
978-1-7281-4436-8/20/$31.00 ©2020 IEEE

An Electric Power System Energy Management

Platform (EMP) Research Testbed

Ikponmwosa Idehen, Thomas Overbye

Electrical and Computer Engineering

Texas A&M University, College Station, TX, USA

{iidehen, overbye}@tamu.edu

Loren Klemesrud

Power Systems SCADA Engineer

loren3737@gmail.com

Abstract—This paper presents an overview of the

development of an Energy Management Platform (EMP)

research testbed for power system monitoring and control. In

this work, a testbed utilizes a simulator to mimic power system

operations on a synthetic network. By emulating field devices,

the simulator is used to further transmit grid data over a

supervisory control and data acquisition (SCADA) system to an

EMS software. Finally, through the design of oneline diagrams,

a node-branch layout algorithm is proposed to develop

interface substation displays for controlling the power system

networks being used in the testbed.

Index Terms— energy management system, SCADA,

substation layout, oneline, testbed, distributed network protocol

I. INTRODUCTION

The rapidly-evolving electric grid is increasing the need

for integrated platforms which aid strategic grid monitoring

and control. Increasing proliferation of renewables, changing

market dynamics, intricate grid control dynamics, and

increased customer participation in demand management

programs in large interconnected systems lead to complex

power system operations. The deployment of modern sensing

and control technologies, in addition to analog devices,

however enables wide-area health monitoring and operator

interaction with the grid [1-6].

An effective translation of research methods onto actual

field operations will require simulation testbeds which

validate these techniques using similar grid complexities and

end-to-end monitoring and control tools. Here, dynamic

simulations for different scenarios of a power system in

operation are used to provide grid measurements in addition

to individual component status and topology information to a

grid-monitoring system. Through information gathering and

processing, user-initiated test commands can then be sent to

control the grid. The simulation of synthetic grids, infused

with dynamic component models [7-9] on the testbed affords

the opportunity to obtain realistic, real-time power system

measurements. Similar to monitoring platforms in power

utility firms, an Energy Management Platform (EMP) –

comprising of a Supervisory Control and Data Acquisition

(SCADA) system connected to Energy Management System

(EMS) - monitors the state of the operating grid [10]. Coupled

with other sub-systems implementing programs such as state

estimation, automatic generation dispatch, contingency

analysis, voltage stability and dynamics, operating grid

variables can then be further controlled by issuing command

signals to optimally control the operation of the grid.

 This paper presents the architecture and configuration of

an EMP system being designed in the research control room

of Texas A&M University. The purpose of this paper is to

develop an underlying framework using commercially

available software tools for providing experience in power

grid monitoring and operations. In turn, this would provide a

platform for researchers to test innovative applications for

implementing real-time monitoring, performing analytical

system studies, and controlling the state of power systems.

The rest of the paper is organized as follows. Section II

briefly describes a typical SCADA infrastructure layout. The

implementation of the EMP testbed is discussed in Section

III. Section IV presents a placement algorithm that has been

used to layout substation buses (or nodes) and branches in a

oneline display diagram. A cut section of a sample substation

bus-branch layout is shown in Section V, followed by

concluding remarks and future works in Section VI.

II. POWER SYSTEM SCADA INFRASTRUCTURE

SCADA telemetry and data acquisition infrastructure in

the operation of power systems enables the collection of

information from remote substations to a central control site

[10-12]. Aggregated analog measurements and binary

device status information from power grid sensors are

transmitted through intelligent electronic devices (IEDs)

such as remote terminal units (RTUs) to a control site. Using

EMS human machine interface (HMI) technologies which

provide information display and analysis, command signals

from a master control unit (MCU) are further sent to field

devices which alter the state of the system.

A bi-directional data exchange between different devices

and sites for grid monitoring and control is achieved with the

aid of established communication platforms and protocols

which transmit these data [10]. Several communication

protocols have been known to exist for implementing power

system SCADA data transmission, however the work in the

testbed has been restricted to the use of distributed network

protocol version 3 (DNP3) [13-16].

DNP3 is a reliable and robust protocol that is widely-used

power system industry for SCADA data transmission and

control [14]. It possesses features such as event- and priority-

reporting which ensure master devices to be promptly

updated when significant system events occur in the system,

and assigns different report rates to measurement classes to

Authorized licensed use limited to: Texas A M University. Downloaded on June 03,2020 at 19:00:36 UTC from IEEE Xplore. Restrictions apply.

enable more efficient usage of communication bandwidth.

