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Announcements

• Read Chapter 3

• Homework 2 is due on Thursday September 19
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Sinusoidal Steady-State 
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Here we consider the 

application to balanced, 

sinusoidal conditions
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Simplifying Using d

• Define

• Hence

• These algebraic 

equations can be 

written as complex 

equations 
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If we know d, then

we can easily relate

the phase to the dq

values!
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Summary So Far

• The model as developed so far has been derived 

using the following assumptions

– The stator has three coils in a balanced configuration, 

spaced 120 electrical degrees apart

– Rotor has four coils in a balanced configuration located 

90 electrical degrees apart

– Relationship between the flux linkages and currents must 

reflect a conservative coupling field

– The relationships between the flux linkages and currents 

must be independent of shaft when expressed in the dq0 

coordinate system 
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Assuming a Linear Magnetic Circuit

• From the book we have 
Note that the 

first three 

matrices depend 

upon shaft; the 

rotor self-

inductance 

matrix Lrr is 

independent of 

shaft
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Assuming a Linear Magnetic Circuit

• With this assumption of a linear magnetic circuit 

then we can write 
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Conversion to dq0 for Angle 
Independence 
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Conversion to dq0 for Angle 
Independence 
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For a round rotor

machine LB is small

and hence Lmd is 

close to Lmq. For a

salient pole machine

Lmd is substantially

larger



9

Convert to Normalized at f = s

• Convert to per unit, and assume frequency of s

• Then define new per unit reactance variables
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Key Simulation Parameters

• The key parameters that occur in most models can 

then be defined as 
2
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These values

will be used in

all the 

synchronous

machine models

In a salient rotor machine

Xmq is small so Xq = X'q;

also X1q is small so 

T'q0 is small
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Key Simulation Parameters
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Example Xd/Xq Ratios for a 
WECC Case
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Example X'q/Xq Ratios for a 
WECC Case

About 75% are Clearly Salient Pole Machines!
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Internal Variables

• Define the following variables, which are quite 

important in subsequent models

Hence E'q and E'd are 

scaled flux linkages

and Efd is the scaled

field voltage
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Dynamic Model Development

• In developing the dynamic model not all of the 

currents and fluxes are independent

– In this formulation only seven out of fourteen are 

independent

• Approach is to eliminate the rotor currents, 

retaining the terminal currents (Id, Iq, I0) for 

matching the network boundary conditions
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Rotor Currents

• Use new variables to solve for the rotor currents
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Rotor Currents
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Final Complete Model

These first three equations

define what are known 

as the stator transients; we

will shortly approximate 

them as algebraic constraints
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Final Complete Model
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Single-Machine Steady-State

The key variable

we need to 

determine the 

initial conditions

is actually d, which

doesn't appear 

explicitly in these

equations!
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Field Current

• The field current, Ifd, is defined in steady-state as

• However, what is usually used in transient stability 

simulations for the field current is the product 

• So the value of Xmd is not needed

/fd fd mdI E X
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Single-Machine Steady-State

• Previous derivation was done assuming a linear 

magnetic circuit

• We'll consider the nonlinear magnetic circuit later but 

will first do the steady-state condition (3.6)

• In steady-state the speed is constant (equal to s), d is 

constant, and all the derivatives are zero

• Initial values are determined from the terminal 

conditions: voltage magnitude, voltage angle, real and 

reactive power injection 
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Determining d without Saturation

• In order to get the initial values for the variables we 

need to determine d

• We'll eventually consider two approaches: the simple 

one when there is no saturation, and then later a 

general approach for models with saturation

• To derive the simple approach we have

d s d d q q

q s q q d d

V R I E X I

V R I E X I

   

    
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Determining d without Saturation

• In terms of the terminal values
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D-q Reference Frame 

• Machine voltage and current are “transformed” into 

the d-q reference frame using the rotor angle, d

• Terminal voltage in network (power flow) reference frame 

are VS = Vt = Vr +jVi
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dr
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d d
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A Steady-State Example

