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Announcements

• Read Chapter 7 from the book (the term reliability 

is now used instead of security)

• Homework 3 should be done before the exam put 

does not need to be turned in

• First exam is Tuesday October 8 in class; closed 

book, closed notes.  One 8.5 by 11 inch note sheet 

and calculators allowed

– The exam from 2018 has been posted 
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Sparse Vector Methods

• Sparse vector methods are useful for cases in 

solving Ax=b in which

– A is sparse

– b is sparse

– only certain elements of x are needed

• In these right circumstances sparse vector methods 

can result in extremely fast solutions!

• A common example is to find selected elements of 

the inverse of A, such as diagonal elements.  
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Sparse Vector Methods

• Often times multiple solutions with varying b

values are required

– A only needs to be factored once, with its factored form 

used many times 

• Key reference is 

W.F. Tinney, V. Brandwajn, and S.M. Chan, "Sparse Vector 

Methods", IEEE Transactions on Power Apparatus and 

Systems, vol. PAS-104, no. 2, February 1985, pp. 295-300
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Sparse Vector Methods Introduced

• Assume we are solving Ax = b with A factored so 

we solve LUx = b by first doing the forward 

substitution to solve Ly = b and then the backward 

substitution to solve Ux = y

• A key insight: In the solution of Ly = b if b is 

sparse then only certain columns of L are required, 

and y is often sparse 
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Fast Forward Substitution

• If b is sparse, then the fast forward (FF) 

substitution takes advantage of the fact that we 

only need certain columns of L

• We define {FF} as the set of columns of L needed 

for the solution of Ly = b; this is equal to the 

nonzero elements of y

• In general the solution of Ux = y will NOT result in 

x being a sparse vector 

• However, oftentimes only certain elements of x are 

desired

– E.g., the sensitivity of the flows on certain lines to a 

change in generation at a single bus; or a diagonal of A-1
5
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Fast Backward Substitution

• In the case in which only certain elements of x are 

desired, then we only need to use certain rows in U

below the desired elements of x; define these columns 

as {FB}

• This is known as a fast backward substitution (FB), 

which is used to replace the standard backward 

substitution
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Factorization Paths

• We observe that 

– {FF} depends on the sparsity structures of L and b

– {FB} depends on the sparsity structures of U and x

• The idea of the factorization path provides a 

systematic way to construct these sets

• A factorization path is an ordered set of nodes 

associated with the structure of the matrix

• For FF the factorization path provides an ordered 

list of the columns of L

• For FB the factorization path provides an ordered 

list of the rows of U
7
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Factorization Path

• The factorization path (f.p.) is traversed in the 

forward direction for FF and in the reverse direction 

for FB

– Factorization paths should be built using doubly linked 

lists       

• A singleton vector is a vector with just one nonzero 

element.  If this value is equal to one then it is a unit 

vector as well..
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Factorization Path, cont.

• With a sparse matrix structure ordered based upon 

the permutation vector order the path for a singleton 

with  a now zero at position arow is build using the 

following code:

p1:= rowDiag[arow]; 

While p1 <> nil Do Begin 

AddToPath(p1.col);   // Setup a doubly linked list!

p1 := rowDiag[p1.col].next;  

End;
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Path Table and Path Graph

• The factorization path table is a vector that tells the 

next element in the factorization path for each row 

in the matrix

• The factorization path graph shows a pictorial view 

of the path table 
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20 Bus Example
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20 Bus Example

12

Only showing L
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20 Bus Example

node k p(k) node k p(k)
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20 Bus Example

• Suppose we wish to evaluate a sparse vector with the 

nonzero elements for components 2, 6, 7, and 12

• From the path table or path graph, we obtain the 

following

• This gives the following path elements

→2 {2, 11, 12, 15, 17, 18, 19, 20}f.p. 

→6 {6, 16, 17, 18, 19, 20}f.p. 

→7 {7, 14, 17, 18, 19, 20}f.p. 

→12  2f.p. already contained in that for node

{ }7,14, 6,16, 2,11,12,15,17,18,19, 20
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20 Bus Example

Full path Desired subset
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Remarks

• Since various permutations may be used to order a 

particular path subgroup, a precedence rule is 

introduced to make the ordering valid

• This involves some sorting operation; for the FF, the 

order value of a node cannot be computed until the 

order values of all lower numbered nodes are defined

• The order of processing branches above a junction node 

is arbitrary; for each branch, however, the precedence 

rule in force applies

• We can paraphrase this statement as: perform first 

everything above the junction point using the 

precedence ordering in each branch
16
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Nine Bus Example

• We next consider the example of the 9-bus network 

shown below

• For the given ordering, the sparsity structure leads to 

the following path graph and the table
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Nine Bus Example
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Nine Bus Example

