ECEN 615 Methods of Electric Power Systems Analysis Lecture 4: Power Flow

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- Start reading Chapters 1 to 3 from the book (mostly background material)
- Homework 1 is assigned today. It is due on Thursday September 3
- Public website is
- <u>https://overbye.engr.tamu.edu/ecen-615-fall-2020/</u>

If the voltages are known then we can solve for the current injections:

 $\mathbf{Y}_{bus}\mathbf{V}=\mathbf{I}$

If the current injections are known then we can solve for the voltages:

$$\mathbf{Y}_{bus}^{-1}\mathbf{I} = \mathbf{V} = \mathbf{Z}_{bus}\mathbf{I}$$

where \mathbf{Z}_{bus} is the bus impedance matrix

However, this requires that \mathbf{Y}_{bus} not be singular; note it will be singular if there are no shunt connections!

For example, in previous case assume

$$\mathbf{V} = \begin{bmatrix} 1.0\\ 0.8 - j0.2 \end{bmatrix}$$

Then

$$\begin{bmatrix} 12 - j15.9 & -12 + j16 \\ -12 + j16 & 12 - j15.9 \end{bmatrix} \begin{bmatrix} 1.0 \\ 0.8 - j0.2 \end{bmatrix} = \begin{bmatrix} 5.60 - j0.70 \\ -5.58 + j0.88 \end{bmatrix}$$

Therefore the power injected at bus 1 is

$$S_1 = V_1 I_1^* = 1.0 \times (5.60 + j0.70) = 5.60 + j0.70$$
$$S_2 = V_2 I_2^* = (0.8 - j0.2) \times (-5.58 - j0.88) = -4.64 + j0.41$$

Solving for Bus Voltages

For example, in previous case assume

$$\mathbf{I} = \begin{bmatrix} 5.0\\ -4.8 \end{bmatrix}$$

Then

$$\begin{bmatrix} 12 - j15.9 & -12 + j16 \\ -12 + j16 & 12 - j15.9 \end{bmatrix}^{-1} \begin{bmatrix} 5.0 \\ -4.8 \end{bmatrix} = \begin{bmatrix} 0.0738 - j0.902 \\ -0.0738 - j1.098 \end{bmatrix}$$

Therefore the power injected is

$$S_1 = V_1 I_1^* = (0.0738 - j0.902) \times 5 = 0.37 - j4.51$$
$$S_2 = V_2 I_2^* = (-0.0738 - j1.098) \times (-4.8) = 0.35 + j5.27$$

Power Flow Analysis

- When analyzing power systems we know neither the complex bus voltages nor the complex current injections
- Rather, we know the complex power being consumed by the load, and the power being injected by the generators plus their voltage magnitudes
- Therefore we can not directly use the Y_{bus} equations, but rather must use the power balance equations

A M

From KCL we know at each bus i in an n bus system the current injection, I_i , must be equal to the current that flows into the network

1/1

$$I_i = I_{Gi} - I_{Di} = \sum_{k=1}^n I_{ik}$$

Since $\mathbf{I} = \mathbf{Y}_{bus} \mathbf{V}$ we also know

$$I_i = I_{Gi} - I_{Di} = \sum_{k=1}^n Y_{ik} V_k$$

The network power injection is then $S_i = V_i I_i^*$

Power Balance Equations, cont'd

$$S_{i} = V_{i}I_{i}^{*} = V_{i}\left(\sum_{k=1}^{n}Y_{ik}V_{k}\right)^{*} = V_{i}\sum_{k=1}^{n}Y_{ik}^{*}V_{k}^{*}$$

This is an equation with complex numbers.

Sometimes we would like an equivalent set of real power equations. These can be derived by defining

$$Y_{ik} = G_{ik} + jB_{ik}$$

$$V_i = |V_i|e^{j\theta_i} = |V_i| \angle \theta_i$$

$$\theta_{ik} = \theta_i - \theta_k$$
Recall $e^{j\theta} = \cos \theta + j \sin \theta$

Real Power Balance Equations

$$S_{i} = P_{i} + jQ_{i} = V_{i} \sum_{k=1}^{n} Y_{ik}^{*} V_{k}^{*} = \sum_{k=1}^{n} |V_{i}| |V_{k}| e^{j\theta_{ik}} (G_{ik} - jB_{ik})$$

$$= \sum_{k=1}^{n} |V_i| |V_k| (\cos \theta_{ik} + j \sin \theta_{ik}) (G_{ik} - jB_{ik})$$

Resolving into the real and imaginary parts

ท

$$P_{i} = \sum_{k=1}^{n} |V_{i}|| V_{k} |(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) = P_{Gi} - P_{Di}$$

$$Q_{i} = \sum_{k=1}^{n} |V_{i}|| V_{k} |(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) = Q_{Gi} - Q_{Di}$$

Power Flow Analysis

- When analyzing power systems we know neither the complex bus voltages nor the complex current injections
- Rather, we know the complex power being consumed by the load, and the power being injected by the generators plus their voltage magnitudes
- Therefore we can not directly use the Y_{bus} equations, but rather must use the power balance equations

Power Flow Analysis

- Ă**M**
- Classic paper for this lecture is W.F. Tinney and C.E. Hart, "Power Flow Solution by Newton's Method," *IEEE Power App System*, Nov 1967
- Basic power flow is also covered in essentially any power system analysis textbooks.
- We use the term "power flow" not "load flow" since power flows not load. Also, the power flow usage is not new (see title of Tinney's 1967 paper, and note Tinney references Ward's 1956 power flow paper)
 - A nice history of the power flow is given in an insert by Alvarado and Thomas in T.J. Overbye, J.D. Weber, "Visualizing the Electric Grid," *IEEE Spectrum*, Feb 2001.