The protocol forwards sensor data from an outstation (e.g.

RTUs) to a master device (e.g. central SCADA controller). A

key feature is its ability to model an analog, binary or pulse

measurement as a uniquely identifiable physical or logical

entity. These points are modeled in outstations, and belong to

either of five different point types depending on their

attributes or functionality. These point types can either be

input binary, input analog, input counter, output binary or

output counter.

III. TESTBED IMPLEMENTATION

A Dispatcher Training Simulator (DTS) provides a

simulation environment for operator training, new product

feature testings and demonstrations. In this work, the DTS

software is deployed to serve as the EMP environment. A

replay or simulation component provides power flow states

from the operation of a test power system consisting of a

network model, component electrical models and dynamics.

SCADA measurements from this system are then transmitted

to an EMS component where several sub-systems, such as

SCADA, system alarm–handling, generation dispatch and

contingency study applications can be used to provide

information for efficient grid control.

A. Synthetic Power Systems

In the testbed, an interactive power systems simulator -

PowerWorld Dynamic Studio (DS) [17, 18] - performing

stability studies on synthetic grids, and implemented for a

transient stability timeframe, has been used to replace the

simulation component of the DTS. These synthetic grids

come with in-built dynamic models for different electric

components [9]. During simulation, realistic and real-time

SCADA data are transmitted to the EMP thus eliminating the

need for a network model. While DTS protocol

communication has been successfully tested with a 200-bus

system, the goal is to implement a synthetic 2,000 (or 2K)-

bus Texas power system on the testbed.

The synthetic Texas system is made up of several

electrical components which includes 544 generators, 1,350

loads, 157 switched shunts and high voltage transmission

branches distributed across 1,250 substations.

B. Proposed SCADA Telemetry Model

Fig. 1 shows a SCADA telemetry model for simulation

in the testbed.

Fig. 1. High-level flowchart summarizing content creation in source file

The telemetry model replicates actual comunication that

would exist between actual substations and a utility control

center. Real-life EMS platforms are classified as high

availability systems, hence the redundant components at the

procesor and EMS levels. Front-end processors (FEPs) read

and validate measurements from geographically-dispersed

RTU locations, which are then mapped to existing electrical

components already modeled in a SCADA database located

in the EMS.

C. Architecture

The EMP-SCADA communication achitecture that is

currently being set up in the testbed is shown in Fig. 2.

Fig. 2. High-level flowchart summarizing content creation in source file

In the synthetic grid block where the operation of the power

system is simulated, the capability of PowerWorld Simulator

[19] is leveraged to emulate multiple RTUs reporting

SCADA-type measurements to an EMP. These

measurements, either in the form of analog or binary state

data, are obtained from RTUs or outstations, and transmitted

as DNP3 input points. The EMP block simulates the

operations of the FEP/EMS as shown in Fig. 1. A set of core

programs in a control FEP serve as SCADA server

application from which telemetry commands are issued to

and from outstations in the test power system. A data

exchange protocol performs an intra-control center

communication by replicating data from the FEP to the EMS

sub blocks.

D. Modeling in the SCADA Subsystem

A SCADA subsystem contains a description of the real-

time data acquisition and control capabilities of the system.

Upon validation at the front-end processor, SCADA

measurements are transmitted and stored in the core database

of the subsystem. The data structures for the

communications system among host sites, data retrieval

system through which SCADA measurements are acquired

from RTUs, and the power system containing descriptions of

the substation and different power system components are

also contained in this database.

Fig. 3 shows logical hierarchy data structures (also

known as branches) that have been used for host

communication, data retrieval and component data modeling

in the subsystem.

Fig. 3. Data structures for DTS communication and component data
modeling

The FEP data structure in Fig. 3a defines a SCADA site and

provides the means for communicating with RTUs. Here,

communication parameters such as data transfer baud rate,

communication front end (CFE) type and communication IP

and port address are configured. With the aid of a multi drop

(MULTIDR) field, the FEP is set to connect with a dedicated

RTU, or multi dropped RTUs [10]. The logical RTU

structure is in Fig. 3b. Here, parameter definitions such as

Authorized licensed use limited to: Texas A M University. Downloaded on June 03,2020 at 19:00:36 UTC from IEEE Xplore. Restrictions apply.

