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Abstract—Synthetic power systems that imitate functional and
statistical characteristics of the actual grid have been developed to
promote researchers’ access to public system models. Developing
time series to represent different operating conditions of these
synthetic systems will expand the potential of synthetic power
systems applications. This paper proposes a methodology to
create synthetic time series of bus-level load using publicly
available data. Comprehensive validation metrics are provided to
assure that the quality of synthetic time series data is sufficiently
realistic. This paper also includes an example application in
which the methodology is used to construct load scenarios for a
10,000-bus synthetic case.

Index Terms—Synthetic time series, residential commercial and
industrial load, synthetic power systems

I. INTRODUCTION

PBULIC access to real power system data is limited due to
confidentiality concerns. Synthetic power system models

and data are created to be functionally and statistically similar
to real power systems. Synthetic systems are synthesized using
public data of the actual grid, and they don’t represent the
actual system located on the same geographic footprint, or
contain any confidential information about the actual grid.

Many efforts have been made on the creation of synthetic
power system base cases, which contains systems topology
and many of them have AC or DC power flow solutions.
Early work of [1]-[2] came up with an approach to cre-
ate transmission grid topologies based on the small world
graph network. A methodology for generating large scale
synthetic transmission systems with AC power flow solutions
on the footprint of United States was proposed in [3]-[4],
and several synthetic systems of different sizes and footprints
were created. The work of [5] investigated the geographic
and structural properties of North American and Mexican
transmission grids, and large electric systems with synthetic
nodes and node connections were created in [6]-[7]. European
synthetic transmission grids with DC power flow solutions
were also developed based on public information from utilities
and regulatory agencies in the synchronous grid of Continental
Europe (UCTE) [8].

Since synthetic power system base cases only reflect a one-
time snapshot of the system, there is a natural need to expand
the work and develop time series to represent changing system
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operating conditions over time. The combined data set of
synthetic grid models and power system time series can be
used as a benchmark for system scenario studies, a test bed for
algorithms such as time sequence power flow, optimal power
flow, and unit commitment.

Power system time series consist of data relevant to system
status in a time sequence manner. It can span many aspects of
the system such as the load, transmission line status, generator
dispatch and electricity price. Real time series power system
data are generally more publicly accessible compared to the
data of actual grid topologies and models. For example, the
Open Power System Data, for example, is a data depository
that has load, wind, solar and price data in hourly resolution
of 37 European countries [9]. In North America, for the trans-
parent operation of electricity market, Independent System
Operators (ISOs) often have hourly resolution load and price
time series data publicly available as well [10]-[11].

Besides actual system-level data, the creations of synthetic
time series for household-level load and renewable generation
are also well-researched topics. The work of [12] developed
a probabilistic mathematical model for residential load sim-
ulation. A top-down approach using domestic load patterns
for household profile adaptation was implemented in [13].
A machine learning method to generate synthetic residential
building load time series from smart meter data was proposed
in [14]. The work of [15] developed an approach of generating
renewable scenarios based on the machine learning concept of
generative adversarial networks.

Developing time series based models from historic data
is also a commonly used approach for synthetic data gen-
eration. For example, an autoaggressive integrated moving
average (ARIMA) model was proposed in [16] to simulate
the stochastic wind power generation time series while taking
nonstationarity and physical limits into account. The work of
[17] introduced a time-dependent, autoaggressive, Gaussian
model to generate synthetic hourly solar generation time series.
Periodic autoaggressive moving average (PARMA) models are
also commonly used to construct the seasonal patterns of hydro
power related time series [18], [19].

However, the techniques to develop end-use customer load
and renewable generation time series are not easily transferable
to create bus-level load time series. While time series data
of household electricity consumption and renewable energy
generation are widely available to the public, both customer-
level load time series from other energy sectors such as
commercial and industrial, as well as aggregated bus-level load
time series are hard to obtain in large volume. Due to the lack
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of training data, it is hard to directly apply machine learning
or time series models for the creation of synthetic bus-level
load time series.

