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Abstract—This paper presents an overview of the 

development of an Energy Management Platform (EMP) 

research testbed for power system monitoring and control. In 

this work, a testbed utilizes a simulator to mimic power system 

operations on a synthetic network. By emulating field devices, 

the simulator is used to further transmit grid data over a 

supervisory control and data acquisition (SCADA) system to an 

EMS software. Finally, through the design of oneline diagrams, 

a node-branch layout algorithm is proposed to develop 

interface substation displays for controlling the power system 

networks being used in the testbed.   

Index Terms— energy management system, SCADA, 

substation layout, oneline, testbed, distributed network protocol 

I. INTRODUCTION 

The rapidly-evolving electric grid is increasing the need 

for integrated platforms which aid strategic grid monitoring 

and control. Increasing proliferation of renewables, changing 

market dynamics, intricate grid control dynamics, and 

increased customer participation in demand management 

programs in large interconnected systems lead to complex 

power system operations. The deployment of modern sensing 

and control technologies, in addition to analog devices, 

however enables wide-area health monitoring and operator 

interaction with the grid [1-6].    

An effective translation of research methods onto actual 

field operations will require simulation testbeds which 

validate these techniques using similar grid complexities and 

end-to-end monitoring and control tools.   Here, dynamic 

simulations for different scenarios of a power system in 

operation are used to provide grid measurements in addition 

to individual component status and topology information to a 

grid-monitoring system. Through information gathering and 

processing, user-initiated test commands can then be sent to 

control the grid.  The simulation of synthetic grids, infused 

with dynamic component models [7-9] on the testbed affords 

the opportunity to obtain realistic, real-time power system 

measurements. Similar to monitoring platforms in power 

utility firms, an Energy Management Platform (EMP) – 

comprising of a Supervisory Control and Data Acquisition 

(SCADA) system connected to Energy Management System  

(EMS) - monitors the state of the operating grid [10]. Coupled 

with other sub-systems implementing programs such as state 

estimation, automatic generation dispatch, contingency 

analysis, voltage stability and dynamics, operating grid 

variables can then be further controlled by issuing command 

signals to optimally control the operation of the grid.  

 This paper presents the architecture and configuration of 

an EMP system being designed in the research control room 

of Texas A&M University. The purpose of this paper is to 

develop an underlying framework using commercially 

available software tools for providing experience in power 

grid monitoring and operations. In turn, this would provide a 

platform for researchers to test innovative applications for 

implementing real-time monitoring, performing analytical 

system studies, and controlling the state of power systems.  

The rest of the paper is organized as follows. Section II 

briefly describes a typical SCADA infrastructure layout. The 

implementation of the EMP testbed is discussed in Section 

III. Section IV presents a placement algorithm that has been 

used to layout substation buses (or nodes) and branches in a 

oneline display diagram. A cut section of a sample substation 

bus-branch layout is shown in Section V, followed by 

concluding remarks and future works in Section VI.     

II. POWER SYSTEM SCADA INFRASTRUCTURE 

SCADA telemetry and data acquisition infrastructure in 

the operation of power systems enables the collection of 

information from remote substations to a central control site 

[10-12]. Aggregated analog  measurements and binary 

device status information from power grid sensors are 

transmitted through intelligent electronic devices (IEDs) 

such as remote terminal units (RTUs) to a control site. Using 

EMS human machine interface (HMI) technologies which 

provide information display and analysis, command signals 

from a master control unit (MCU) are further sent to field 

devices which alter the state of the system.  

A bi-directional data exchange between different devices 

and sites for grid monitoring and control is achieved with the 

aid of established communication platforms and protocols 

which transmit these data [10]. Several communication 

protocols have been known to exist for implementing power 

system SCADA data transmission, however the work in the 

testbed has been restricted to the use of distributed network 

protocol version 3 (DNP3) [13-16].  

DNP3 is a reliable and robust protocol that is widely-used 

power system industry for SCADA data transmission and 

control [14]. It possesses features such as event- and priority-

reporting which ensure master devices to be promptly 

updated when significant system events occur in the system, 

and assigns different report rates to measurement classes to 
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enable more efficient usage of communication bandwidth. 