RTU ID and address, SCADA communication protocol, scan

address, rate and type, communications card address, point

measurement index, deadbands and value high/low limits are

set. Finally, an analog/digital (DI/AI) record field ties the

RTU to the assigned substation data structure, STATION in

Fig. 3c. Here, information pertaining to the substation name,

area of responsibility and control, power system equipment

grouping (EQGRP) and device, type of measurement record

(e.g. point, analog, or control) are provided.

A benefit of using the hierarchical data structure in Fig.

3 is that measurement points transmitted to the SCADA

subsystem can be uniquely identified, while mapping them

to the appropriate component models. Table 1 shows some

of the configuration parameter values that have been used.

Table 1. Configuration parameter values

Parameter Value

FEP FEP_TAMU

CHANEL CHN_TAMU

CfeType WINSTRMS

PORT PTH_TAMU

Baud 9,600

Primary Address 10.110.21.31

Port Number 20,000

RTU E.g. Sub1

E. Modeling DNP3 Points in the Power System Simulator

In a recent version of the software, DNP3 options have

being configured in PW simulator, and a protocol. Here, the

interactive simulation software for the power system is used

to emulate a set of field outstations (or RTUs as modeled in

the SCADA subsystem) containing point measurements.

A configuration of DNP3 points and outstations for any

case is performed by navigating to the ‘Tools and Add Ons’

section of the model explorer after which outstations can be

inserted in the DNP3 tool option. For ease of coordination,

we have modeled each substation as its own DNP outstation,

and further mapped it to unique RTUs modeled in the DTS.

Thus, a total of 1,250 outstations have been emulated to

report SCADA measurements from the test system.

An AUX file containing 23,467 number of points

measured across 1,250 outstations was uploaded into the

simulator for a fast and efficient DNP3 configuration. Table.

2 shows a sample DNP point list generated for a outstation

(or PW substation).

Table 2. Sample point list configurations at an outstation

Outstation

Point Object

ID

Variable Point

Type

Event

Class

Point

ID

1143 Bus ‘7422’ VPU Analog i/p 0 0

1143 Bus ‘7422’ VANGLE Analog i/p 0 1

1143 Bus ‘7422’ FREQHZ Analog i/p 1 2

1143 Gen ‘7422’

‘1’

MW Analog i/p 0 3

1143 Gen ‘7422’

‘1’

STATUS Binary i/p 2 0

The power system simulation solver generates lots of input

measurements, configured as DNP points, to send to the

EMP. Analog points include bus voltage magnitude, angle

and frequency; real and reactive powers flowing across

branches; real and reactive powers of generators and loads,

and shunt reactive power. Binary status information of all

electrical components (loads, generators, branches and

shunts) are also streamed to the EMS. Currently, only input

(i/p) point types have been set, and points assigned to any of

three event classes. The values of points assigned to class 0

are only updated when periodic integrity scans are run on the

FEP server side. Their current values are not stored at their

outstations, and also not reported during an event. In

contrast, values of points in classes 1,2 and 3 are constantly

updated and reported to the server when events occur. Their

outstations ensure that real-time changes are consistently

communicated to the server. Finally, point IDs in the sixth

column uniquely identifies points in their point type arrays.

IV. SUBSTATION NODE-BRANCH VISUAL DISPLAY

Control center HMI technologies presenting grid data

require substation oneline displays to help users visualize

and supervise the system [20-24]. A manual rendition of

individual substation oneline diagrams in the DTS is neatly

and easily done for a small system, however it becomes

infeasible in large systems that consist of several substations

and attached components. Also, considering various

complexities in laying out components in oneline diagrams,

the time and mental effort involved in rendering unique

substation displays may prove to be a challenging task. In

this paper, we develop an algorithm to automatically layout

substation buses (or nodes), breakers and their branch

connections. It assigns specific orientations to substation

components, avoids duplicated renditions and branch

crossings while neatly positioning all substation

components. The method ensures a common outlook of all

substations in the DTS, and minimizes any post-rendition

task that may be required to adjust unique substations.