• Assume a generator is supplying 1.0 pu real power at 

0.95 pf lagging into an infinite bus at 1.0 pu voltage 

through the below network.  Generator pu values are 

Rs=0, Xd=2.1, Xq=2.0, X'd=0.3, X'q=0.5   

Infinite Bus

slack

X12 = 0.20

X13 = 0.10 X23 = 0.20

XTR = 0.10

Transient Stability Data Not Transferred

Bus 1 Bus 2

Bus 3

Angle =   0.00 DegAngle =   6.59 Deg

Bus 4

Delta (Deg): 52.08

P: 100.00 MW

Speed (Hz):  60.00

Eqp: 1.130

 1.095 pu

Edp: 0.533
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A Steady-State Example, cont.

• First determine the current out of the generator from 

the initial conditions, then the terminal voltage

1.0526 18.20 1 0.3288I j    

  1.0 0 0.22 1.0526 18.20

1.0946 11.59 1.0723 0.220

sV j

j

    

    
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A Steady-State Example, cont. 

• We can then get the initial angle and initial dq values

  1.0946 11.59 2.0 1.052 18.2 2.814 52.1

52.1

E j

d

       

  

0.7889 0.6146 1.0723 0.7107

0.6146 0.7889 0.220 0.8326

d

q

V

V

       
        
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0.7889 0.6146 1.000 0.9909

0.6146 0.7889 0.3287 0.3553

d

q

I

I

       
        

      

( /2 ) 1.0945 (11.6 90 52.1)

1.0945 49.5 0.710 0.832

j j

d q sV jV V e e

j

  d     
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A Steady-State Example, cont

• The initial state variable are determined by solving 

with the differential equations equal to zero.

  '

'

'

0.8326 0.3 0.9909 1.1299

0.7107 (0.5)(0.3553) 0.5330

( ) 1.1299 (2.1 0.3)(0.9909) 2.9135

q q s q d d

d d s d q q

fd q d d d

E V R I X I

E V R I X I

E E X X I

     

     

      
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Single Machine, Infinite Bus 
System (SMIB)

Usually infinite bus

angle, vs, is zero

etc

de d ed

de d ep

se s e

X X X

R R R

   

 

 

This example can be simplified by combining machine

values with line values 
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Introduce New Constants

 

s

s
s

sst

H
T

T








1

2





 “Transient Speed”

Mechanical time 

constant

A small parameter

We are ignoring the exciter and governor for now; 

they will be covered in detail later
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Stator Flux Differential Equations

 

 

1 sin

1 cos

de
se d t qe s vs

s

qe
se q t de s vs

s

oe
se o

d
R I V

dt T

d
R I V

dt T

d
R I

dt

 
   d 

 
   d 




 
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 

 
     

 


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Elimination of Stator Transients

• If we assume the stator flux equations are much faster 

than the remaining equations, then letting  go to zero 

allows us to replace the differential equations with 

algebraic equations

 

 

0 sin

0 cos

0

se d qe s vs

se q de s vs

se o

R I V

R I V

R I

 d 

 d 

   

   



This assumption 

might not be valid if 

we are considering

faster dynamics on 

other devices (such as 

converter dynamics)
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Impact on Studies

Image Source: P. Kundur, Power System Stability and Control, EPRI, McGraw-Hill, 1994

Stator transients are not usually considered 

in transient stability studies
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Machine Variable Summary

• Three fast dynamic states, now eliminated

• Seven not so fast dynamic states

• Eight algebraic states

, ,de qe oe  

1 2, , , , ,q d d q t fdE E E  d  

, , , , , , ,d q o d q t ed eqI I I V V V  

We'll get

to the 

exciter

and 

governor

shortly

 

 

2 2

sin

cos

t d q

d e d ep q s vs

q e q ep d s vs

V V V

V R I X I V

V R I X I V

d 

d 

 

   
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Network Expressions

 
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V R I X I V

d 

d 

   

   

These two equations can be written as one complex 

equation.