This paper presents a bottom-up methodology for synthesiz-
ing bus-level time series load data. Building on the results of
[20], the integration process is generalized and also improved
by taking aggregation effects into consideration. The maxi-
mum value of load time series aims to match the corresponding
load bus size determined in the above mentioned base case.
The unique variation of each bus-level time series is a result of
the heuristic aggregation of prototypical building and facility
load time series. To ensure the quality and realism of the
synthetic load time series, comprehensive validation metrics
are established from the actual system-level load time series.
It is important to note that the time series created in this paper
is generalized and represents the bus-level load in a typical
weather year. More customized scenarios incorporating other
inputs such as temperature and irradiance can be created by
conditioning the base load time series. An example that uses
the load time series to create a high behind-the-meter solar
installation scenario is shown in the application section.

The creation and validation of load time series for 2,000
and 10,000- bus synthetic grids (i.e., the ACTIVSg2000 and
ACTIVSg10K grids from [21]) are used as examples. The
ACTIVSg2000 synthetic system shares the same footprint as
the Electric Reliability Council of Texas (ERCOT), and the
ACTIVSg10K has the same service region as the Western
Interconnection (WI). However, the method of creating and
validating synthetic time series is general enough to be applied
to any system.

II. CREATION OF BUS-LEVEL LOAD TIME SERIES

Electric load time series reflect electricity consumption pat-
terns and provides insight on the absolute level and changing
rate of load at different times. Having access to bus-level load
time series is essential for the unit dispatch and commitment
in power system operations since generation always needs to
follow the time-varying system load. The load time series in
synthetic power systems has hourly resolution with a duration
of a year, and is created on the bus level so that every bus in the
synthetic grid model has a unique profile. Each bus-level load
time series is created using an iterative aggregation approach,
where prototypical building load profiles are aggregated based
on the size and composition of load buses.

A. Location and size of bus-level electric load

The location and size of the electric loads are determined
during the creation of the synthetic base case discussed in
[3]-[4]. The load buses are located based on the clustering
of geographic coordinates associated with postal codes that
are obtained from the public U.S. census database. The size
of each load bus is then scaled according to the population
of the corresponding postal code and the per-capita MW
consumption. Based on the statistical analysis of the actual
grid, a unique power factor is assigned to each bus in the base
case to calculate the reactive load [4].

The base case is used as a reference to create load time
series. The size of load buses in the base case are considered
to be the peak value of each bus-level time series, and the
geographic coordinates assigned to each load bus are then used
to determine the unique location-dependent load features such
as load composition ratio and prototypical building load time
series.

B. Load bus composition ratio

The assignment of a composition ratio of residential, com-
mercial and industrial load on each bus is helpful to re-
alistically represent the uniqueness of load. It establishes
the geographic and demographic dependence of electric load
similar to reality.

U.S. utility companies’ service territories as well as their
residential, commercial and industrial megawatt-hours sales
values from the Annual Electric Power Industry Report are
used to determine the bus load composition ratios [22]. Each
load bus is assigned to one utility company based off its
geographic coordinates, and the company’s sales ratio of the
three load types is used as the average bus load composition
ratio.

C. Prototypical building- and facility-level load time series

To bridge between the bus load composition ratio, and a
unique hourly profile, prototypical end user level load time
series under residential, commercial and industrial load types
are synthesized from public data. Building- and facility-level
time series gives the desired bus load a good base to incor-
porate both individual user load patterns and the aggregation
effect. Different categories of buildings and facilities and their
prototypical load time series are realistic approximations to
represent the most common and important load features.

1) Prototypical residential and commercial building load:
The prototypical building load time series synthesized in this
paper are the same as the ones developed in [20], where open
source data of simulated hourly residential and commercial
building energy consumption are used [23].

The residential data contains buildings’ hourly electricity
usage value from space heating/cooling, High Voltage Al-
ternating Current (HVAC) fan, interior/exterior lighting, as
well as appliances and miscellaneous loads. Each data file
covers one typical meteorological year 3 (TMY3) location in
the United States, which represents geographic locations with
different meteorology[24]. For commercial load, under each
TMY3 location, 16 building electric load profiles are simulated
using the Department of Energy (DOE) commercial reference
building models[25], and the contents in each time series data
are like that of residential data set.