Early Power Flow System Size

- In 1957 Bill Tinney, in a paper titled "Digital Solutions for Large Power Networks," studied a 100 bus, 200 branch system (with 2 KB of memory)!
- In Tinney's 1963 "Techniques for Exploiting Sparsity of the Network Admittance Matrix" paper (which gave us the Tinney Schemes 1, 2, and 3), uses 32 kB for 1000 nodes.
- In Tinney's classic 1967 "Power Flow Solution by Newton's Method" paper he applies his method to systems with up to about 1000 buses (with 32 kB of memory) and provides a solution time of 51 seconds for a 487 bus system.

Slack Bus

- We can not arbitrarily specify S at all buses because total generation must equal total load + total losses
- We also need an angle reference bus.
- To solve these problems we define one bus as the "slack" bus. This bus has a fixed voltage magnitude and angle, and a varying real/reactive power injection.
- In an actual power system the slack bus does not really exist; frequency changes locally when the power supplied does not match the power consumed

Three Types of Power Flow Buses

- There are three main types of power flow buses
 - Load (PQ) at which P/Q are fixed; iteration solves for voltage magnitude and angle.
 - Slack at which the voltage magnitude and angle are fixed; iteration solves for P/Q injections
 - Generator (PV) at which P and |V| are fixed; iteration solves for voltage angle and Q injection

Newton-Raphson Algorithm

- Most common technique for solving the power flow problem is to use the Newton-Raphson algorithm
- Key idea behind Newton-Raphson is to use sequential linearization

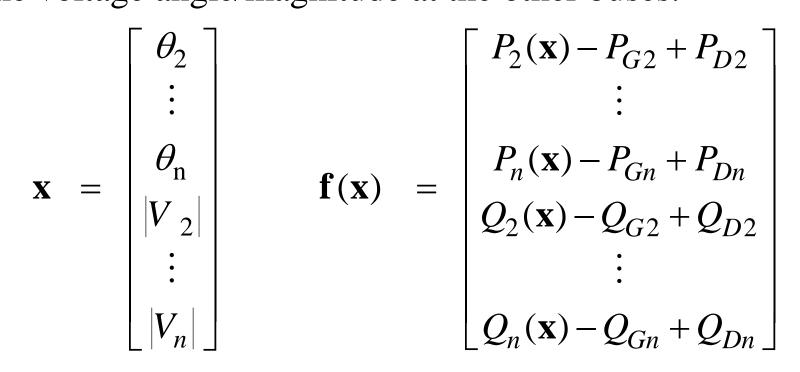
General form of problem: Find an x such that

 $\mathbf{f}(\hat{\mathbf{x}}) = \mathbf{0}$

Newton-Raphson Power Flow

A M

In the Newton-Raphson power flow we use Newton's method to determine the voltage magnitude and angle at each bus in the power system.


We need to solve the power balance equations

$$\mathbf{P}_{i} = \sum_{k=1}^{n} |V_{i}| |V_{k}| (G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) = P_{Gi} - P_{Di}$$

$$Q_{i} = \sum_{k=1}^{n} |V_{i}| |V_{k}| (G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) = Q_{Gi} - Q_{Di}$$

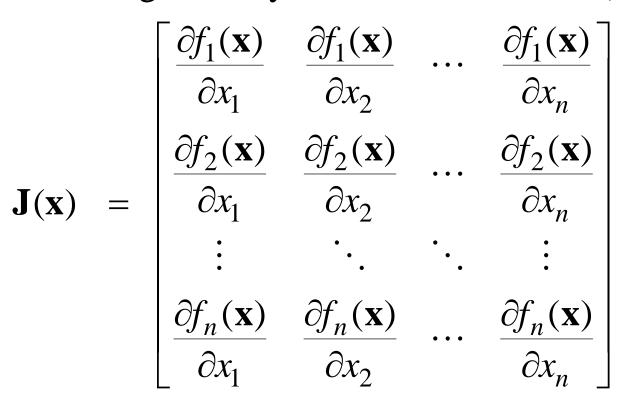
Power Flow Variables

Assume the slack bus is the first bus (with a fixed voltage angle/magnitude). We then need to determine the voltage angle/magnitude at the other buses.

N-R Power Flow Solution

A M

The power flow is solved using the same procedure discussed with the general Newton-Raphson:


Set
$$v = 0$$
; make an initial guess of \mathbf{x} , $\mathbf{x}^{(v)}$
While $\|\mathbf{f}(\mathbf{x}^{(v)})\| > \varepsilon$ Do
 $\mathbf{x}^{(v+1)} = \mathbf{x}^{(v)} - \mathbf{J}(\mathbf{x}^{(v)})^{-1}\mathbf{f}(\mathbf{x}^{(v)})$
 $v = v+1$

End While

Power Flow Jacobian Matrix

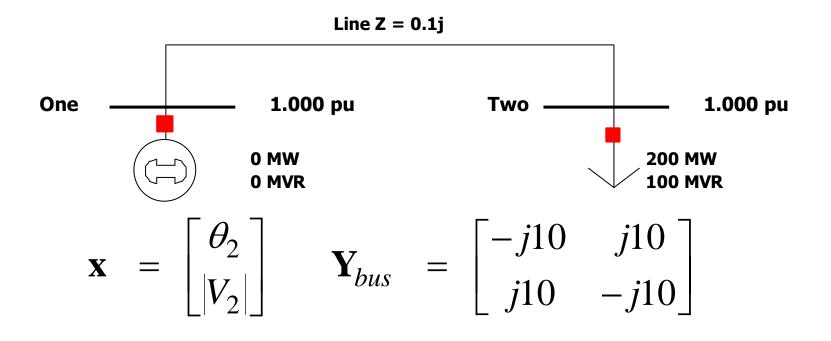
A M

The most difficult part of the algorithm is determining and inverting the n by n Jacobian matrix, J(x)