A. Display Source Configuration File

The EMP consists of a display setup program where

substation displays can be created. Here, several display

components are provided to users to allow for customization

of user interfaces. With the aid of linkages connected to

application databases, users are then able to access and

interact with application data, such as SCADA data, through

the designed interfaces. A display source file contains all the

configuration data of primitives and element sets written in

ASCII text strings.

In this work, the method to create node-branch oneline

displays for the synthetic system initially executes a bus-

branch layout algorithm for each substation (STN), and after

which the corresponding ASCII strings are written to a

source configuration file. Fig. 4 is a summary of the content

creation process for the source file.

Fig. 4. High-level flowchart summarizing content creation in source file

Authorized licensed use limited to: Texas A M University. Downloaded on June 03,2020 at 19:00:36 UTC from IEEE Xplore. Restrictions apply.

An auxiliary file (*.AUX) used by PowerWorld which is

known to store simulation data for a synthetic network serves

as a source document from which all case and model data are

extracted. It contains all information of the power system

case, such as connected system loads, generators and shunts

(hereafter known as bus components), substation details,

branch toplogy and nominal voltage ratings. The use of

ASCII text strings of groups of pictures or elements in a

common file header avoids the repetition of common objects

a user may intend to render across all substation displays.

B. Substation Node-Layout Algorithm

An overtly perfect rendition of all components may not

be feasible on a substation oneline diagram. However, the

proposed approach uses a method to simplify the layout of

bus-breaker-branch connections, while minimizing the

amount of post-rendition efforts that will be needed to make

manual adjustments in each substation diagram.

Table 3 is a list of the common power system components

and symbols that have been used in the display setup

program. The color used to render color-coded components

is based on the nominal voltage of the bus or branch to which

the component is connected.

Table 3. Power system component symbols

In any substation, a prior step is the identification of the

most-connected bus, and defined as the bus with the highest

branch connections with other buses belonging to the same

substation. This is designated as the substation main bus,

𝑅𝑏𝑢𝑠 from which propagating branches connect to non-

neighbor or neighbor nodes and the rest of the substation

components. In this context, a neighbor is a directly-

connected bus in the same substation, while a non-neighbor

belongs to another substation.

C. Depth-Search Technique

This method involves an apriori consideration of the

depth level or extent of the descendants of a neighbor node

before drawing a branch connection to the node. A depth-

search technique used in graphical tree structures [25-27],

the procedure determines the amount of horizontal spacing

required to position a next adjacent neighbor node to the bus.

Fig. 5 shows a flow-chart describing the process for

assigning coordinate values in a two dimensional system,

and rendering components in the oneline diagram for a

substation (STN).

Fig. 5. Flow chart describing coordinate assignment and rendering of

substation components

In the figure, a prior assignment is the determination of

levels (or layers) of vertical coordinates, 𝑦𝑙𝑒𝑣𝑒𝑙 to be used.

For illustrative purpose, three levels have been assumed i.e.

𝑦𝑙𝑒𝑣𝑒𝑙 0, 1 and 2 where 𝑅𝑏𝑢𝑠 is in the topmost level, 𝑦𝑙𝑒𝑣𝑒𝑙0.

Authorized licensed use limited to: Texas A M University. Downloaded on June 03,2020 at 19:00:36 UTC from IEEE Xplore. Restrictions apply.

At a reference bus, the left terminal position of its bus

component symbol is set as the value of a current X-position

variable, 𝑋𝑐𝑢𝑟𝑉𝑎𝑙, while the 𝑦𝑙𝑒𝑣𝑒𝑙 of the bus is set in a current

𝑌𝑐𝑢𝑟𝑉𝑎𝑙, variable. The depth-search is performed by using the

system topology data to identify all unvisited, directly-

connected child nodes to be positioned at an immediate

lower 𝑦𝑙𝑒𝑣𝑒𝑙 to the reference bus. If a non-neighbor is

identified, it is immediately rendered by drawing a descedant

branch component object (i.e. transformer or AC line

depending on the nominal voltages of both nodes) to an

external substation component, 𝑆𝑇𝑁𝑒𝑥𝑡 The leaf node of that

branch is considered to be reached, and 𝑋𝑐𝑢𝑟𝑉𝑎𝑙 is updated by

incrementing it by a substation interval, 𝑠𝑢𝑏𝑊𝑖𝑑𝑡ℎ and a bus

separation, 𝑏𝐺𝑎𝑝 before the next adjacent child node

connection is considered.