Under the United States footprint, 1020 residential and
16,320 commercial building time series are calculated as a
summation of all electricity consumption categories under
each building type. They are created to host various features
such as the unique profiles of residential and commercial
buildings, and electricity consuming variations over time and
geographic location.
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Figure 1, for example, shows prototypical residential build-
ing load time series in a winter week and a summer week.
The load shapes in two seasons are distinguishable, where
winter profiles tend to have two peaks in one day due to
winter heating, while summer profiles only have one peak
per day. The magnitude of load can also be very different
in each season, depending on geographic locations. In winter,
regions with colder climate such as Helena, Montana, would
have higher average load. While in summer, load within hot
and arid climate zones, such as Phoenix,Arizona, will have
much more electricity consumption.

Fig. 1. Prototypical residential building load time series examples by location

Similarly, figure 2 shows prototypical commercial load time
series for the large office building type. The load shape of a
specific building type is generally consistent regardless of the
location, and the load level is slightly higher in summer season
compared to that in winter. In figure 3, weekly load profiles of
three commercial building types (full-service restaurant, small
office, and strip mall) in Los Angeles, California are shown.
The load shape and size under each building type is unique.
Small offices have steady load during weekdays and low load
during weekends. For full-service restaurants and trip malls,
load levels are constant through out the week, while full-
service restaurants observe two peaks near lunch and dinner
time, strip malls only peak once every day.

Fig. 2. Prototypical commercial building load time series examples by
location

Fig. 3. Prototypical commercial building load time series examples by type

2) Prototypical industrial facility load: Prototypical indus-
trial facility load time series are created based on publicly
available per-unit industrial load curves from Oak Ridge Na-
tional Laboratory (ORNL) [26] and the industrial assessment
data in Industrial Assessment Centers (IAC) Database [27].

The ORNL per-unit curves provide daily profiles of different
industrial sectors, presented by different Standard Industrial
Classification (SIC) codes with their unique load factor. The
IAC Database contains information on the industry SIC code,
total electricity usage and yearly operating hours of over
14,000 facilities in the United States, which are used to modify
the ORNL curves into facility-specific load time series for a
year.

For each industrial facility, the yearly operating hour is first
used to determine the total number of operating days. The
ORNL daily curves of the same SIC code is then expanded
to a yearly load curve, with small white noise imposed and a
random selection of starting day of the year. The synthesized
yearly curve is then scaled so that the integral value of the
curve matches the total electricity usage.

Figure 4 presents prototypical industrial load time series
for four facilities from food, petroleum and refining, primary
metal, as well as electronic and electrical equipment industries.
As those load curves are adopted from the ORNL per-unit
daily curves, they have similar daily variations and weekly
shapes, with different load levels and load factors.

Fig. 4. Prototypical industrial facility load time series examples by type

D. Aggregation of load

The bus-level load time series is created by iteratively
aggregating prototypical building and facility load time series
of each load type. This aggregation process has three main
aspects: integrating realistic amounts of end users under each
load type, selecting representative prototypical time series, and
mimicking the effect of load aggregation described in [28].
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A flow chart of this aggregation process is shown in figure
5. The reference peak values of residential, commercial and
industrial bus load type of each bus are first determined by
the multiplication of bus load size and the load composition
ratio. This is used to integrate realistic amount of end users
under each load type, where the peak component values are
the stopping criterion for the iterative aggregation process.

A pool of representative prototypical building load time
series are then selected for each load bus. For residential
and commercial load, the selection used the top five shortest
distances between the load bus geographic coordinates and
TMY3 locations. All industrial facility load time series that
have smaller maximum value than the calculated peak indus-
trial load component are included in this pool since industrial
loads are less correlated with geographic locations.

Fig. 5. Flow chart of heuristic load aggregation approach

Under each load type, within one iteration, only one
building or facility load time series is picked based on a
predetermined probabilistic distribution. In the work of [29],
a combined transmission and distribution synthetic data set is
created using commercially obtained parcel data as one of the
inputs, where different building types within the geographic
footprint of the test case are extrapolated based on the parcel
usage categories. This publicly available data set [30] is
utilized to summarize the typical percentage of building types
within the service territory of a transmission substation or

bus. The region of a transmission substation is defined as
the polygon boundary of all the distribution feeders that are
serviced by this substation. This selected building- or facility-
level load time series is then processed through three types
of transformations: time shift, time permutation, and noise
insertion. Those transformations diversify the load profiles of
end users, so that the smoothing effect for load aggregation
can be produced.