The protocol forwards sensor data from an outstation (e.g.  

RTUs) to a master device (e.g. central SCADA controller). A 

key feature is its ability to model an analog, binary or pulse 

measurement as a uniquely identifiable physical or logical 

entity. These points are modeled in outstations, and belong to 

either of five different point types depending on their 

attributes or functionality.  These point types can either be 

input binary, input analog, input counter, output binary or 

output counter.   

III. TESTBED IMPLEMENTATION 

A Dispatcher Training Simulator (DTS) provides a 

simulation environment for operator training, new product 

feature testings and demonstrations. In this work, the DTS 

software is deployed to serve as the EMP environment. A 

replay or simulation component provides power flow states 

from the operation of a test power system consisting of a 

network model, component electrical models and dynamics. 

SCADA measurements from this system are then transmitted 

to an EMS component where several sub-systems, such as 

SCADA,  system alarm–handling, generation dispatch and 

contingency study applications can be used to provide 

information for efficient grid control.   

 

A. Synthetic Power Systems 

In the testbed, an interactive power systems simulator - 

PowerWorld Dynamic Studio (DS) [17, 18] - performing 

stability studies on synthetic grids, and implemented for a 

transient stability timeframe, has been used to replace the 

simulation component of the DTS. These synthetic grids 

come with in-built dynamic models for different electric 

components [9]. During simulation, realistic and real-time 

SCADA data are transmitted to the EMP thus eliminating the 

need for a network model. While DTS protocol 

communication has been successfully tested with a 200-bus 

system, the goal is to implement a synthetic 2,000 (or 2K)-

bus Texas power system on the testbed.     

The synthetic Texas system is made up of several 

electrical components which includes 544 generators, 1,350 

loads, 157 switched shunts and high voltage transmission 

branches distributed across 1,250 substations.  

 

B. Proposed SCADA Telemetry Model 

Fig. 1 shows a SCADA telemetry model for simulation 

in the testbed.  

  

 
Fig. 1. High-level flowchart summarizing content creation in source file 

 

The telemetry model replicates actual comunication that 

would exist between actual substations and a utility control 

center. Real-life EMS platforms are classified as high 

availability systems, hence the redundant components at the 

procesor and EMS levels. Front-end processors (FEPs) read 

and validate measurements from geographically-dispersed 

RTU locations, which are then mapped to existing electrical 

components  already modeled in a SCADA database located 

in the EMS.  

 

C. Architecture 

The EMP-SCADA communication achitecture that is 

currently being set up in the testbed is shown in Fig. 2.  

 
Fig. 2. High-level flowchart summarizing content creation in source file 

 

In the synthetic grid block where the operation of the power 

system is simulated, the capability of PowerWorld Simulator 

[19]   is leveraged to emulate multiple RTUs reporting 

SCADA-type measurements to an EMP. These 

measurements, either in the form of analog or binary state 

data, are obtained from RTUs or outstations, and transmitted 

as DNP3 input points. The EMP block simulates  the 

operations of the FEP/EMS as shown in Fig. 1. A set of core 

programs in a control FEP serve as SCADA server 

application from which telemetry commands are issued to 

and from outstations in the test power system. A data 

exchange protocol performs an intra-control center 

communication by replicating data from the FEP to the EMS 

sub blocks.  

 

D. Modeling in the SCADA Subsystem  

A SCADA subsystem contains a description of the  real-

time data acquisition and control capabilities of the system. 

Upon validation at the front-end processor, SCADA 

measurements are transmitted and stored in the core database 

of the subsystem. The data structures for the 

communications system among host sites, data retrieval 

system through which SCADA measurements are acquired 

from RTUs, and the power system containing descriptions of 

the substation and different power system components are 

also contained in this database.   

Fig. 3 shows logical hierarchy data structures (also 

known as branches) that have been used for host 

communication, data retrieval and component data modeling 

in the subsystem. 