Power Flow Jacobian Matrix, cont'd

Jacobian elements are calculated by differentiating each function, $f_i(\mathbf{x})$, with respect to each variable. For example, if $f_i(\mathbf{x})$ is the bus i real power equation

$$f_{i}(x) = \sum_{k=1}^{n} |V_{i}|| V_{k} |(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) - P_{Gi} + P_{Di}|$$


$$\frac{\partial f_i(x)}{\partial \theta_i} = \sum_{\substack{k=1\\k\neq i}}^n |V_i| |V_k| (-G_{ik} \sin \theta_{ik} + B_{ik} \cos \theta_{ik})$$

$$\frac{\partial f_i(x)}{\partial \theta_j} = |V_i| |V_j| (G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) \quad (j \neq i)$$

Two Bus Newton-Raphson Example

- A M
- For the two bus power system shown below, use the Newton-Raphson power flow to determine the voltage magnitude and angle at bus two. Assume that bus one is the slack and $S_{Base} = 100 \text{ MVA}$.

Two Bus Example, cont'd

General power balance equations

$$P_{i} = \sum_{k=1}^{n} |V_{i}|| V_{k} |(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) = P_{Gi} - P_{Di}$$

$$Q_{i} = \sum_{k=1}^{n} |V_{i}| |V_{k}| (G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) = Q_{Gi} - Q_{Di}$$

Bus two power balance equations

$$|V_2||V_1|(10\sin\theta_2) + 2.0 = 0$$
$$|V_2||V_1|(-10\cos\theta_2) + |V_2|^2(10) + 1.0 = 0$$

Two Bus Example, cont'd

$$P_2(\mathbf{x}) = |V_2|(10\sin\theta_2) + 2.0 = 0$$

$$Q_2(\mathbf{x}) = |V_2|(-10\cos\theta_2) + |V_2|^2(10) + 1.0 = 0$$

Now calculate the power flow Jacobian

$$J(\mathbf{x}) = \begin{bmatrix} \frac{\partial P_2(\mathbf{x})}{\partial \theta_2} & \frac{\partial P_2(\mathbf{x})}{\partial |V|_2} \\ \frac{\partial Q_2(\mathbf{x})}{\partial \theta_2} & \frac{\partial Q_2(\mathbf{x})}{\partial |V|_2} \end{bmatrix}$$
$$= \begin{bmatrix} 10|V_2|\cos\theta_2 & 10\sin\theta_2 \\ 10|V_2|\sin\theta_2 & -10\cos\theta_2 + 20|V_2| \end{bmatrix}$$

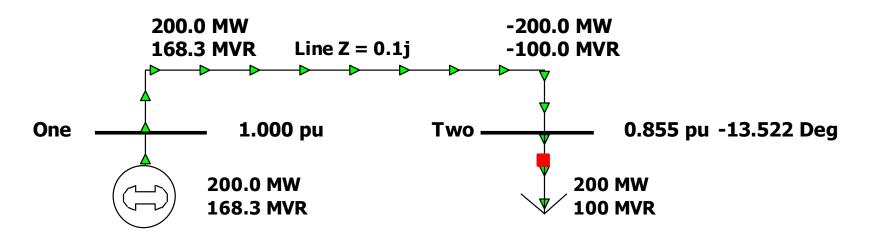
Two Bus Example, First Iteration

Set
$$v = 0$$
, guess $\mathbf{x}^{(0)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Calculate

$$f(\mathbf{x}^{(0)}) = \begin{bmatrix} |V_2|(10\sin\theta_2) + 2.0 \\ |V_2|(-10\cos\theta_2) + |V_2|^2(10) + 1.0 \end{bmatrix} = \begin{bmatrix} 2.0 \\ 1.0 \end{bmatrix}$$
$$\mathbf{J}(\mathbf{x}^{(0)}) = \begin{bmatrix} 10|V_2|\cos\theta_2 & 10\sin\theta_2 \\ 10|V_2|\sin\theta_2 & -10\cos\theta_2 + 20|V_2| \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$
Solve $\mathbf{x}^{(1)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}^{-1} \begin{bmatrix} 2.0 \\ 1.0 \end{bmatrix} = \begin{bmatrix} -0.2 \\ 0.9 \end{bmatrix}$

AM


Two Bus Example, Next Iterations

$$f(\mathbf{x}^{(1)}) = \begin{bmatrix} 0.9(10\sin(-0.2)) + 2.0\\ 0.9(-10\cos(-0.2)) + 0.9^2 \times 10 + 1.0 \end{bmatrix} = \begin{bmatrix} 0.212\\ 0.279 \end{bmatrix}$$
$$\mathbf{J}(\mathbf{x}^{(1)}) = \begin{bmatrix} 8.82 & -1.986\\ -1.788 & 8.199 \end{bmatrix}$$
$$\mathbf{x}^{(2)} = \begin{bmatrix} -0.2\\ 0.9 \end{bmatrix} - \begin{bmatrix} 8.82 & -1.986\\ -1.788 & 8.199 \end{bmatrix}^{-1} \begin{bmatrix} 0.212\\ 0.279 \end{bmatrix} = \begin{bmatrix} -0.233\\ 0.8586 \end{bmatrix}$$
$$f(\mathbf{x}^{(2)}) = \begin{bmatrix} 0.0145\\ 0.0190 \end{bmatrix} \quad \mathbf{x}^{(3)} = \begin{bmatrix} -0.236\\ 0.8554 \end{bmatrix}$$
$$f(\mathbf{x}^{(3)}) = \begin{bmatrix} 0.0000906\\ 0.0001175 \end{bmatrix} \quad \text{Done!} \quad V_2 = 0.8554 \angle -13.52^\circ$$

Two Bus Solved Values

• Once the voltage angle and magnitude at bus 2 are known we can calculate all the other system values, such as the line flows and the generator reactive power

PowerWorld Case Name: Bus2_Intro Note, most PowerWorld cases will be available on the course website

Two Bus Case Low Voltage Solution

This case actually has two solutions! The second "low voltage" is found by using a low initial guess.

