• Doing factorization with i=4

– Row 4 is full so initially p2= A[4,1] // column 1

– SWR = [-4 -3 -2 10]

– p1= A[1,1]

– SWR[1] = -4/A[1,1] = -4/5 = -0.8

– p1 goes to A[1,4]

– SWR[4] = 10 – SWR[p2.col]*p1.value = 10 – (-0.8)*-4=6.8

– p1 = nil; go to next col

– p2 =A[4,2]  // column 2

– P1 = A[2,2]

– SWR[2]  = -3/A[2,2]= -3/4 = -0.75

26

That is, the next element in row 1
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Sparse Factorization Example, Cont.

– p1 goes to A[2,4]  // p2=A[4,2]

– SWR[4] = 6.8 – SWR[p2.col]*p1.value = 6.8 – (-0.75)*-3=4.55

– p1 = nil; go to next col

– p2 =A[4,3]  // column 3

– p1 = A[3,3]

– SWR[3]  = -/A[2,2]= -2/3 = -0.667

– p1 goes to A[3,4]  // p2 = A[4,3]

– SWR[4] = 4.55 – SWR[p2.col]*p1.value 

= 4.55 – (-0.667)*-2=3.2167

– Unload the SWR = [-0.8  -0.75  -0.667  3.2167]

– p2 = A[4,4] = diag so done

27

The next element in row 2

The next element in row 3
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Sparse Factorization Examples, Cont.

• For a second example, again consider the same 

system, except with the nodes renumbered

. . . .

5 0 0 4

0 4 0 3

0 0 3 2

0 8 0 75 0 6667 3 2167

− 
 −
 =

− 
 
− − − 

FactoredA

10 4 3 2

4 5 0 0

3 0 4 0

2 0 0 3

− − − 
 −
 =
− 
 
− 

B

28
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Sparse Factorization Examples, Cont.

• With i=2, load SWR = [-4 5 0 0]

– p2 = B[2,1]

– p1 = B[1,1]

– SWR[1]=-4/p1.value=-4/10 = -0.4

– p1 = B[1,2]

– SWR[2]=5 – (-0.4)*(-4) = 1.6

– p1 = B[1,3]

– SWR[3]= 0 – (-0.4)*(-3) = -1.2

– p1 = B[1,4]

– SWR[4]=0 – (-0.4)*(-2) = -0.8

– p2=p2.next=diag so done

– UnloadSWR and we have a problem!

10 4 3 2

4 5 0 0

3 0 4 0

2 0 0 3

− − − 
 −
 =
− 
 
− 

B

29

There are no elements in

row 2 for columns 3 and 4!
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Fills

• When doing a factorization of a sparse matrix some 

values that were originally zero can become 

nonzero during the factorization process

• These new values are called “fills” 

(some call them fill-ins)

• For a structurally symmetric matrix the fill occurs 

for both the element and its transpose value (i.e., 

Aij and Aji)

• How many fills are required depends on how the 

matrix is ordered

– For a power system case this depends on the bus ordering

30
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Fills

• There are two key issues associated with fills

– Adding the fills

– Ordering the matrix elements (buses in our case) to reduce the 

number of fills

• The amount of computation required to factor a sparse 

matrix depends upon the number of nonzeros in the 

original matrix, and the number of fills added

• How the matrix is ordered can have a dramatic impact 

on the number of fills, and hence the required 

computation 

• Usually a matrix cannot be ordered to totally eliminate 

fills
31
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Fill Examples

4

1 2 3

1

2 3 4

5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

− 
 −
 =

− 
 
− − − 

A

10 4 3 2

4 5 0 0

3 0 4 0

2 0 0 3

− − − 
 −
 =
− 
 
− 

B

No Fills Required Fills Required (matrix becomes full)  
32
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Example: 7 by 7 Matrix

• Consider the 7 x 7 matrix A with the zero-nonzero 

pattern shown in (a): of the 49 possible elements 

there are only 31 that are nonzero

• If elimination proceeds with the given ordering, all 

but two of the 18 originally zero entries, will fill in, 

as seen in (b)
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1 2 3 4 5 6 7

1 X X X X X X

2 X X X X X

3 X X X X X

4 X X X

5 X X X X

6 X X X X X

7 X X X

(a) The original zero-

nonzero structure

1 2 3 4 5 6 7

1 X X X X X X

2 X X X F F X X

3 X X X F F X X

4 X F F X X F F

5 X F F X X X F

6 X X X F X X F

7 X X F F F X

(b) The post- elimination  

zero nonzero pattern

r
c

r
c

Example: 7 by 7 Matrix Structure
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• We next reorder the rows and the columns of A so as to 

result in the pattern shown in (c)