The original prototypical load time series can be shifted
both forward and backward up to 12 hours following pre-
defined probability mass functions, where the time to be
shifted is a discrete integer variable. For residential load class,
the distribution of time shift is summarized from publicly
available household metering data [31]. The Pecan Street
electricity consumption data has 15-minute resolution, and
is collected from residential homes mostly located in the
state of Texas, California and New York. To be consistent
with the prototypical load time series, the metered load time
series is downsampled to hourly granularity. Detrended cross-
correlation analysis is then conducted for the non-stationary
residential load time series [32], where the time lag yields
to the peak cross-correlation is considered to be the hour
shifted in between two time series. The distribution of shifting
hours is then summarized among all the time series pairs as
probability mass functions. Due to the lack of reference data
in commercial and industrial load classes, heuristically, we
assume the probabilities of shifting the time series of those
two load classes to be 30% and 50% lower than the residential
load class.

To imitate the random surges or drops of load for individual
customers, certain hours (100, 100 and 50 hour pairs for resi-
dential, commercial and industrial respectively) are randomly
chosen within the year to be permutated. As the prototypical
load time series used as the input to this process is simulated
data, it reflects an expected level of electricity consumption
every hour, but does not account for the stochastic behavior
of electricity users. For example, figure 6 shows a comparison
between the prototypical and actual residential load time series
from the same geographic region. The upper plot in figure
6 is the simulated data used to create bus-level load time
series in Austin, TX. The lower plot is the one residential
electricity consumption measurement from the same city [31].
It is observed that while the two time series are on the same
load level, and share similar daily trend, the actual load time
series exhibits more jitters than the simulated data.

To introduce the stochastic behaviour back into the sim-
ulated data, and avoid bus load time series being overly
conforming due to the use of similar prototypical building
or facility time series, a small noise is also imposed. Since
the prototypical building and facility load time series already
included the seasonal, weekly and daily variations, a Gaussian
noise is added to the base loading to not introduce seasonality
[33]. This transformed time series is then added to the corre-
sponding type of load component, and the iteration would stop
once after the load component maximum value calculated in
previous step has been reached.

To mimic the effect of increasing load factor as load
aggregates to a higher level [28], public feeder load time series
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Fig. 6. Simulated and Actual Residential Load Time Series

managed by National Renewable Energy Laboratory (NREL)
[34] is used to adjust the bus-level load factors to a realistic
range. This distribution feeder load time series is populated
from the taxonomy distribution feeders of different geographic
regions.

The geographic coordinates of each load bus in the synthetic
system are used to randomly select a subset of taxonomy feed-
ers from the same geographic region, so that the summation
of feeder load time series is on the same scale as the bus load.
The load factor of the aggregated feeder load time series is
calculated to be the reference value. A constant component is
added to the created bus-level load time series to adjust its
load factor to a realistic value according to equation (1).

Constant+Average Load

Constant+Max Load
= Reference Load Factor

(1)

III. EXAMPLE RESULTS

The load time series created for ACTIVSg2000 and AC-
TIVSg10K synthetic power systems are presented in this
paper. There are 1125 and 4170 load buses in those two cases,
with 71 and 132 GW of system peak load respectively. While
statistical validation of the load time series are discussed in
details in Section IV of this paper, figure 8, 9 and 10 provide
an overview of load profiles on both individual bus level and
aggregated system level.

The plots in figure 7 show the dominant bus load type
using the method discussed in section II.B, where the load
type with highest composition percentage is considered to be
the dominant type of its load bus. In ACTIVSg2000 system,
67.4% of the buses are dominated by residential load, 18.8%
are primary composed of commercial load, and 13.8% for
industrial load. For the ACTIVSg10K system, 45.4%, 33.7%
and 20.9% of buses have residential, commercial and industrial
load as primary composition respectively.