Set
$$v = 0$$
, guess $\mathbf{x}^{(0)} = \begin{bmatrix} 0 \\ 0.25 \end{bmatrix}$

Calculate

$$f(\mathbf{x}^{(0)}) = \begin{bmatrix} |V_2|(10\sin\theta_2) + 2.0 \\ |V_2|(-10\cos\theta_2) + |V_2|^2(10) + 1.0 \end{bmatrix} = \begin{bmatrix} 2 \\ -0.875 \end{bmatrix}$$
$$\mathbf{J}(\mathbf{x}^{(0)}) = \begin{bmatrix} 10|V_2|\cos\theta_2 & 10\sin\theta_2 \\ 10|V_2|\sin\theta_2 & -10\cos\theta_2 + 20|V_2| \end{bmatrix} = \begin{bmatrix} 2.5 & 0 \\ 0 & -5 \end{bmatrix}$$

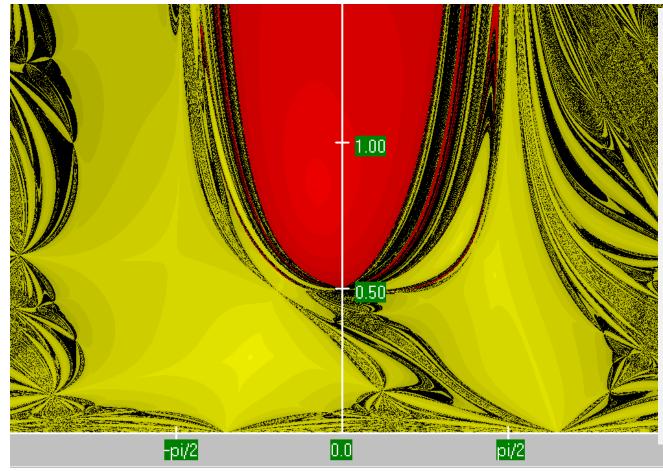
Low Voltage Solution, cont'd

Solve
$$\mathbf{x}^{(1)} = \begin{bmatrix} 0 \\ 0.25 \end{bmatrix} - \begin{bmatrix} 2.5 & 0 \\ 0 & -5 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ -0.875 \end{bmatrix} = \begin{bmatrix} -0.8 \\ 0.075 \end{bmatrix}$$

 $\mathbf{f}(\mathbf{x}^{(2)}) = \begin{bmatrix} 1.462 \\ 0.534 \end{bmatrix} \mathbf{x}^{(2)} = \begin{bmatrix} -1.42 \\ 0.2336 \end{bmatrix} \mathbf{x}^{(3)} = \begin{bmatrix} -0.921 \\ 0.220 \end{bmatrix}$

ĀM

Practical Power Flow Software Note



- Most commercial software packages have built in defaults to prevent convergence to low voltage solutions.
 - One approach is to automatically change the load model from constant power to constant current or constant impedance when the load bus voltage gets too low
 - In PowerWorld these defaults can be modified on the Tools,
 Simulator Options, Advanced Options page; note you also
 need to disable the "Initialize from Flat Start Values" option
 - The PowerWorld case Bus2_Intro_Low is set solved to the low voltage solution
 - Initial bus voltages can be set using the Bus Information Dialog

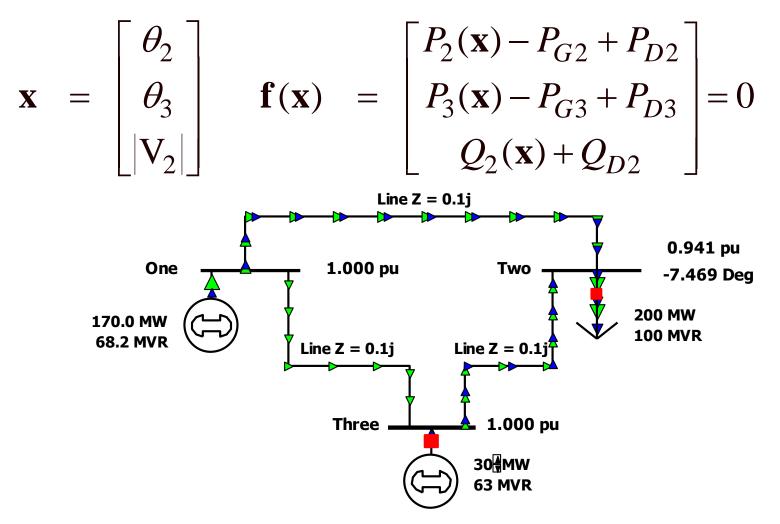
Two Bus Region of Convergence

Slide shows the region of convergence for different initial guesses of bus 2 angle (x-axis) and magnitude (y-axis)

Red region converges to the high voltage solution, while the yellow region converges to the low voltage solution

Power Flow Fractal Region of Convergence

- A M
- Earliest paper showing fractal power flow regions of convergence is by C.L DeMarco and T.J. Overbye, "Low Voltage Power Flow Solutions and Their Role in Exit Time Bases Security Measures for Voltage Collapse," *Proc. 27th IEEE CDC*, December 1988
- A more widely known paper is J.S. Thorp, S.A. Naqavi, "Load-Flow Fractals Draw Clues to Erratic Behavior," *IEEE Computer Applications in Power*, January 1997