• For this reordering, we obtain no fills, as shown in the 

table of factors given in (d )

• In this way, we preserve the original sparsity of A

Example: 7 by 7 Matrix Reordering
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4 5 1 6 7 3 2

4 X X X

5 X X X X

1 X X X X X X

6 X X X X X

7 X X X

3 X X X X X

2 X X X X X

( c) The reordered system

4 5 1 6 7 3 2

4 X X X

5 X X X X

1 X X X X X X

6 X X X X X

7 X X X

3 X X X X X

2 X X X X X

(d) The post- elimination 

reordered system

r
c

r
c

Example: 7 by 7 Matrix Reordered 

Structure
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• For structurally symmetric matrices we can gain good 

insights into the problem by examining the graph-

theoretic interpretation of the triangularization

process

• This assumption involves essentially no loss in 

generality since if  Aij  0 but Aji = 0 we simply treat 

Aji as a nonzero element with the value 0; in this way, 

we ensure that  A has a symmetric structure

• We term a matrix as structurally symmetric whenever 

it has a symmetric zero-nonzero pattern

Fills for Structurally Symmetric 

Matrices
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• We make use of graph theoretic notions to develop a 

practical reordering scheme for sparse systems

• We associate a graph G with the zero-nonzero 

structure of the n by n matrix A

• We construct the graph  G associated with the matrix 

A as follows:

i. G has n nodes corresponding to the dimension n of the 

square matrix: node  i represents both  the column i and the 

row i of A;

ii. a branch (k, j) connecting nodes k and j exists if and only if 

the element Ajk (and, by structural symmetry, Akj) is nonzero; 

the self loop corresponding to Akk is not represented

Graph Associated with A
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Example: 5 by 5 System

• Suppose that A has the zero-nonzero pattern 

1 2 3 4 5

1 X X X X

2 X X X

3 X X X

4 X X X X

5 X X X

r
c

39
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Example: 5 by 5 System

• Then, the associated graph G is 

1 2

34

5

40
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• The graph-theoretic interpretation of the elimination of 

the node (bus) j is as follows

• The deletion of the node j involves all its incident 

branches (k, j) and ( j, k) connected to j, kj

• In the pre-elimination graph of the eliminated node j, 

the elimination of the branches ( j, k) and (l, j) results 

in the addition of the new branch (k, l), if one does not 

already exist

Graph-Theoretic Interpretation
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• We eliminate the Bus (Node) 1 variable with the 

resulting zero-nonzero pattern as shown the array

Bordered by the broken 

lines with on the new 

graph new G1

1 2 3 4 5

1 X X X X

2 X X X F F

3 X X X

4 X F X X X

5 X F X X

r
c

Example: 5 by 5 System
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Graph G1

• We obtain the graph G1 from G by removing Bus 1 

with the new added branches (2, 4) and (2, 5)

corresponding to the fills

5 2

4 3

new branch

Example: 5 by 5 System
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• The elimination of Bus 2 results in the 

submatrix shown below 

3 4 5

3 X X F

4 X X X

5 F X X

r
c

Example: 5 by 5 System
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with the corresponding graph G2        

• The elimination of Bus 3 yields

5

4 3

4 5

4 X X

5 X X

r
c

Example: 5 by 5 System
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with the corresponding graph G3

• Finally, upon Bus 4 we have

• and the corresponding G4 is simply the point

5

5 X

5

4

5

r
c

Example: 5 by 5 System
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• We next examine how we may reorder the rows and 

columns of A to preserve its sparsity, i.e., to 

minimize the number of fills 

• Eventually we’ll introduce an algorithm to try to 

minimize the fills

• This is motivated by revisiting the graph G

1 2

34

5

Reording the Rows/Columns
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• To minimize the number of fills, i.e., the number of 

new branches in G, we eliminate first the node 

which upon deletion introduces the least number of 

new branches

• This is node 5 and upon deletion no new branches 

are added and the resulting graph G1 is

1

4

2

3

Reording Motivating Example
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• The structure of G1 is such that any one of the 