In the event that a neighbor is detected, 𝑋𝑐𝑢𝑟𝑉𝑎𝑙 and the

lower 𝑦𝑙𝑒𝑣𝑒𝑙 are assigned to that node and stored in a

𝑏𝑢𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐿𝑖𝑠𝑡 table object while the node is marked as a

visited node. At the 𝑋𝑐𝑢𝑟𝑉𝑎𝑙 position, a descendant branch

component is then drawn from the reference bus 𝑦𝑙𝑒𝑣𝑒𝑙 to

the child node lower 𝑦𝑙𝑒𝑣𝑒𝑙. However, no terminating bus is

attached. The value of 𝑌𝑐𝑢𝑟𝑉𝑎𝑙 is updated to the lower 𝑦𝑙𝑒𝑣𝑒𝑙

where the child node is located, and the depth-search process

is re-initiated. In a downward search, this process continues

until a leaf node (i.e. bus whose neighors have all been

visited or a non-neighbor) is reached thus generating a series

of tree nodes. This is followed by an upward search, or

backtracking, where 𝑌𝑐𝑢𝑟𝑉𝑎𝑙 is set to the Y-position of a

successive parent node, and the value of 𝑋𝑐𝑢𝑟𝑉𝑎𝑙 updated by

incrementing by the sum of its bus width and 𝑏𝐺𝑎𝑝 before the

next adjacent child node connection is considered. .

The above-described process for drawing the substation

oneline diagram possesses similar with the recursive process

used in pre-order traversal algorithms when drawing

graphical tree structures [27, 28]. However, a requirement

for subtree symmetry has been ignored since by definition,

nodes would imply buses with variable bus widths

depending on the number of connected bus components.

Also, the process of centrally rendering multiple branch

connections between buses, while avoiding cluttering of

component symbols proved to be an arduous task.

In the Fig. 5, the method for setting the width of a bus is

based on its position in the graphical tree. If the bus is

observed to be located in a leaf node, a provisional buswidth

is determined by the number of connected components at the

bus (branches inclusive) multiplied by a pre-defined

parameter, 𝑠𝑡𝑑𝐵𝑢𝑠𝑊𝑖𝑑𝑡ℎ. Otherwise, the bus is a parent node

whose width is obtained by aggregating the bus width of its

different child nodes (neighbor buses and non-neighbor

external substations inclusive).

D. Rendering Bus-Connected Electrical Components

 Prior to rendering all substation buses in the flow chart

in Fig. 5, all electrical components such as loads, generators

and shunts need to be inserted at their respective buses. This

process is carried out by using bus information stored in the

AUX file, and leveraging bus node details already saved in

the 𝑏𝑢𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐿𝑖𝑠𝑡 object.

In Fig. 6, a summation of the 𝑥-origin and width of the

bus determines the position where a first bus component

should be rendered after which these most recent values are

stored in a 𝑏𝑢𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑌𝐿𝑖𝑠𝑡 object.

Fig. 6. Rendering bus components

Subsequent retrieval of the available current bus positions

from 𝑏𝑢𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑌𝐿𝑖𝑠𝑡 while factoring a component gap

spacing 𝑐𝑚𝑝𝐺𝑎𝑝 further ensures the insertion of additional

components at the bus.

E. Substation Bus Rendering

A final step in generating the oneline diagram using the

flow chart in Fig. 5 is to render all the buses in the substation

after all connected bus components have been drawn. Here,

a horizontal orientation applies to all bus sysmbols, and it is

important that bus overlapping is minimized. A direct

method to achieve this is to connect both left and right

terminals of the bus stored in the 𝑏𝑢𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐿𝑖𝑠𝑡 and

𝑏𝑢𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑌𝐿𝑖𝑠𝑡 objects respectively.

Fig. 7. Rendering a bus

𝑥1 is the originating bus position on the left, 𝑥2 is the most

recently occupied position by an electrical bus component,

and 𝑦 is the vertical layer where the bus is located. This

method of directly connecting 𝑥1 and 𝑥2 avoids overshooting

of buses of either leaf or parent nodes. In a case when no

component is attached at a bus (besides outgoing branches),

both 𝑥-values coincide, and the resulting bus degenerates to

a point. By setting a non-zero value as an alternate default

width, this instance of zero bus width is easily prevented.