PV Buses

- Since the voltage magnitude at PV buses is fixed there is no need to explicitly include these voltages in **x** or write the reactive power balance equations
 - the reactive power output of the generator varies to maintain the fixed terminal voltage (within limits)
 - optionally these variations/equations can be included by just writing the explicit voltage constraint for the generator bus

$$|\mathbf{V}_i| - \mathbf{V}_{i \text{ setpoint}} = 0$$

For this three bus case we have

Modeling Voltage Dependent Load

So far we've assumed that the load is independent of the bus voltage (i.e., constant power). However, the power flow can be easily extended to include voltage dependence with both the real and reactive load. This is done by making P_{Di} and Q_{Di} a function of $|V_i|$: $\sum |V_{i}| |V_{k}| (G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) - P_{Gi} + P_{Di}(|V_{i}|) = 0$ k=1

 $\sum_{k=1}^{n} |V_i| |V_k| (G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) - Q_{Gi} + Q_{Di} (|V_i|) = 0$

Voltage Dependent Load Example

In previous two bus example now assume the load is constant impedance, so

$$P_{2}(\mathbf{x}) = |V_{2}|(10\sin\theta_{2}) + 2.0|V_{2}|^{2} = 0$$

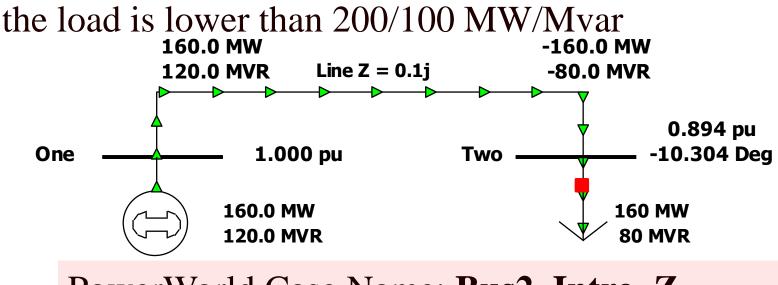
$$Q_{2}(\mathbf{x}) = |V_{2}|(-10\cos\theta_{2}) + |V_{2}|^{2}(10) + 1.0|V_{2}|^{2} = 0$$

Now calculate the power flow Jacobian

$$J(\mathbf{x}) = \begin{bmatrix} 10|V_2|\cos\theta_2 & 10\sin\theta_2 + 4.0|V_2| \\ 10|V_2|\sin\theta_2 & -10\cos\theta_2 + 20|V_2| + 2.0|V_2| \end{bmatrix}$$

Voltage Dependent Load, cont'd

Again set
$$v = 0$$
, guess $\mathbf{x}^{(0)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$


Calculate

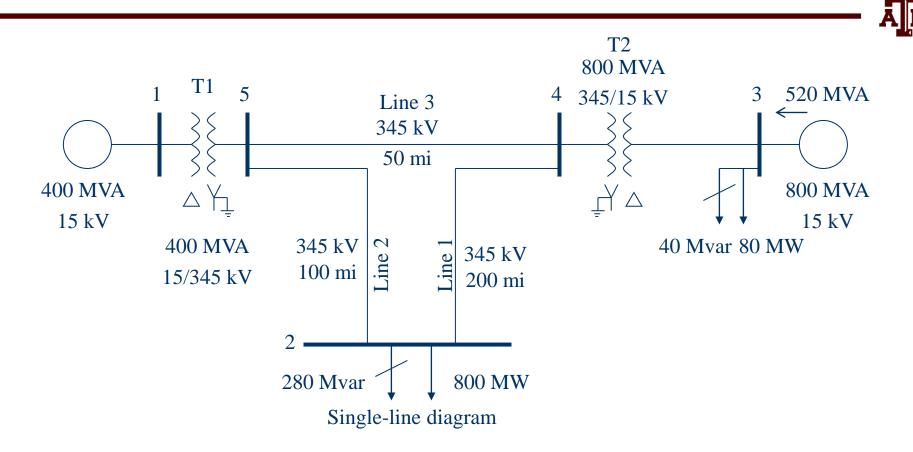
$$f(\mathbf{x}^{(0)}) = \begin{bmatrix} |V_2|(10\sin\theta_2) + 2.0|V_2|^2 \\ |V_2|(-10\cos\theta_2) + |V_2|^2(10) + 1.0|V_2|^2 \end{bmatrix} = \begin{bmatrix} 2.0 \\ 1.0 \end{bmatrix}$$
$$\mathbf{J}(\mathbf{x}^{(0)}) = \begin{bmatrix} 10 & 4 \\ 0 & 12 \end{bmatrix}$$
Solve $\mathbf{x}^{(1)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 10 & 4 \\ 0 & 12 \end{bmatrix}^{-1} \begin{bmatrix} 2.0 \\ 1.0 \end{bmatrix} = \begin{bmatrix} -0.1667 \\ 0.9167 \end{bmatrix}$

Voltage Dependent Load, cont'd

With constant impedance load the MW/Mvar load at bus 2 varies with the square of the bus 2 voltage magnitude. This if the voltage level is less than 1.0,

PowerWorld Case Name: Bus2_Intro_Z

Generator Reactive Power Limits


- The reactive power output of generators varies to maintain the terminal voltage; on a real generator this is done by the exciter
- To maintain higher voltages requires more reactive power
- Generators have reactive power limits, which are dependent upon the generator's MW output
- These limits must be considered during the power flow solution.