remaining nodes may be chosen as the next node to be 

eliminated since each of the 4 remaining nodes 

introduces a new branch after its elimination

• We arbitrarily pick node 1 and we obtain the graph G2

• We continue with the next three choices arbitrary, 

resulting in no new fills

2

34

new branch

Reording Motivating Example
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• We may relabel the original graph in such a way that 

the label of the node refers to the order in which it is 

eliminated

• Thus we renumber the nodes as shown below

1
2 3

45

Reording Motivating Example



51

• Clearly, relabeling the nodes corresponds to 

reordering the rows and columns of A

• For the reordered system, the zero-nonzero 

pattern of A is

1 2 3 4 5

1 X X X

2 X X X X

3 X X X

4 X X X

5 X X X X

r
c

Reording Motivating Example
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and of its table of factors has the zero-nonzero 

structure

Compared to the original ordering scheme, the new 

ordering scheme has saved us 4 fill-ins 

1 2 3 4 5

1 X X X

2 X X X X

3 X X X F

4 X X X

5 X X F X X

r
c

Reording Motivating Example
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• The associated graph of the structurally symmetric 

matrix A is useful in gaining insights into the 

factorization process

• We make the following observations

• If A is originally structurally symmetric, then it 

remains so in all the steps of the factorization;

• A good ordering scheme is independent of the 

values of the elements of A and depends only on 

its the zero-nonzero pattern

General Findings



54

Permutation Vectors

• Often the matrix itself is not physically reorded when it 

is renumbered.  Rather we can make use of what is 

known as a permutation vector, and (if needed) an 

inverse permutation vector

• These vectors implement the following functions

– inew = New(iold)

– iold = Old(inew)

• For an n by n matrix the permutation vector is an n-

sized integer vector

• If ordered lists are needed, then the linked lists do need 

to be reordered, but this can be done quickly

54
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Permutation Vectors, cont.

• For the previous five bus example, in which the buses 

are to be reordered to (5,1,2,3,4), the permutation 

vector would be rowPerm=[5,1,2,3,4]

– That is, the first row to consider is row 5, then row 1, …

• If needed, the inverse permutation vector is 

invRowPerm = [2,3,4,5,1]

– That is, with the reordering the first element is in position 2, 

the second element in position 2, ….

• Hence i = invRowPerm[rowPerm[i]]

55
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Sparse Factorization using a 
Permutation Vector

For i := 1 to n Do Begin 

k = rowPerm[i];  // this is the only change, except using k

LoadSWRbyCol(k,SWR);   // Load Sparse Working Row }

p2 := rowHead[k];  // the row needs to be ordered correctly!

While p2 <> rowDiag[k] Do Begin 

p1 := rowDiag[p2.col];

SWR[p2.col] := SWR[p2.col] / p1.value;

p1 := p1.next;

While p1 <> nil Do Begin   // Go to the end of the row

SWR[p1.col] := SWR[p1.col] - SWR[p2.col] *p1.value;

p1 := p1.next;

End;

p2 := p2.next;

End;

UnloadSWRByCol(k,SWR);

End;
56
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Sparse Matrix Reordering

• There is no computationally efficient way to optimally 

reorder a sparse matrix; however there are very 

efficient algorithms to greatly reduce the fills

• Two steps here: 1) order the matrix, 2) add fills

• A quite common algorithm combines ordering the 

matrix with adding the fills

• The two methods discussed here were presented in the 

1963 paper by Sato and Tinney from BPA; known as 

Tinney Scheme 1 and Tinney Scheme 2 since they are 

more explicitly described in Tinney’s 1967 paper

– 1967 paper also has Tinney Scheme 3 (briefly covered)

57
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Tinney Scheme 1

• Easy to describe, but not really used since the number 

of fills, while reduced, is still quite high

• In graph theory the degree (or valence or valency) of a 

vertex is the number of edges incident to the vertex

• Order the nodes (buses) by the number of incident 

branches (i.e., its valence) those with the lowest 

valence are ordered first

– Nodes with just one incident line result in no new fills

– Obviously in a large system many nodes will have the same 

number of incident branches; ties can be handled arbitrarily

58
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Tinney Scheme 1, Cont.

• Once the nodes are reordered, the fills are added

– Common approach to ties is to take the lower numbered node first

• A shortcoming of this method is as the fills are added 

the valence of the adjacent nodes changes

1 2 3

4 5
6

78
Node Valence

1 1

2 1

3 1

4 4

5 3

6 3

7 2

8 3Tinney 1 order is 1,2,3,7,5,6,8,4

Number of new branches is 2 (4-8, 4-6)
59