• Suppose next we are interested in the value 

determination of only component, node 1

– That is, calculating a diagonal of the inverse of the 

original matrix

• FF involves going down the path from 1-4-7-8-9, 

and the FB requires coming back up, 9-8-7-4-1 

• This example makes evident the savings in 

operations we may realize from the effective use of 

a sparse vector scheme
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Nine Bus Example
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Example Application

• In ongoing geomagnetic disturbance modeling work we 

need to determine the sensitivity of the results to the 

assumed substation grounding resistance

– Since the induced voltages are quasi-dc, the network is 

modeled by setting up the conductance matrix G = R-1

– Initial work focused on calculating the driving point 

impedance values, which required knowing diagonal elements 

of R, which were easily calculated with sparse vector methods

– But Rii depends on the assumed grounding values are nearby 

substations, so we need to determine this impact as well; so 

we’d like small blocks of the inverse of R, which will require 

using the unions of the factorization paths to get some Rij
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Ordering for Shorter Paths

• The paper 1990 IEEE Transactions on Power Systems 

paper “Partitioned Sparse A-1 Methods” (by Alvarado, 

Yu and Betancourt) they introduce ordering methods 

for decreasing the length of the factorization paths

• Factorization paths also

indicate the degree to which

parallel processing could be

used in solving Ax = b by 

LU factorization

– Operations in the various paths

could be performed in parallel

Image from Alvarado 1990 paper
22
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Computation with Complex and 
Blocked Matrices

• In the previous analysis we have implicitly 

assumed that the values involved were real 

numbers (stored as singles or doubles in memory)

• Nothing in the previous analysis prevents using 

other data structures for analysis

– Complex numbers would be needed if factoring the bus 

admittance matrix (Ybus); this is directly supported in 

some programming languages and can be easily added to 

others; all values are complex numbers

– Two by two block matrices are common for power flow 

Jacobian factorization; for this we use 2 by 2 blocks in 

the matrices and 2 by 1 blocks in the vectors
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2 by 2 Block Matrix Computation

• By treating our data structures as two by two 

blocks, we reduce the computation required to add 

fills substantially

– Half the number of rows, and four times fewer elements

• Overall computation is reduced somewhat since we 

have four times fewer elements, but we do have 

more computation per element
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2 by 2 Block Matrix Example

• In the backward substitution we had

For i := n downto 1 Do Begin 

k = rowPerm[i]; 

p1 := rowDiag[k].next;  

While p1 <> nil Do Begin 

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

bvector[k] := bvector[k]/rowDiag[k].value;

End;
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2 by 2 Block Matrix Example

• We replace the scalar bvector entries by objects with 

fields .r and .i (for the real and imaginary parts) and we 

replace the p1.value field with four fields .ul, .ur, .ll

and .lr corresponding to the upper left, upper right, 

lower left and lower right values.  

• The first multiply goes from

bvector[k] = bvector[k] – p1.value*bvector[p1.col]

to 
bvector[k].r bvector[k].r p1.ul p1.ur bvector[p1.col].r

bvector[k].i bvector[k].i p1.ll p1.lr bvector[p1.col].i

       
= −        

       
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2 by 2 Block Matrix Example

• The second numeric calculation changes from
bvector[k] := bvector[k]/rowDiag[k].value

• To 

• Which can be coded by directly doing the inverse as

bvector[k].r bvector[k].r rowDiag[k].lr -rowDiag[k].ur bvector[p1.col].r

bvector[k].i bvector[k].i -rowDiag[k].ll rowDiag[k].ul bvector[p1.col].idet

with

det=rowDiag[k].ul rowDiag[k].

1       
= −        

       

 lr - rowDiag[k].ll rowDiag[k].ur

bvector[k].r bvector[k].r rowDiag[k].ul rowDiag[k].ur bvector[p1.col].r

bvector[k].i bvector[k].i rowDiag[k].ll rowDiag[k].lr bvector[p1.col].i

1−

       
= −        

       
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Sparse Matrix and Vector Method 
Summary

• Previous slides have presented sparse matrix and 

sparse vector methods commonly used in power 

system and some circuit analysis applications

• These methods are widely used, and have the 

ability to substantially speed up power system 

computations

• They will be applied as necessary throughout the 

remainder of the course

• We’ll now move on to sensitivity analysis with a 

quick introduction of contingency analysis
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Contingency Analysis

• Contingency analysis is the process of checking the 

impact of statistically likely contingencies

– Example contingencies include the loss of a generator, the loss 

of a transmission line or the loss of all transmission lines in a 

common corridor

– Statistically likely contingencies can be quite involved, and 

might include automatic or operator actions, such as switching 

load

• Reliable power system operation requires that the 

system be able to operate with no unacceptable 

violations even when these contingencies occur

– N-1 reliable operation considers the loss of any single element

29
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Contingency Analysis

• Of course this process can be automated with the usual 

approach of first defining a contingency set, and then 

sequentially applying the contingencies and checking 

for violations

– This process can naturally be done in parallel

– Contingency sets can get quite large, especially if one 

considers N-2 (outages of two elements) or N-1-1 (initial 

outage, followed by adjustment, then second outage

• The assumption is usually most contingencies will not 

cause problems, so screening methods can be used to 

quickly eliminate many contingencies

– We’ll cover these later
30
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Contingency Analysis in 
PowerWorld