On the bus-level, each load time series is unique based
off the location and load composition ratio of the load bus.
Average bus-level load time series of different dominant load
types are shown in figure 8. Residential-dominated bus load
time series exhibit noticeable seasonal differences, where the
electricity consumption in summer and winter seasons tend

Fig. 7. Dominant load type contour for ACTIVSg synthetic systems

to have higher average values as well as higher variations.
Commercial-dominated bus load time series have distinct daily
patterns, while the electricity consumption base line stays
relatively constant throughout the year. Industrial-dominated
bus loads usually have the lowest variation and highest load
factor. The average size of industrially-dominated buses are
larger than the other two types.

The system-level synthetic load time series and the actual
system load from their footprint regions are shown in figure
9 and figure 10. Although duplicating system-level load time
series is not the desired outcome, synthetic load time series
on the system level should exhibit similar general load shapes
and trends compared to the actual system.

Figure 9 and figure 10 show that the synthetic loads share
similar size with the load of the actual system in the cor-
responding service territory. ACTIVSg2000 synthetic system
has 71.1 GW of peak load, and 48.7 GW of average load, and
the actual load of ERCOT system has 71.2 GW of maximum
load and 41.0 GW of average load. For ACTIVSg10K system,
there is 132.5 GW of peak load and 88.1 GW of average load.
The corresponding actual system, the United States Western
Interconnection, has 136.2 GW of peak load and 83.8 GW of
average load.

Daily and weekly patterns can be seen from the AC-
TIVSg2000 and ACTIVSg10K synthetic load time series. It
is also observed that the synthetic system has similar seasonal
trends compared to the actual system. ACTIVSg2000 and
ERCOT systems both experience peak load in summer, and
also have some high load days weeks in winter. ACTIVSg10K
and WI system also peak in summer, while their profile in the
winter season is flatter.

IV. VALIDATION OF SYNTHETIC TIME SERIES

Since synthetic time series are fictitious, the validation of
the created data against the actual data is critical to determine
the quality and realism of the time series. A statistical based
validation approach is implemented in this paper, as synthetic
time series aim to realistically represent behaviors of load over
time, instead of being an exact duplicate or forecast of the
actual system time series.

A comprehensive set of validation metrics enables re-
searchers to use synthetic time series with ease, but at the
same time to be aware of the underlying assumptions.

Validation metrics that are generic and independent from
geographic locations are summarized using statistical charac-
teristics found in public load data of 37 European countries
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Fig. 8. Bus-level synthetic load time series of different dominant load type

Fig. 9. ACTIVSg2000 synthetic system load V.S. ERCOT Interconnection
system Load

Fig. 10. ACTIVSg10K synthetic system load V.S. Western Interconnection
system load

[9] and 66 United States Balancing Authorities [35], so that
synthetic load time series without a geographic footprint or
have no availability of actual load time series can also be
validated.

It is important to note that the validation of synthetic load
time series is only conducted on the aggregated system level

due to the lack of available real data on bus-level load time
series. For an unbiased validation, aggregated reference data
used during the construction process and the real data used
for the validation process are independent and kept separate.

A. Load factors

Load factor is defined as the ratio of average and peak value
of a load time series. It is one effective metric to quantitatively
validate the overall shape of the synthetic load profile. For
profiles with relatively constant load level, such as regions
with a high industrial composition, load factors are usually
higher; while heavily residential areas tend to have lower load
factors due to light occupation during the day [36].

Fig. 11. Monthly load factors of actual and synthetic load time series

The range of load factors of each month is summarized from
public load data mentioned above and shown in figure 11 as the
green shaded region. It is observed that as a general trend, the
value of load factors are slightly higher in summer months, due
to the increase of base electricity consumption from spacing
cooling. There is also a consistent difference between the
lowest and highest load factors of actual load every month,
where systems with smaller size and less industrial load often
have lower load factors.

The load factors of ACTIVSg10K and ACTIVSg2000 load
time series lie inside the range observed from actual load time
series, and also follow the same monthly trend.

B. Load distribution curves

Load distribution curves show the percentage of time that
load is at different levels relative to its mean value. The load
time series is normalized based off its mean value, where load
levels exceeding yearly average would have per unit values
larger than one. The vertical axis of a load distribution curve
is the percentage of time points.