        

vsj
s

j
qdepe

j
qd

eV

ejIIjXRejVV



dd



  22
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Machine Variable Summary

Three fast dynamic states, now eliminated

, ,de qe oe  

Seven not so fast dynamic states

1 2, , , , ,q d d q t fdE E E  d  

Eight algebraic states

, , , , , , ,d q o d q t ed eqI I I V V V  

We'll get

to the 

exciter

and 

governor

shortly
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Stator Flux Expressions

 
 

 
 

 
 

 
 

1

2

d s d d
de de d q d

d s d s

q s q q

qe qe q d q

q s q s

oe oe o

X X X X
X I E

X X X X

X X X X
X I E

X X X X

X I

 

 



   
    

  

   
    

  

 
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Subtransient Algebraic Circuit

 
 

 
 

 

 
 

 
 

 

2

2
1

q s q q

d q q d q

q s q s

jd s d d
q d

d s d s

X X X X
E X X I

X X X X

X X X X
j E e

X X X X

d 






    
      
    

    
   

    
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Network Reference Frame

• In transient stability the initial generator values are 

set from a power flow solution, which has the 

terminal voltage and power injection

– Current injection is just conjugate of Power/Voltage

• These values are on the network reference frame, 

with the angle given by the slack bus angle

• Voltages at bus j converted to d-q reference by

, ,   or   j r j i j j Dj QjV V jV V V jV   

, ,

, ,

sin cos

cos sin

d j r j

q j i j

V V

V V

d d

d d

    
    
    

, ,

, ,

sin cos

cos sin

r j d j

i j q j

V V

V V

d d

d d

    
    

    
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Network Reference Frame

• Issue of calculating d, which is key, will be 

considered for each model

• Starting point is the per unit stator voltages 

• Sometimes the scaling of the flux by the speed is 

neglected, but this can have a major solution 

impact

• In per unit the initial speed is unity

     d q d qEquivalently, V +jV +jI

d q s d

q d s q

s q d

V R I

V R I

R I j

 

 

  

  

 

   
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Simplified Machine Models

• Often more simplified models were used to 

represent synchronous machines

• These simplifications are becoming much less 

common but they are still used in some situations 

and can be helpful for understanding generator 

behavior

• Next several slides go through how these models 

can be simplified, then we'll cover the standard 

industrial models
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Two-Axis Model

• If we assume the damper winding dynamics are 

sufficiently fast, then T"do and T"qo go to zero, so there 

is an integral manifold for their dynamic states

 

 
1

2

d q d s d

q d q s q

E X X I

E X X I





   

    



44

Two-Axis Model

 

 

 
  

 

1
1

12

0

            

Which can be simplified to 

d
do d q d s d

q
do q d d

d d
d d d s d q fd

d s

q
do q d d d fd

d
T E X X I

dt

dE
T E X X

dt

X X
I X X I E E

X X

dE
T E X X I E

dt






       


      

  
      

   


      

Note this entire 

term becomes zero
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Two-Axis Model

 

 

 
  

 

2
2

22

0

                

Which can simplified to 

q
qo q d q s q

d
qo d q q

q q
q q q s q d

q s

d
qo d q q q

d
T E X X I

dt

dE
T E X X

dt

X X
I X X I E

X X

dE
T E I X X

dt






       


      

 
 

     
  
 


     

Likewise this entire 

term becomes zero
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Two-Axis Model

     vssdqepqdes VEIXXIRR d  sin0

     vssqdepdqes VEIXXIRR d  cos0
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Two-Axis Model

     

     

 

 

2 2

0 sin

0 cos \

sin

cos

s e d q ep q d s vs

s e q d ep d q s vs

d e d ep q s vs

q e q ep d s vs

t d q

R R I X X I E V

R R I X X I E V

V R I X I V

V R I X I V

V V V

d 

d 

d 

d 

       

       

   

   

 

No saturation

effects are

included with 

this model

 

 

