
ECEN 615
Methods of Electric Power

Systems Analysis

Lecture 11: Sparse Vector Methods,

Contingency Analysis, Sensitivity Methods

Prof. Tom Overbye

Dept. of Electrical and Computer Engineering

Texas A&M University

overbye@tamu.edu

mailto:overbye@tamu.edu

1

Announcements

• Read Chapter 7 from the book (the term reliability

is now used instead of security)

• Homework 3 should be done before the exam put

does not need to be turned in

• First exam is Tuesday October 8 in class; closed

book, closed notes. One 8.5 by 11 inch note sheet

and calculators allowed

– The exam from 2018 has been posted

2

Sparse Vector Methods

• Sparse vector methods are useful for cases in

solving Ax=b in which

– A is sparse

– b is sparse

– only certain elements of x are needed

• In these right circumstances sparse vector methods

can result in extremely fast solutions!

• A common example is to find selected elements of

the inverse of A, such as diagonal elements.

2

3

Sparse Vector Methods

• Often times multiple solutions with varying b

values are required

– A only needs to be factored once, with its factored form

used many times

• Key reference is

W.F. Tinney, V. Brandwajn, and S.M. Chan, "Sparse Vector

Methods", IEEE Transactions on Power Apparatus and

Systems, vol. PAS-104, no. 2, February 1985, pp. 295-300

3

4

Sparse Vector Methods Introduced

• Assume we are solving Ax = b with A factored so

we solve LUx = b by first doing the forward

substitution to solve Ly = b and then the backward

substitution to solve Ux = y

• A key insight: In the solution of Ly = b if b is

sparse then only certain columns of L are required,

and y is often sparse

• =

y1

.

.

.

yn

b1

.

.

.

bn

4

=x

5

Fast Forward Substitution

• If b is sparse, then the fast forward (FF)

substitution takes advantage of the fact that we

only need certain columns of L

• We define {FF} as the set of columns of L needed

for the solution of Ly = b; this is equal to the

nonzero elements of y

• In general the solution of Ux = y will NOT result in

x being a sparse vector

• However, oftentimes only certain elements of x are

desired

– E.g., the sensitivity of the flows on certain lines to a

change in generation at a single bus; or a diagonal of A-1
5

6

Fast Backward Substitution

• In the case in which only certain elements of x are

desired, then we only need to use certain rows in U

below the desired elements of x; define these columns

as {FB}

• This is known as a fast backward substitution (FB),

which is used to replace the standard backward

substitution
x1

x2

.

.

.

xn

y1

y2

.

.

.

yn

6

=x

7

Factorization Paths

• We observe that

– {FF} depends on the sparsity structures of L and b

– {FB} depends on the sparsity structures of U and x

• The idea of the factorization path provides a

systematic way to construct these sets

• A factorization path is an ordered set of nodes

associated with the structure of the matrix

• For FF the factorization path provides an ordered

list of the columns of L

• For FB the factorization path provides an ordered

list of the rows of U
7

8

Factorization Path

• The factorization path (f.p.) is traversed in the

forward direction for FF and in the reverse direction

for FB

– Factorization paths should be built using doubly linked

lists

• A singleton vector is a vector with just one nonzero

element. If this value is equal to one then it is a unit

vector as well..

8

9

Factorization Path, cont.

• With a sparse matrix structure ordered based upon

the permutation vector order the path for a singleton

with a now zero at position arow is build using the

following code:

p1:= rowDiag[arow];

While p1 <> nil Do Begin

AddToPath(p1.col); // Setup a doubly linked list!

p1 := rowDiag[p1.col].next;

End;

9

10

Path Table and Path Graph

• The factorization path table is a vector that tells the

next element in the factorization path for each row

in the matrix

• The factorization path graph shows a pictorial view

of the path table

10

11

20 Bus Example

11

12

20 Bus Example

12

Only showing L

13

20 Bus Example

node k p(k) node k p(k)

13

14

20 Bus Example

• Suppose we wish to evaluate a sparse vector with the

nonzero elements for components 2, 6, 7, and 12

• From the path table or path graph, we obtain the

following

• This gives the following path elements

→2 {2, 11, 12, 15, 17, 18, 19, 20}f.p.

→6 {6, 16, 17, 18, 19, 20}f.p.

→7 {7, 14, 17, 18, 19, 20}f.p.