The green shaded band in Figure 12 shows the range of
load distribution curves found in real load time series, where
load levels are scattered in between 0.4 and 1.8 per unit,
with a denser distribution in the range from 0.8 to 1.2. The
distribution of ACTIVSg10K and ACTIVSg2000 load time
series follow the same general trend, load at most of the time
points are within 0.8 to 1.2 times its yearly average.

C. Autocorrelations

Autocorrelation exhibits the relationship between time
points of load time series that are certain time lags apart. It
provides a validation perspective in time sequence order, in-
stead of observing time series values as if they are independent
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Fig. 12. Load distribution curve validation

recordings. Since the load time series data is not stationary,
where the average value is not constant,and the variance grows
with the level of the time series, the log and differencing
transformation are used to stabilize and remove the mean trend
from the original time series.

Figure 13 shows the autocorrelations of actual and AC-
TIVSg synthetic load time series for time lags up to 48 steps.
According to the real load time series data, the autocorrelation
plot appears to be periodic with a 24-hour cycle, with its
magnitude slightly decreasing every cycle. All the load time
series autocorrelation exhibit a similar trend, within each cycle,
the autocorrelation drops from 1 to below 0 and then increases
from negative correlation back to almost unity correlation
by the end of the cycle. It is also interesting to note that
during the middle of each cycle, around 12 hour time lag, the
autocorrelation of the differenced, logged load time series has
a local maximum. The plots of synthetic load’s autocorrelation
lie within the upper and lower bound established by the
autocorrelation of actual load time series.

Fig. 13. Load autocorrelation validation

D. Power spectral density

Power spectral density measures the the distribution of
power content versus frequency of a time series. It is a
technique that enables us to discover underlying periodic
behaviors. The spectral density can be estimated using peri-
odogram, which establishes the squared correlation between
the targeted time series and sinusoidal waves at different
frequencies spanned by the time series. Similar to the autocor-
relation analysis, the log and differencing transformation are
used to stabilize and remove the mean trend from the original
time series.

Figure 14 shows the power spectral density of the actual
system-level and synthetic system-level load time series. The
horizontal axis of this figure is the frequency, which presents

Fig. 14. Load power spectral density validation

periodic behaviors with longest period of every year, and
shortest period of every 10 hours. The reference range of
power spectral density of at each frequency is summarized
from the public system load data, shown in the green shaded
region in Figure 14. It is observed that the power spectral
density of ACTIVSg2000 and ACTIVSg10K synthetic load
generally lie in the defined upper and lower bounds. The
power spectral density of the synthetic loads also exhibit
distinctive sharp peaks around the same frequencies as those
of the actual load time series, where the highest spike occurs
at the daily 24-hour period with frequency equals to 1/(24
hour) = 0.0417/hour. Power spectral density spikes are also
observed around periods such as half-day (12 hours), half-
week (84 hours),one-week (168 hours), three-months (2160 -
2190 hours) and six-months (4320 - 4380 hours) .

V. SYNTHETIC TIME SERIES APPLICATIONS EXAMPLE

The creation of synthetic time series enables the potential of
scenario development, time sequence simulations, and wide-
area visualizations of large-scale power systems. Those time
series data reflect the typical behavior of electric load in a
hourly manner for the whole year, which is fundamental for
power system steady-state analysis desired at different times
and of different durations. The buses each load time series
locates also cover a wide range of North America regions
and have longitudes and latitudes. This allows non-uniform
alterations of the time series to construct realistic power
system scenarios. The alterations can be made considering
the coupling of power system and location- based factors
such as weather and major events. Along with transmission
system models, generator cost functions, and other system
data, synthetic load time series can facilitate power flow,
optimal power flow analysis, as well as unit commitment of
various scenarios.

As an example, this paper utilizes the bus-level load time
series in the ACTIVSg10K system as the benchmark and
develops a high behind-the-meter (BTM) solar scenario in
the Western United States region. The BTM solar energies
are solar generating units on the consumer’s side of the retail
meter that serve all or part of the customer’s retail load with
electric energy [37]. They are often treated as ”negative loads”
to be subtracted from the total load at the demand side.
The increasing capacity of BTM solar installation changes
the shape of daily net load on the system-level, when solar
generation peaks at midday, the net load is low and when
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solar generation trails off at the end of the day, the total
demand ramps quickly upward [38]. This new load shape is
often referred as a ”duck curve”. It has raised concerns on a
conventional power system’s ability to accommodate the ramp
rate and range needed to effectively supply the load and fully
utilize the renewable energy [39].