 
2

q
do q d d d fd

d
qo d q q q

s

M d d q q q d d q FW
s

dE
T E X X I E

dt

dE
T E X X I

dt

d

dt

H d
T E I E I X X I I T

dt

d
 






      


     

 

        
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Example (Used for All Models)

• Below example will be used with all models.  Assume 

a 100 MVA base, with gen supplying 1.0+j0.3286 

power into infinite bus with unity voltage through 

network impedance of j0.22

– Gives current of 1.0 - j0.3286 =  1.0526-18.19 

– Generator terminal voltage of 1.072+j0.22 = 1.0946 11.59 

Infinite Bus

slack

X12 = 0.20

X13 = 0.10 X23 = 0.20

XTR = 0.10

Bus 1 Bus 2

Bus 3

  0.00 Deg  6.59 Deg

Bus 4

1.0463 pu

 11.59 Deg

1.0000 pu

1.0946 pu -100.00 MW

-32.86 Mvar

100.00 MW

57.24 Mvar

Sign convention 

on current is out 

of the generator is 

positive
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Two-Axis Example

• For the two-axis model assume H = 3.0 per unit-

seconds,  Rs=0, Xd = 2.1, Xq = 2.0, X'd= 0.3, X'q = 0.5, 

T'do = 7.0, T'qo = 0.75 per unit using the 100 MVA base. 

• Solving we get

  1.0946 11.59 2.0 1.0526 18.19 2.81 52.1

52.1

E j

d

       

  

0.7889 0.6146 1.0723 0.7107

0.6146 0.7889 0.220 0.8326

d

q

V

V

       
        
      

0.7889 0.6146 1.000 0.9909

0.6146 0.7889 0.3287 0.3553

d

q

I

I

       
        

      
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Two-Axis Example

• And

• Assume a fault at bus 3 at time t=1.0, cleared by 

opening both lines into bus 3 at time t=1.1 seconds

  0.8326 0.3 0.9909 1.130

0.7107 (0.5)(0.3553) 0.533

1.1299 (2.1 0.3)(0.9909) 2.913

q

d

fd

E

E

E

   

   

   

Saved as case B4_TwoAxis
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Two-Axis Example

• PowerWorld allows the gen states to be easily stored

Graph shows

variation in

Ed’
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Flux Decay Model

• If we assume T'qo is sufficiently fast that its 

equation becomes an algebraic constraint

 

 

 

   

 

d
qo d q q q

q

do q d d d fd

s

M d d q q q d d q FW

s

M q q q d q q q d d q FW

M q q q d d q FW

dE
T E X X I 0

dt

dE
T E X X I E

dt

d

dt

2H d
T E I E I X X I I T

dt

T X X I I E I X X I I T

T E I X X I I T

d
 






      


      

 

        

         

     

This model  

assumes that

Ed’ stays constant. 

In previous example

Tq0’=0.75
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Rotor Angle Sensitivity to Tqop

• Graph shows variation in the rotor angle as Tqop is 

varied, showing the flux decay is the same as Tqop = 0
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Classical Model

dt
s

dd
  

 
0

0

0

2
sins

M vs FW
d ep

H d E V
T T

dt X X


d 




   

 

This is a pendulum model

The classical

model had 

been widely

used because

it is simple.

At best it 

can only

approximate

a very short

term response.

It is no longer

common.
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Classical Model Justification

• It is difficult to justify.  One approach would be to 

go from the flux decay model and assume

• Or go back to the two-axis model and assume

0 0

q d do

q

X X T

E E d

   

   

( const const)

q d do qo

q d

X X T T

E E

       

  
2 20 0

0
0 1

0tan 2

q d

q

d

E E E

E

E
d 

   

 
   


 
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Classical Model Response

• Rotor angle variation for same fault as before

Notice that 

even though

the rotor

angle is 

quite different, 

its initial increase

(of about 24

degrees) is 

similar.  However

there is no

damping. 

Saved as case B4_GENCLS