→12 2f.p. already contained in that for node

{ }7,14, 6,16, 2,11,12,15,17,18,19, 20

14

15

20 Bus Example

Full path Desired subset

15

16

Remarks

• Since various permutations may be used to order a

particular path subgroup, a precedence rule is

introduced to make the ordering valid

• This involves some sorting operation; for the FF, the

order value of a node cannot be computed until the

order values of all lower numbered nodes are defined

• The order of processing branches above a junction node

is arbitrary; for each branch, however, the precedence

rule in force applies

• We can paraphrase this statement as: perform first

everything above the junction point using the

precedence ordering in each branch
16

17

Nine Bus Example

• We next consider the example of the 9-bus network

shown below

• For the given ordering, the sparsity structure leads to

the following path graph and the table

17

18

Nine Bus Example

k p(k)

1

2

3

4

5

6

7

8

9

4

3

6

7

7

8

8

9

0

18

19

Nine Bus Example

• Suppose next we are interested in the value

determination of only component, node 1

– That is, calculating a diagonal of the inverse of the

original matrix

• FF involves going down the path from 1-4-7-8-9,

and the FB requires coming back up, 9-8-7-4-1

• This example makes evident the savings in

operations we may realize from the effective use of

a sparse vector scheme

19

20

Nine Bus Example

20

21

Example Application

• In ongoing geomagnetic disturbance modeling work we

need to determine the sensitivity of the results to the

assumed substation grounding resistance

– Since the induced voltages are quasi-dc, the network is

modeled by setting up the conductance matrix G = R-1

– Initial work focused on calculating the driving point

impedance values, which required knowing diagonal elements

of R, which were easily calculated with sparse vector methods

– But Rii depends on the assumed grounding values are nearby

substations, so we need to determine this impact as well; so

we’d like small blocks of the inverse of R, which will require

using the unions of the factorization paths to get some Rij

21

22

Ordering for Shorter Paths

• The paper 1990 IEEE Transactions on Power Systems

paper “Partitioned Sparse A-1 Methods” (by Alvarado,

Yu and Betancourt) they introduce ordering methods

for decreasing the length of the factorization paths

• Factorization paths also

indicate the degree to which

parallel processing could be

used in solving Ax = b by

LU factorization

– Operations in the various paths

could be performed in parallel

Image from Alvarado 1990 paper
22

23

Computation with Complex and
Blocked Matrices

• In the previous analysis we have implicitly

assumed that the values involved were real

numbers (stored as singles or doubles in memory)

• Nothing in the previous analysis prevents using

other data structures for analysis

– Complex numbers would be needed if factoring the bus

admittance matrix (Ybus); this is directly supported in

some programming languages and can be easily added to

others; all values are complex numbers

– Two by two block matrices are common for power flow

Jacobian factorization; for this we use 2 by 2 blocks in

the matrices and 2 by 1 blocks in the vectors

23

24

2 by 2 Block Matrix Computation

• By treating our data structures as two by two

blocks, we reduce the computation required to add

fills substantially

– Half the number of rows, and four times fewer elements

• Overall computation is reduced somewhat since we

have four times fewer elements, but we do have

more computation per element

24

25

2 by 2 Block Matrix Example

• In the backward substitution we had

For i := n downto 1 Do Begin

k = rowPerm[i];

p1 := rowDiag[k].next;

While p1 <> nil Do Begin

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

bvector[k] := bvector[k]/rowDiag[k].value;

End;

25

26

2 by 2 Block Matrix Example

• We replace the scalar bvector entries by objects with

fields .r and .i (for the real and imaginary parts) and we

replace the p1.value field with four fields .ul, .ur, .ll

and .lr corresponding to the upper left, upper right,

lower left and lower right values.

• The first multiply goes from

bvector[k] = bvector[k] – p1.value*bvector[p1.col]

to
bvector[k].r bvector[k].r p1.ul p1.ur bvector[p1.col].r

bvector[k].i bvector[k].i p1.ll p1.lr bvector[p1.col].i

       
= −        

       

26

27

2 by 2 Block Matrix Example

• The second numeric calculation changes from
bvector[k] := bvector[k]/rowDiag[k].value

• To

• Which can be coded by directly doing the inverse as

bvector[k].r bvector[k].r rowDiag[k].lr -rowDiag[k].ur bvector[p1.col].r

bvector[k].i bvector[k].i -rowDiag[k].ll rowDiag[k].ul bvector[p1.col].idet

with

det=rowDiag[k].ul rowDiag[k].

1       
= −        

       

 lr - rowDiag[k].ll rowDiag[k].ur

bvector[k].r bvector[k].r rowDiag[k].ul rowDiag[k].ur bvector[p1.col].r

bvector[k].i bvector[k].i rowDiag[k].ll rowDiag[k].lr bvector[p1.col].i

1−

       
= −        

       