Generator Reactive Limits, cont'd

- During the power flow once a solution is obtained there is a check to make sure the generator reactive power output is within its limits
- If the reactive power is outside of the limits, fix Q at the max or min value, and resolve treating the generator as a PQ bus
 - this is know as "type-switching"
 - also need to check if a PQ generator can again regulate
- Rule of thumb: to raise system voltage we need to supply more vars

The N-R Power Flow: 5-bus Example

This five bus example is taken from Chapter 6 of Power System Analysis and Design by Glover, Overbye, and Sarma, 6th Edition, 2016

The N-R Power Flow: 5-bus Example

Table 1.
Bus input
data

													- 5	M		
Bus	Ту	ype		Туре		V per unit		-	P _G per unit	Q _G per unit	pe	r	Q _L per unit	Q _{Gmax} per unit	Q _{Gmi} per	n
1	Sv	ving 1.0		1.0	0				0		0					
2	Lo	ad					0	0	8.0)	2.8					
3				1.05 -			5.2 —		0.8	3	0.4	4.0	-2.8			
4	Lo	₋oad					0	0	0		0					
5	Lo	ad					0	0	0		0					
Table 2. Line input data		Ruc		R' per u			X' per unit		G' per unit		B' per unit		Maximum MVA per unit			
		2-4 0.00		90 0.1		00	0	1		1.72	12.	0				
		2-5		0.00	45	0.0	50	0			0.88	12.	0			
		4-5		0.002	225 0.0		25	0			0.44	12.		10		
	1 2 3 4 5	1 Sv 2 Lo 3 Co vo 4 Lo 5 Lo	1Swing2Load3Constant voltage4Load5Load5Load22.Bus-to- Bus22.Bus-to- Bus22.2-42-5	1Swing2Load3Constant voltage4Load5Load5Load22.Bus-to- Bus22.Bus-to- Bus2-42-5	BusTypeper unit1Swing1.02Load—3Constant voltage1.054Load—5Load—5Load—8R' per u2. input dataBus-to- BusR' per u2.40.002.50.00	BusTypeper unitdeg unit1Swing1.02Load—3Constant voltage1.054Load—5Load—5Load—6R' per unit2. input dataBus-to- BusR' per unit2.40.00902-50.0045	Bus Type per unit degrees 1 Swing 1.0 0 2 Load — — 3 Constant voltage 1.05 — 4 Load — — 5 Load — — 6 Load — — 7 R' x X X 9 R' x X Per unit Per unit 2. Bus-to- Bus Per unit Per unit Per unit 2.4 0.0090 0.1 2.5 0.0045 0.0	Bus Type per unit degrees per unit 1 Swing 1.0 0 2 Load 0 3 Constant voltage 1.05 5.2 4 Load 0 5 Load 0 6 K 0 6 Load 0 7 R' X' per unit X' per unit 8us R' X' per unit 100 2-4 0.0090 0.100 2-5 0.0045 0.050	Bus Type per unit degrees per unit ner unit per unit ner unit 1 Swing 1.0 0 2 Load 0 0 3 Constant voltage 1.05 5.2 4 Load 0 0 5 Load 0 0 5 Load 0 0 5 Load 0 0 6 Load 0 0 2. Load 0 0 6 Load 0 0 6 Bus-to- Bus per unit per unit per unit 2-4 0.0090 0.100 0 2-5 0.0045 0.050 0	Bus Type per unit per unit degrees unit per unit per unit per unit per unit per unit per unit 1 Swing 1.0 0 0 2 Load 0 0 8.0 3 Constant voltage 1.05 5.2 0.8 4 Load 0 0 0 5 Load 0 0 0 5 Load 0 0 0 6 Load 0 0 0 5 Load 0 0 0 6 Per unit Per unit per unit per unit per unit 2.4 0.0090 0.100 0 0 2-5 0.0045 0.050 0	Bus Type per unit per unit degrees per unit per unit per unit per unit<	Bus Type per unit per unit degrees per unit per unit per unit per unit<	Bus Type per unit per unit per unit per unit<	Bus Type V per unit δ degrees PG per unit QG per per unit PL per per unit QL per <br< td=""></br<>		

The N-R Power Flow: 5-bus Example

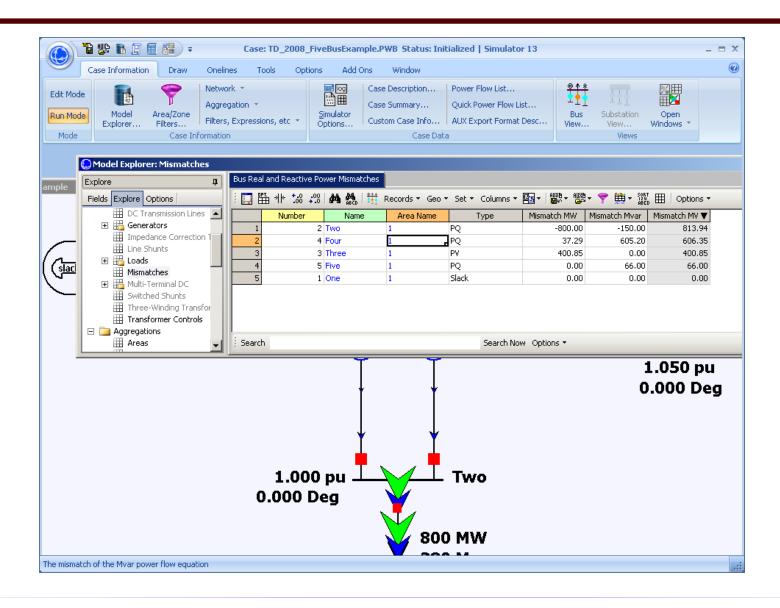
								——— ĀŢ		
I								Maximum		
Table 3. Transformer		R	Х	G _c	B _m	Max	kimum	TAP		
		per	per	per	per	MVA		Setting		
	Bus-to- Bus	unit	unit	unit	unit	per unit		per unit		
input data	1-5	0.00150	0.02	0	0	6.0		—		
	3-4	0.00075	0.01	0	0	10.0				
		Bus		Inp	out Data	l	Unknowns			
		1		V ₁ =	1.0, δ ₁ =	= 0	P ₁ , Q ₁			
		2		$P_2 = F$	P _{G2} -P _{L2} =	= -8	V ₂ , δ ₂			
Table 4. Inpu	ut data			$Q_2 = Q_0$	_{G2} -Q _{L2} =	-2.8				
and unknow	ns	3		Va	₃ = 1.05		Q_3, δ_3			
				$P_3 = P$	_{G3} -P _{L3} =	4.4				
		4		P ₄ =	0, Q ₄ =	0	V_4, δ_4			
		5		$P_5 =$	0, $Q_5 =$	0	V ₅ , δ ₅			