Following the bus rendering process, optional descriptive

texts, such as bus names or IDs, can be inserted to improve

user’s recognition ‘of the substation.

V. SAMPLE SUBSTATION DISPLAY

A section of a oneline diagram of one of the substations

in the 2k-bus system, and generated using the steps in the

flow chart is shown in Fig. 8. Besides outgoing non-neighbor

connections at the main bus (ID:8082), it shows other

branches descending to different nodes associated with the

substation. Here, a graph structure with five vertical layers

adequately captured all the components and branches. The

colors at separate nodes are used to differentiate among

nominal voltages existing at different buses whose varying

width can also be observed. Bus width for ID:8086 is based

on the single load (feeder) object component attached at the

bus, while the variable-widths of the other buses are based by

their child buses.

Table 4 shows bus IDs, order of visiting and rendering

nodes, and the order of recording width values of neighbor

buses.

Authorized licensed use limited to: Texas A M University. Downloaded on June 03,2020 at 19:00:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Cut section of oneline diagram for substation (Franklin)

Table 4. Order of visitation, bus width recording and rendering

The depth-search algorithm determines the visitation order
at each node, and further establishes the instance when an 𝑥
-coordinate is assigned to a node starting with the main bus
(ID: 8082) at visitation order 1. At this time, only branch
connections and non-neighbor substation objects are drawn.
Hence, the rendering order for external substations are nodes
with IDs 6107-8155-8068-5011. In a reverse order, the bus
width of neighbor buses are recorded starting from the leaf
bus (ID: 8086) at the lowest 𝑦𝑙𝑒𝑣𝑒𝑙. Finally, in a separate
process (with rendering order 5), all buses are then drawn.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the development of an
energy management research testbed for testing future
innovative grid monitoring applications. A synthetic power
grid emulating the presence of several field RTU devices is
used to deliver SCADA measurements to a dispatcher
training simulator (DTS) implementing an energy
management platform for grid monitoring. Furthermore, we
have proposed a simple and easy to implement node-branch
algorithm to position bus and branch components in the
design of substation oneline graphical interfaces.

A long-term goal is to provide a platform for user-
experience implementing real-time power system operation
and control. In an ongoing work, DNP3 output points for
enabling the user-issued commands for grid control is being
tested. Future work will also focus on expanding the
proposed telemetry model in a fully licensed EMS software
for educational use, and integrating critical subsystems, such
as state estimation and generation dispatch to the testbed.

REFERENCES

[1] A. Bose, "Smart Transmission Grid Applications and Their
Supporting Infrastructure," IEEE Transactions on Smart Grid, vol. 1,

no. 1, pp. 11-19, 2010.
[2] J. D. Taft, "Grid Architecture: A Core Discipline for Grid

Modernization," IEEE Power and Energy Magazine, vol. 17, no. 5,

pp. 18-28, 2019.

[3] M. Asano, "Hawai'i's Grid Architecture for High Renewables:

Developing the State's Modernization Strategy," IEEE Power and
Energy Magazine, vol. 17, no. 5, pp. 40-46, 2019.

[4] O. Ellabban, H. Abu-Rub, F. J. R. Blaabjerg, and S. E. Reviews,

"Renewable energy resources: Current status, future prospects and
their enabling technology," vol. 39, pp. 748-764, 2014.

[5] Z. A. Vale, H. Morais, M. Silva, and C. Ramos, "Towards a future

SCADA," in 2009 IEEE Power & Energy Society General Meeting,
2009, pp. 1-7.

[6] F. F. Wu, K. Moslehi, and A. Bose, "Power System Control Centers:

Past, Present, and Future," Proceedings of the IEEE, vol. 93, no. 11,
pp. 1890-1908, 2005.

[7] T. Xu, A. B. Birchfield, and T. J. Overbye, "Modeling, Tuning, and

Validating System Dynamics in Synthetic Electric Grids," IEEE
Transactions on Power Systems, vol. 33, no. 6, pp. 6501-6509, 2018.

[8] T. Xu, A. B. Birchfield, K. S. Shetye, and T. J. Overbye, "Creation of

synthetic electric grid models for transient stability studies," in The
10th Bulk Power Systems Dynamics and Control Symposium (IREP

2017), 2017.