27

28

Sparse Matrix and Vector Method
Summary

• Previous slides have presented sparse matrix and

sparse vector methods commonly used in power

system and some circuit analysis applications

• These methods are widely used, and have the

ability to substantially speed up power system

computations

• They will be applied as necessary throughout the

remainder of the course

• We’ll now move on to sensitivity analysis with a

quick introduction of contingency analysis

28

29

Contingency Analysis

• Contingency analysis is the process of checking the

impact of statistically likely contingencies

– Example contingencies include the loss of a generator, the loss

of a transmission line or the loss of all transmission lines in a

common corridor

– Statistically likely contingencies can be quite involved, and

might include automatic or operator actions, such as switching

load

• Reliable power system operation requires that the

system be able to operate with no unacceptable

violations even when these contingencies occur

– N-1 reliable operation considers the loss of any single element

29

30

Contingency Analysis

• Of course this process can be automated with the usual

approach of first defining a contingency set, and then

sequentially applying the contingencies and checking

for violations

– This process can naturally be done in parallel

– Contingency sets can get quite large, especially if one

considers N-2 (outages of two elements) or N-1-1 (initial

outage, followed by adjustment, then second outage

• The assumption is usually most contingencies will not

cause problems, so screening methods can be used to

quickly eliminate many contingencies

– We’ll cover these later
30

31

Contingency Analysis in
PowerWorld

• Automated using the Contingency Analysis tool

31

32

Power System Control and
Sensitivities

• A major issue with power system operation is the

limited capacity of the transmission system

– lines/transformers have limits (usually thermal)

– no direct way of controlling flow down a transmission line

(e.g., there are no valves to close to limit flow)

– open transmission system access associated with industry

restructuring is stressing the system in new ways

• We need to indirectly control transmission line flow by

changing the generator outputs

• Similar control issues with voltage

32

33

Indirect Transmission Line Control

• What we would like to determine is how a change

in generation at bus k affects the power flow on a

line from bus i to bus j.

The assumption is

that the change

in generation is

absorbed by the

slack bus

33

34

Power Flow Simulation - Before

• One way to determine the impact of a generator

change is to compare a before/after power flow.

• For example below is a three bus case with an

overload

Z for all lines = j0.1

One Two

 200 MW

 100 MVR
200.0 MW

 71.0 MVR

Three 1.000 pu

 0 MW

 64 MVR

 131.9 MW

 68.1 MW 68.1 MW

124%

34

35

Power Flow Simulation - After

• Increasing the generation at bus 3 by 95 MW (and

hence decreasing it at bus 1 by a corresponding

amount), results in a 30.3 MW drop in the MW flow on

the line from bus 1 to 2, and a 64.7 MW drop

on the flow from 1 to 3.

Z for all lines = j0.1
Limit for all lines = 150 MVA

One Two

 200 MW

 100 MVR
105.0 MW

 64.3 MVR

Three
1.000 pu

 95 MW

 64 MVR

 101.6 MW

 3.4 MW 98.4 MW

 92%

100% Expressed as a

percent,

30.3/95 =32% and

64.7/95=68%

35

36

Analytic Calculation of Sensitivities

• Calculating control sensitivities by repeat power flow

solutions is tedious and would require many power

flow solutions. An alternative approach is to

analytically calculate these values

The power flow from bus i to bus j is

sin()

So We just need to get

i j i j
ij i j

ij ij

i j ij
ij

ij Gk

V V
P

X X

P
X P

 
 

  

−
 − 

 −  
 



36

37

Analytic Sensitivities

1

From the fast decoupled power flow we know

()

So to get the change in due to a change of

 generation at bus k, just set () equal to

all zeros except a minus one at position k.

0

1

0

− = 







 = −



θ B P x

θ

P x

P Bus k


 
 

 
 
 
 

37

38

Three Bus Sensitivity Example

line

bus

1
2

3

For a three bus, three line case with Z 0.1

20 10 10
20 10

10 20 10
10 20

10 10 20

Hence for a change of generation at bus 3

20 10 0 0.0333

10 20 1 0.0667

j

j





−

=

− 
−  = − → =    − 

−  

 −      
= =      − −     

Y B

3 to 1

3 to 2 2 to 1

0.0667 0
Then P 0.667 pu

0.1

P 0.333 pu P 0.333 pu


 



−
 = =

 =  =
38

39

More General Sensitivity Analysis:
Notation

• We consider a system with n buses and L lines given

by the set given by the set

– Some authors designate the slack as bus zero; an alternative

approach, that is easier to implement in cases with multiple

islands and hence slacks, is to allow any bus to be the slack,

and just set its associated equations to trivial equations just

stating that the slack bus voltage is constant

• We may denote the kth transmission line or transformer

in the system, k , as

(,),
k k k

i j@

from node to node

1 2
{ , , , }

L
L @

39

40

Notation, cont.

• We’ll denote the real power flowing on k from bus i

to bus j as ƒk
• The vector of real power flows on the L lines is:

which we simplify to

• The bus real and reactive power injection vectors are

1 2
f [, , ,]

L

T
f f f@

1 2
f [, , ,]

T

L
f f f=

1 2
p [, , ,]

T
N

p p p@

1 2
q [, , ,]

T
N

q q q@

40

41

Notation, cont.

• The series admittance of line is g +jb and we

define

• We define the LN incidence matrix

 1 2
B , , ,

L
diag b b b−@

1

2

a

a
A

a
L

T

T

T

 
 
 
 
 
  

@

The component j of ai is

nonzero whenever line i is

coincident with node j. Hence

A is quite sparse, with two

nonzeros per row

41