Five Bus Case Ybus

Case Information	Draw	Onglinges	Tools Optio	ns Add	wb Stat	wipdow	mulator 1	13					_ = >
	D witch to Fre ofresh Displ bbon Settin	e-Floating Windo lays	T 0	ndows -	A	PowerWorld		-	Auxiliary Display File	Exp	iliary File Fo ort Case Ot ort Display	oject Fields	
Explorer: YBus		s Admittance Ma		Records -	Geo 🕶 S	iet - Columns - 📴		₩ <u>8</u> - 7)ptions •	Ŀ	
🗄 DC Transmission Lines 💻		Number	Name	Bus	1	Bus 2	Bus	3	1	4	Bus	5	
Generators	1		One	3.73 - j4							-3.73 + ;		
Impedance Correction 1 Line Shunts	2	2	Two	-		2.68 - j28.46			-0.89 + j9	.92	-1.79 +	j19.84	r
Loads	3	3	Three			-	7.46 - j9	99.44	-7.46 + j9	9.44			
Mismatches	4	4	Four			-0.89 + j9.92	-7.46 +	i99.44	11.92 - j14	17.96	-3.57 + 1	i39.68	
Multi-Terminal DC Switched Shunts	5		Five	-3.73 +	i49.72	-1.79 + j19.84		,	-3.57 + j3			-	
Three-Winding Transfor Transformer Controls ggregations Areas Injection Groups Interfaces Mult-Section Lines Mult-Section Lines Mult-Section Lines Mult-Section Lines Mult-Section Lines Mult-Section Lines Substations Substations Super Areas Tielines between Areas	5earch					Search Now	Options 💌						F
						1.000 p					wo		

PowerWorld Case Name: GOS_FiveBus

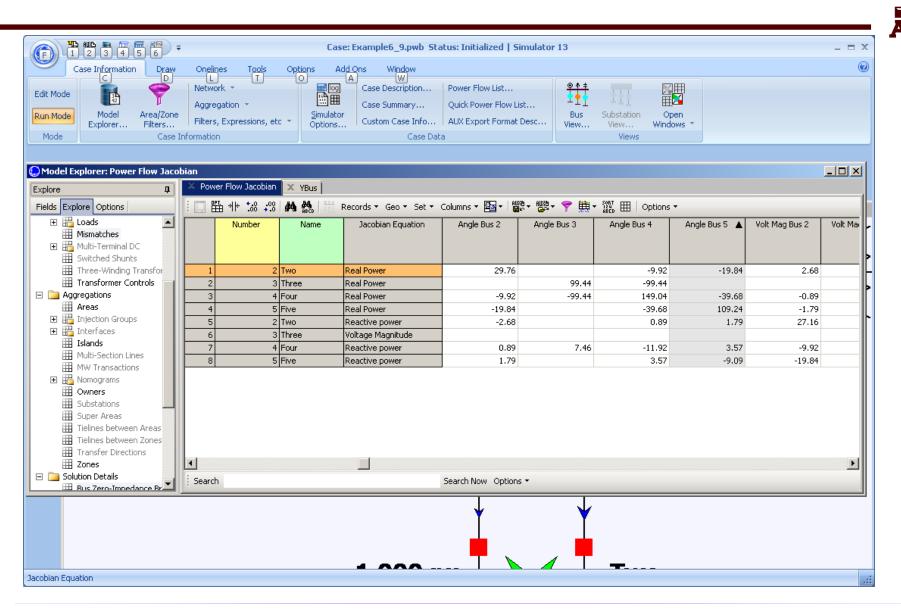
Ybus Calculation Details


Elements of Y_{bus} connected to bus 2

$$Y_{21} = Y_{23} = 0$$

 $Y_{24} = \frac{-1}{R'_{24} + jX'_{24}} = \frac{-1}{0.009 + j0.1} = -0.89276 + j9.91964 \ per \ unit$

 $Y_{25} = \frac{-1}{R'_{25} + jX'_{25}} = \frac{-1}{0.0045 + j0.05} = -1.78552 + j19.83932 \text{ per unit}$


$$\begin{split} Y_{22} &= \frac{1}{R_{24}^{'} + jX_{24}^{'}} + \frac{1}{R_{25}^{'} + jX_{25}^{'}} + j\frac{B_{24}^{'}}{2} + j\frac{B_{25}^{'}}{2} \\ &= (0.89276 - j9.91964) + (1.78552 - j19.83932) + j\frac{1.72}{2} + j\frac{0.88}{2} \\ &= 2.67828 - j28.4590 = 28.5847 \angle -84.624^{\circ} \ per \ unit \end{split}$$