The bus-level load time series in the synthetic power system
is utilized to construct rare and extreme scenarios that can
be useful to study this impact over time. Based off the
composition of bus load type and the location-based solar
potentials, the benchmark load time series at each bus is
altered so that a system-level ”duck curve” is created for the
ACTIVSg10K system. This ”duck curve” scenario can be used
as the input of power flow analysis and unit commitment
to provide analytical insights on transmission line loadings,
generator dispatches schedules, system costs, and other system
conditions.

This example uses a 24-hour time period in late spring from
the benchmark hourly time series to develop a daily duck
curve since such scenario usually occurs during the spring
and summer seasons [38]. The BTM solar generation capacity
is set to be 30,000 MW in the ACTIVSg10K system, and
is distributed among load buses weighting their load sizes
and the documented average solar resource outputs. Since
most BTM solar installations are in the non-industrial sectors,
only the size of residential and commercial load on each bus
are considered to calculate the weights indicating bus solar
potential, where buses with higher combined load are assigned
with a higher peak BTM solar generation. On the other hand,
as the solar potential is also dependent on solar radiance that
varies with geographic locations, a solar resource data set
from National Renewable Energy Laboratory (NREL) is also
utilized to determine the weight to distribute the system BTM
solar capacity [40]. This data set provides the monthly average
solar output (kWh/m2/day) at each zip code location.

The solar potential that determines the BTM solar capacity
at each bus is calculated as the weighted summation of
normalized load size and normalized solar resource output
in equation (2) - (3). To construct the 24-hour ”duck curve”
scenario in the ACTIVSg10k synthetic system, a BTM solar
output time series is created and subtracted from the original
load time series of each bus. The bus-level BTM solar capacity
is considered as the peak value of each BTM solar output time
series that would occur at a random time step in between 1 pm
and 3 pm. The starting and ending time step of solar output are
randomly chosen from 6 to 8 am, and 6 to 8 pm respectively.
Before the starting and after the ending time point, the BTM
solar output is zero.

BTM solar potential(i) = X1
load size(i)

max(load size)

+X2
solar resource(i)

max(solar resource)

(2)

BTM solar capacity(i) = system BTM solar capacity×
BTM solar potential(i)∑Nload

i=1 BTM solar potential(i)
(3)

where:
X1, X2 weights on bus load size and solar resource

The load size and solar resources data, as well as the BTM
solar capacity determined for buses in ACTIVSg10K system
are shown in the contour plots Figure 15. It can be observed
that most of the buses with higher BTM solar capacity are
locations with high solar resources. Besides, major metropoli-
tan areas with dense residential and commercial demands also
have higher BTM solar capacities. The benchmark and duck
curve load time series on the system-level are shown in Figure
16.

Fig. 15. Contours of bus load, average solar resource, and BTM solar capacity
in ACTIVSg10K synthetic system

Fig. 16. Benchmark load and duck curve load for ACTIVSg10K synthetic
system
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VI. CONCLUSIONS

This paper proposed a methodology to synthesize and
validate bus-level load time series in the existing synthetic
power systems. The creation of time series uses an iterative
bottom-up approach. Based on the geographic location and
load type composition of each bus, prototypical building and
facility level time series are integrated to construct a bus-level
time series with unique profiles. Each time series has hourly
resolution, and spans for a year. To validate and improve the
realism and quality of synthetic load time series, actual load
time series obtained from electric systems of different sizes are
analyzed statically so that representative and comprehensive
set of validation metrics can be developed.

Since the data set utilized in the synthesizing process is
publicly available, the created time series can be accessed and
distributed freely without any confidentiality concerns. The
wide geographic coverage, time resolution and duration of bus-
level time series enable its versatile applications in system
scenario development and studies. As an example, this paper
demonstrated the construction of a ”duck curve” scenario in
ACTIVSg10K system using the bus-level load time series as
the benchmark.
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