 
Fig. 3. Data structures for DTS communication and component data 
modeling  

 

The FEP data structure in Fig. 3a defines a SCADA site and 

provides the means for communicating with RTUs. Here, 

communication parameters such as data transfer baud rate, 

communication front end (CFE) type and communication IP 

and port address are configured. With the aid of a multi drop 

(MULTIDR) field, the FEP is set to connect with a dedicated 

RTU, or multi dropped RTUs [10].  The logical RTU 

structure is in Fig. 3b. Here, parameter definitions such as 
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RTU ID and address, SCADA communication protocol, scan 

address, rate and type, communications card address,  point 

measurement index, deadbands and value high/low limits are 

set. Finally, an analog/digital (DI/AI) record field ties the 

RTU to the assigned substation data structure, STATION in 

Fig. 3c. Here, information pertaining to the substation name, 

area of responsibility and control, power system equipment 

grouping (EQGRP) and device, type of measurement record 

(e.g. point, analog, or control) are provided.  

A benefit of using the hierarchical data structure in Fig. 

3 is that measurement points transmitted to the SCADA 

subsystem can be uniquely identified, while mapping them 

to the appropriate component models. Table 1 shows some 

of the configuration parameter values that have been used.  

 
Table 1. Configuration parameter values   

Parameter Value 

FEP FEP_TAMU 

CHANEL CHN_TAMU 

CfeType WINSTRMS 

PORT PTH_TAMU 

Baud 9,600 

Primary Address 10.110.21.31 

Port Number 20,000 

RTU E.g. Sub1 

 

E. Modeling DNP3 Points in the Power System Simulator  

In a recent version of the software, DNP3 options have 

being configured in PW simulator, and a protocol. Here, the 

interactive simulation software for the power system is used 

to emulate a set of field outstations (or RTUs as modeled in 

the SCADA subsystem) containing point measurements.  

A configuration of DNP3 points and outstations for any 

case is performed by navigating to the ‘Tools and Add Ons’ 

section of the model explorer after which outstations can be 

inserted in the DNP3 tool option. For ease of coordination, 

we have modeled each substation as its own DNP outstation, 

and further mapped it to unique RTUs modeled in the DTS. 

Thus, a total of 1,250 outstations have been emulated to 

report SCADA measurements from the test system.  

An AUX file containing 23,467 number of points 

measured across 1,250 outstations was uploaded into the 

simulator for a fast and efficient DNP3 configuration. Table. 

2 shows a sample DNP point list generated for a outstation 

(or PW substation).   

 
Table 2. Sample point list configurations at an outstation  

Outstation  

# 

Point Object 

ID 

Variable Point 

Type 

Event 

Class 

Point 

ID  

1143 Bus ‘7422’ VPU Analog i/p 0 0 

1143 Bus ‘7422’ VANGLE Analog i/p 0 1 

1143 Bus ‘7422’ FREQHZ Analog i/p 1 2 

1143 Gen ‘7422’ 

‘1’ 

MW Analog i/p 0 3 

1143 Gen ‘7422’ 

‘1’ 

STATUS Binary i/p 2 0 

   

The power system simulation solver generates lots of input 

measurements, configured as DNP points, to send to the 

EMP. Analog points include bus voltage magnitude, angle 

and frequency; real and reactive powers flowing across 

branches; real and reactive powers of generators and loads, 

and shunt reactive power. Binary status information of all 

electrical components (loads, generators, branches and 

shunts) are also streamed to the EMS. Currently, only input 

(i/p) point types have been set, and points assigned to any of  

three event classes. The values of points assigned to class 0 

are only updated when periodic integrity scans are run on the 

FEP server side. Their current values are not stored at their 

outstations, and also not reported during an event. In 

contrast, values of points in classes 1,2 and 3 are constantly 

updated and reported to the server when events occur. Their 

outstations ensure that real-time changes are consistently 

communicated to the server. Finally, point IDs in the sixth 

column uniquely identifies points in their point type arrays.  