[9] Electric Grid Test Case Repository [Online]. Available:
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/

[10] M. S. Thomas and J. D. McDonald, Power system SCADA and smart

grids. CRC press, 2017.
[11] S. A. Boyer, SCADA: supervisory control and data acquisition.

International Society of Automation, 2009.

[12] C. Davis, J. Tate, H. Okhravi, C. Grier, T. Overbye, and D. Nicol,
"SCADA cyber security testbed development," in 2006 38th North

American Power Symposium, 2006, pp. 483-488: IEEE.

[13] K. J. D. U. G. Curtis, "A DNP3 protocol primer," vol. 2005, 2005.
[14] "IEEE Standard for Electric Power Systems Communications-

Distributed Network Protocol (DNP3)," IEEE Std 1815-2012

(Revision of IEEE Std 1815-2010), pp. 1-821, 2012.
[15] T. Mander, R. Cheung, F. J. c. Nabhani, and security, "Power system

DNP3 data object security using data sets," vol. 29, no. 4, pp. 487-500,

2010.
[16] S. Mohagheghi, J. Stoupis, and Z. Wang, "Communication protocols

and networks for power systems-current status and future trends," in

2009 IEEE/PES Power Systems Conference and Exposition, 2009, pp.
1-9.

[17] T. J. Overbye, Z. Mao, K. S. Shetye, and J. D. Weber, "An interactive,
extensible environment for power system simulation on the PMU time

frame with a cyber security application," in 2017 IEEE Texas Power

and Energy Conference (TPEC), 2017, pp. 1-6.

[18] T. J. Overbye, Z. Mao, A. Birchfield, J. D. Weber, and M. Davis, "An

Interactive, Stand-Alone and Multi-User Power System Simulator for

the PMU Time Frame," in 2019 IEEE Texas Power and Energy
Conference (TPEC), 2019, pp. 1-6.

[19] PowerWorld. PowerWorld Simulator [Online]. Available:

https://www.powerworld.com/products/simulator/overview
[20] A. B. Birchfield and T. J. Overbye, "Techniques for Drawing

Geographic One-Line Diagrams: Substation Spacing and Line

Routing," IEEE Transactions on Power Systems, vol. 33, no. 6, pp.
7269-7276, 2018.

[21] T. J. Overbye, E. M. Rantanen, and S. Judd, "Electric power control

center visualization using Geographic Data Views," in 2007 iREP
Symposium - Bulk Power System Dynamics and Control - VII.

Revitalizing Operational Reliability, 2007, pp. 1-8.

[22] T. J. Overbye and J. D. Weber, "Visualization of power system data,"
in System Sciences, 2000. Proceedings of the 33rd Annual Hawaii

International Conference on, 2000, p. 7 pp.: IEEE.

[23] P. Cuffe and A. Keane, "Visualizing the Electrical Structure of Power
Systems," IEEE Systems Journal, vol. 11, no. 3, pp. 1810-1821, 2017.

[24] Y. Zhu and O. P. Malik, "Intelligent automatic generation of graphical

one-line substation arrangement diagrams," IEEE Transactions on
Power Delivery, vol. 18, no. 3, pp. 729-735, 2003.

[25] I. Herman, G. Melancon, and M. S. Marshall, "Graph visualization

and navigation in information visualization: A survey," IEEE
Transactions on Visualization and Computer Graphics, vol. 6, no. 1,

pp. 24-43, 2000.

[26] H. Gibson, J. Faith, and P. J. I. v. Vickers, "A survey of two-
dimensional graph layout techniques for information visualisation,"

vol. 12, no. 3-4, pp. 324-357, 2013.

[27] Z.-H. Deng and S.-L. J. E. S. w. A. Lv, "Fast mining frequent itemsets
using Nodesets," vol. 41, no. 10, pp. 4505-4512, 2014.

[28] E. M. Reingold and J. S. Tilford, "Tidier Drawings of Trees," IEEE

Transactions on Software Engineering, vol. SE-7, no. 2, pp. 223-228,
1981.

Authorized licensed use limited to: Texas A M University. Downloaded on June 03,2020 at 19:00:36 UTC from IEEE Xplore. Restrictions apply.