• Automated using the Contingency Analysis tool
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Power System Control and 
Sensitivities

• A major issue with power system operation is the 

limited capacity of the transmission system

– lines/transformers have limits (usually thermal)

– no direct way of controlling flow down a transmission line 

(e.g., there are no valves to close to limit flow)

– open transmission system access associated with industry 

restructuring is stressing the system in new ways

• We need to indirectly control transmission line flow by 

changing the generator outputs

• Similar control issues with voltage

32
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Indirect Transmission Line Control

• What we would like to determine is how a change 

in generation at bus k affects the power flow on a 

line from bus i to bus j.  

The assumption is

that the change

in generation is

absorbed by the

slack bus

33
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Power Flow Simulation - Before

• One way to determine the impact of a generator 

change is to compare a before/after power flow.

• For example below is a three bus case with an 

overload

Z for all lines = j0.1

One Two

 200 MW

 100 MVR
200.0 MW

 71.0 MVR

Three 1.000 pu

   0 MW

  64 MVR

 131.9 MW

  68.1 MW   68.1 MW

124%
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Power Flow Simulation - After

• Increasing the generation at bus 3 by 95 MW (and 

hence decreasing it at bus 1 by a corresponding 

amount), results in a 30.3 MW drop in the MW flow on 

the line from bus 1 to 2, and a  64.7 MW drop

on the flow from 1 to 3.  

Z for all lines = j0.1
Limit for all lines = 150 MVA

One Two

 200 MW

 100 MVR
105.0 MW

 64.3 MVR

Three
1.000 pu

  95 MW

  64 MVR

 101.6 MW

   3.4 MW   98.4 MW

 92%

100% Expressed as a 

percent, 

30.3/95 =32% and

64.7/95=68%
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Analytic Calculation of Sensitivities

• Calculating control sensitivities by repeat power flow 

solutions is tedious and would require many power 

flow solutions.  An alternative approach is to 

analytically calculate these values

The power flow from bus i to bus j is 

sin( )

So We just need to get 

i j i j
ij i j

ij ij

i j ij
ij

ij Gk

V V
P

X X

P
X P

 
 

  

−
 − 

 −  
 


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Analytic Sensitivities

1

From the fast decoupled power flow we know

( )

So to get the change in  due to a change of

 generation at bus k, just set ( ) equal to 

all zeros except a minus one at position k.  

0

1

0

− = 







 = −



θ B P x

θ

P x

P  Bus k

 


 
 

 
 
 
 

37



38

Three Bus Sensitivity Example

line

bus

1
2

3

For a three bus, three line case with Z 0.1

20 10 10
20 10

10 20 10
10 20

10 10 20

Hence for a change of generation at bus 3

20 10 0 0.0333

10 20 1 0.0667

j

j





−

=

− 
−  = − → =    − 

−  

 −      
= =      − −     

Y B

3 to 1

3 to 2  2 to 1

0.0667 0
Then P 0.667 pu   

0.1

P 0.333 pu P 0.333 pu


 



−
 = =

 =  =
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More General Sensitivity Analysis: 
Notation

• We consider a system with n buses and L lines given 

by the set given by the set

– Some authors designate the slack as bus zero; an alternative 

approach, that is easier to implement in cases with multiple 

islands and hence slacks, is to allow any bus to be the slack, 

and just set its associated equations to trivial equations just 

stating that the slack bus voltage is constant  

• We may denote the kth transmission line or transformer 

in the system, k , as 

( , ),
k k k

i j@

from node to node

1 2
{ , , , }

L
L @
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Notation, cont.

• We’ll denote the real power flowing on k from bus i 

to bus j as ƒk
• The vector of real power flows on the L lines is:

which we simplify to 

• The bus real and reactive power injection vectors are

1 2
f [ , , , ]

L

T
f f f@

1 2
f [ , , , ]

T

L
f f f=

1 2
p [ , , , ]

T
N

p p p@

1 2
q [ , , , ]

T
N

q q q@
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Notation, cont.

• The series admittance of line is g +jb and we 

define 

• We define the LN incidence matrix

 1 2
B , , ,

L
diag b b b−@

1

2

a

a
A

a
L

T

T

T

 
 
 
 
 
  

@

The component j of ai is

nonzero whenever line i is

coincident with node j. Hence 

A is quite sparse, with two 

nonzeros per row
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