IV. SUBSTATION NODE-BRANCH VISUAL DISPLAY    

Control center HMI technologies presenting grid data 

require substation oneline displays to help users visualize 

and supervise the system [20-24].  A manual rendition of 

individual substation oneline diagrams in the DTS is neatly 

and easily done for a small system, however it becomes 

infeasible in large systems that consist of several substations 

and attached components. Also, considering various 

complexities in laying out components in oneline diagrams, 

the time and mental effort involved in rendering unique 

substation displays may prove to be a challenging task. In 

this paper, we develop an algorithm to automatically layout 

substation buses (or nodes), breakers and their branch 

connections. It assigns specific orientations to substation 

components, avoids duplicated renditions and branch 

crossings while neatly positioning all substation 

components. The method ensures a common outlook of all 

substations in the DTS, and minimizes any post-rendition 

task that may be required to adjust unique substations.  

 

A. Display Source Configuration File  

The EMP consists of a display setup program where 

substation displays can be created. Here, several display 

components are provided to users to allow for customization 

of user interfaces. With the aid of linkages connected  to 

application databases, users are then able to access and 

interact with application data, such as SCADA data, through 

the designed interfaces. A display source file contains all the 

configuration data of primitives and element sets written in 

ASCII text strings.  

In this work, the method to create node-branch oneline 

displays for the synthetic system initially executes a bus-

branch layout algorithm for each substation (STN), and after 

which the corresponding ASCII strings are written to a 

source configuration file. Fig. 4 is a summary of the content 

creation process for the source file.   

 

 
Fig. 4. High-level flowchart summarizing content creation in source file 
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An auxiliary file (*.AUX) used by PowerWorld which is 

known to store simulation data for a synthetic network serves 

as a source document from which all case and model data are 

extracted. It contains all information of the power system 

case, such as connected system loads, generators and shunts 

(hereafter known as bus components), substation details, 

branch toplogy and nominal voltage ratings. The use of 

ASCII text strings of groups of pictures or elements in a 

common file header avoids the repetition of  common objects 

a user may intend to render across all substation displays.    

 

B. Substation Node-Layout Algorithm 

An overtly perfect rendition of all components may not 

be feasible on a substation oneline diagram. However, the 

proposed approach uses a method to simplify the layout of 

bus-breaker-branch connections, while minimizing the 

amount of post-rendition efforts that will be needed to make 

manual adjustments in each substation diagram. 

Table 3 is a list of the common power system components 

and symbols that have been used in the display setup 

program. The color used to render color-coded components 

is based on the nominal voltage of the bus or branch to which 

the component is connected.   

 
Table 3. Power system component symbols 

 
 

In any substation, a prior step is the identification of the 

most-connected bus, and defined as the bus with the highest 

branch connections with other buses belonging to the same 

substation. This is designated as the substation main bus, 

𝑅𝑏𝑢𝑠 from which propagating branches connect to non-

neighbor or neighbor nodes and the rest of the substation 

components. In this context, a neighbor is a directly-

connected bus in the same substation, while a non-neighbor 

belongs to another substation.  

 

C. Depth-Search Technique 

This method involves an apriori consideration of the 

depth level or extent of the descendants of a neighbor node 

before drawing a branch connection to the node. A depth-

search technique used in graphical tree structures [25-27], 

the procedure determines the amount of horizontal spacing 

required to position a next adjacent neighbor node to the bus. 

Fig. 5 shows a flow-chart describing the process for 

assigning coordinate values in a two dimensional system, 

and rendering components in the oneline diagram for a 

substation (STN).  

   
Fig. 5. Flow chart describing coordinate assignment and rendering of 

substation components 

 

In the figure, a prior assignment is the determination of 

levels (or layers) of vertical coordinates, 𝑦𝑙𝑒𝑣𝑒𝑙 to be used. 

For illustrative purpose, three levels have been assumed i.e. 

𝑦𝑙𝑒𝑣𝑒𝑙  0, 1 and 2 where 𝑅𝑏𝑢𝑠 is in the topmost level, 𝑦𝑙𝑒𝑣𝑒𝑙0. 
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At a reference bus, the left terminal position of its bus 

component symbol is set as the value of a current X-position 

variable, 𝑋𝑐𝑢𝑟𝑉𝑎𝑙, while the 𝑦𝑙𝑒𝑣𝑒𝑙 of the bus is set in a current 

𝑌𝑐𝑢𝑟𝑉𝑎𝑙, variable. The depth-search is performed by using the 

system topology data to identify all unvisited, directly-

connected child nodes to be positioned at an immediate 

lower 𝑦𝑙𝑒𝑣𝑒𝑙 to the reference bus. If a non-neighbor is 

identified, it is immediately rendered by drawing a descedant 

branch component object (i.e. transformer or AC line 

depending on the nominal voltages of both nodes) to an 

external substation component, 𝑆𝑇𝑁𝑒𝑥𝑡 The leaf node of that 

branch is considered to be reached, and 𝑋𝑐𝑢𝑟𝑉𝑎𝑙 is updated by 

incrementing it by a substation interval, 𝑠𝑢𝑏𝑊𝑖𝑑𝑡ℎ and a bus 

separation, 𝑏𝐺𝑎𝑝 before the next adjacent child node 

connection is considered.  

In the event that a neighbor is detected,  𝑋𝑐𝑢𝑟𝑉𝑎𝑙 and the 

lower 𝑦𝑙𝑒𝑣𝑒𝑙 are assigned to that node and stored in a 

𝑏𝑢𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐿𝑖𝑠𝑡 table object while the node is marked as a 

visited node. At the 𝑋𝑐𝑢𝑟𝑉𝑎𝑙 position, a descendant branch 

component is then drawn from the reference bus 𝑦𝑙𝑒𝑣𝑒𝑙 to 

the child node lower 𝑦𝑙𝑒𝑣𝑒𝑙. However, no terminating bus is 

attached. The value of  𝑌𝑐𝑢𝑟𝑉𝑎𝑙 is updated to the lower 𝑦𝑙𝑒𝑣𝑒𝑙 

where the child node is located, and the depth-search process 

is re-initiated. In a downward search, this process continues 

until a leaf node (i.e. bus whose neighors have all been 

visited or a non-neighbor) is reached thus generating a series 

of tree nodes. This is followed by an upward search, or 

backtracking, where  𝑌𝑐𝑢𝑟𝑉𝑎𝑙 is set to the Y-position of a 

successive parent node, and the value of  𝑋𝑐𝑢𝑟𝑉𝑎𝑙 updated by 

incrementing by the sum of its bus width and 𝑏𝐺𝑎𝑝 before the 

next adjacent child node connection is considered. .  

The  above-described process for drawing the substation 

oneline diagram possesses similar with the recursive process 

used in pre-order traversal algorithms when drawing 

graphical tree structures [27, 28]. However, a requirement 

for subtree symmetry has been ignored since by definition, 

nodes would imply buses with variable bus widths 

depending on the number of connected bus components. 

Also, the process of centrally rendering multiple branch 

connections between buses, while avoiding cluttering of 

component symbols proved to be an arduous task.   

In the Fig. 5, the method for setting the width of a bus is 

based on its position in the graphical tree. If the bus is 

observed to be located in a leaf node, a provisional buswidth 

is determined by the number of connected components at the 

bus (branches inclusive) multiplied by a pre-defined 

parameter, 𝑠𝑡𝑑𝐵𝑢𝑠𝑊𝑖𝑑𝑡ℎ. Otherwise, the bus is a parent node 

whose width is obtained by aggregating the bus width of its 

different child nodes (neighbor buses and non-neighbor 

external substations inclusive).    

 

D.  Rendering Bus-Connected Electrical Components 

 Prior to rendering all substation buses in the flow chart 

in Fig. 5, all electrical components such as loads, generators 

and shunts need to be inserted at their respective buses. This 

process is carried out by using bus information stored in the 

AUX file, and leveraging bus node details already saved in 

the 𝑏𝑢𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐿𝑖𝑠𝑡 object. 

In Fig. 6, a  summation of the 𝑥-origin and width of the 

bus determines the position where a first bus component 

should be rendered after which these most recent values are 

stored in a 𝑏𝑢𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑌𝐿𝑖𝑠𝑡 object. 

 
Fig. 6. Rendering bus components  
 

Subsequent retrieval of the available current bus positions 

from 𝑏𝑢𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑌𝐿𝑖𝑠𝑡 while factoring a component gap 

spacing 𝑐𝑚𝑝𝐺𝑎𝑝 further ensures the insertion of additional 

components at the bus.       

    

E. Substation Bus Rendering 

A final step in generating the oneline diagram using the 

flow chart in Fig. 5 is to render all the buses in the substation 

after all connected bus components have been drawn. Here, 

a horizontal orientation applies to all bus sysmbols, and it is 

important that bus overlapping is minimized. A direct 

method to achieve this is to connect both left and right 

terminals of the bus stored in the 𝑏𝑢𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐿𝑖𝑠𝑡 and 

𝑏𝑢𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑌𝐿𝑖𝑠𝑡 objects respectively. 

 

 
Fig. 7. Rendering a bus  
 

𝑥1 is the originating bus position on the left, 𝑥2 is the most 

recently occupied position by an electrical bus component, 

and 𝑦 is the vertical layer where the bus is located. This 

method of directly connecting 𝑥1 and 𝑥2 avoids overshooting 

of buses of either leaf or parent nodes. In a case when no 

component is attached at a bus (besides outgoing branches), 

both 𝑥-values coincide, and the resulting bus degenerates to 

a point. By setting a non-zero value as an alternate default 

width, this instance of zero bus width is easily prevented.  

Following the bus rendering process, optional descriptive 

texts, such as bus names or IDs, can be inserted to improve 

user’s recognition ‘of the substation. 

V. SAMPLE SUBSTATION DISPLAY 

A section of a oneline diagram of one of the substations 

in the 2k-bus system, and generated using the steps in the 

flow chart is shown in Fig. 8. Besides outgoing non-neighbor 

connections at the main bus (ID:8082), it shows other 

branches descending to different nodes associated with the 

substation.  Here, a graph structure with five vertical layers 

adequately captured all the components and branches. The 

colors at separate nodes are used to differentiate among 

nominal voltages existing at different buses whose varying 

width can also be observed.  Bus width for ID:8086 is based 

on the single load (feeder) object component attached at the 

bus, while the variable-widths of the other buses are based by 

their child buses.  

Table 4 shows bus IDs, order of visiting and rendering 

nodes, and the order of recording width values of neighbor 

buses. 
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Fig. 8. Cut section of oneline diagram for substation (Franklin)  

Table 4. Order of visitation, bus width recording and rendering  

 
The depth-search algorithm determines the visitation order 
at each node, and further establishes the instance when an 𝑥 
-coordinate is assigned to a node starting with the main bus 
(ID: 8082) at visitation order 1. At this time, only branch 
connections and non-neighbor substation objects are drawn. 
Hence, the rendering order for external substations are nodes 
with IDs 6107-8155-8068-5011. In a reverse order, the bus 
width of neighbor buses are recorded starting from the leaf 
bus (ID: 8086) at the lowest 𝑦𝑙𝑒𝑣𝑒𝑙. Finally, in a separate 
process (with rendering order 5), all buses are then drawn. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have presented the development of an 
energy management research testbed for testing future 
innovative grid monitoring applications. A synthetic power 
grid emulating the presence of several field RTU devices is 
used to deliver SCADA measurements to a dispatcher 
training simulator (DTS) implementing an energy 
management platform for grid monitoring. Furthermore, we 
have proposed a simple and easy to implement node-branch 
algorithm to position bus and branch components in the 
design of substation oneline graphical interfaces.  

A long-term goal is to provide a platform for user-
experience implementing real-time power system operation 
and control. In an ongoing work, DNP3 output points for 
enabling the user-issued commands for grid control is being 
tested. Future work will also focus on expanding the 
proposed telemetry model in a fully licensed EMS software 
for educational use, and integrating critical subsystems, such 
as state estimation and generation dispatch to the testbed.  
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