Initial Bus Mismatches

Initial Power Flow Jacobian

Hand Calculation Details

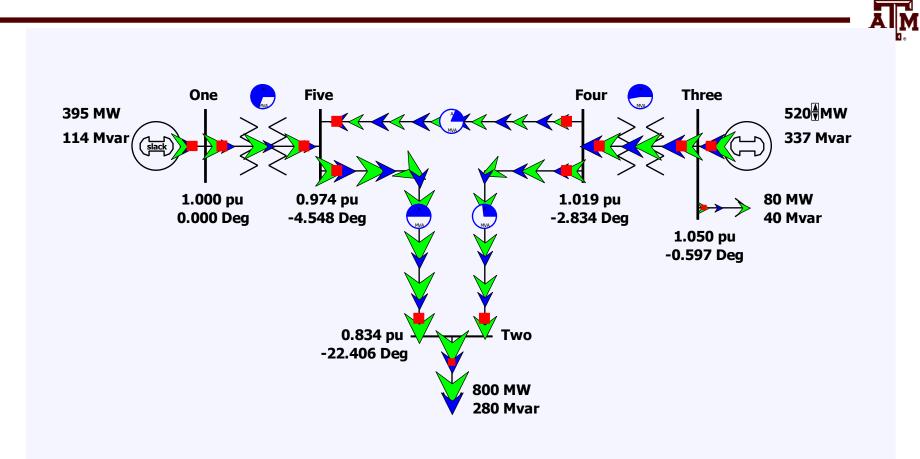
D

 $\mathbf{h} \mathbf{D} (\mathbf{O})$

D

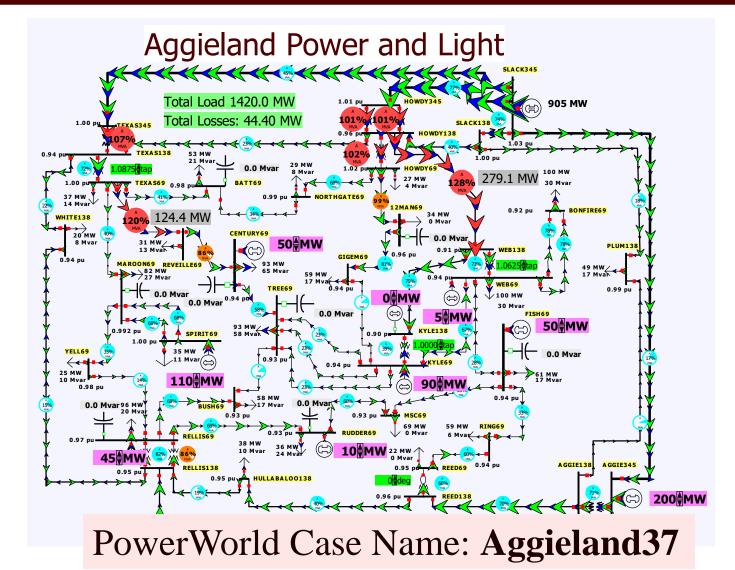
D

1


1

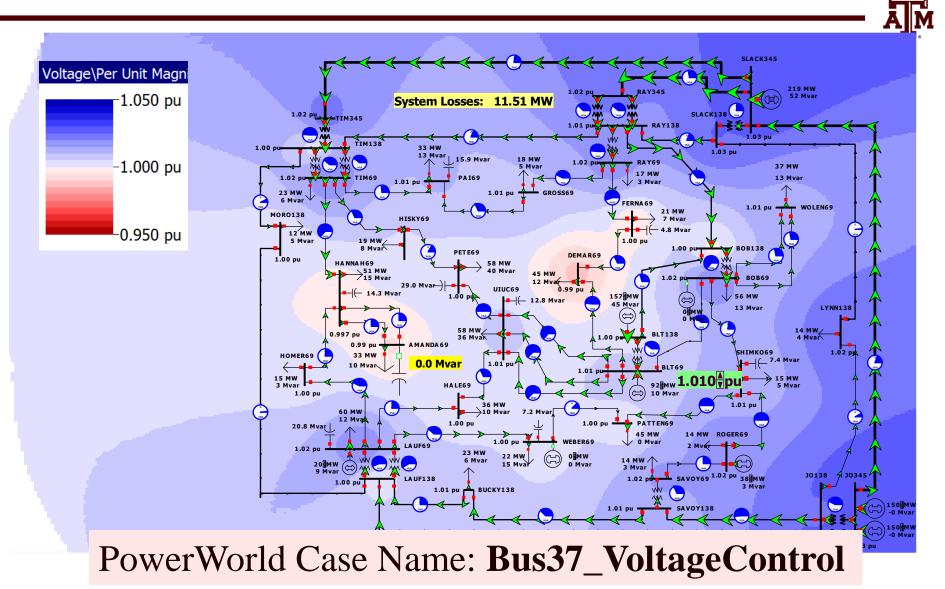
 $C(\Omega)$

$$\begin{split} \Delta P_2(0) &= P_2 - P_2(x) = P_2 - V_2(0) \{Y_{21}V_1 \cos[\delta_2(0) - \delta_1(0) - \theta_{21}] \\ &+ Y_{22}V_2 \cos[-\theta_{22}] + Y_{23}V_3 \cos[\delta_2(0) - \delta_3(0) - \theta_{23}] \\ &+ Y_{24}V_4 \cos[\delta_2(0) - \delta_4(0) - \theta_{24}] \\ &+ Y_{25}V_5 \cos[\delta_2(0) - \delta_5(0) - \theta_{25}] \} \\ &= -8.0 - 1.0 \{28.5847(1.0)\cos(84.624^\circ) \\ &+ 9.95972(1.0)\cos(-95.143^\circ) \\ &+ 19.9159(1.0)\cos(-95.143^\circ) \} \\ &= -8.0 - (-2.89 \times 10^{-4}) = -7.99972 \ per \ unit \end{split}$$


$$J1_{24}(0) = V_2(0)Y_{24}V_4(0)\sin[\delta_2(0) - \delta_4(0) - \theta_{24}]$$

= (1.0)(9.95972)(1.0)sin[-95.143°]
= -9.91964 per unit

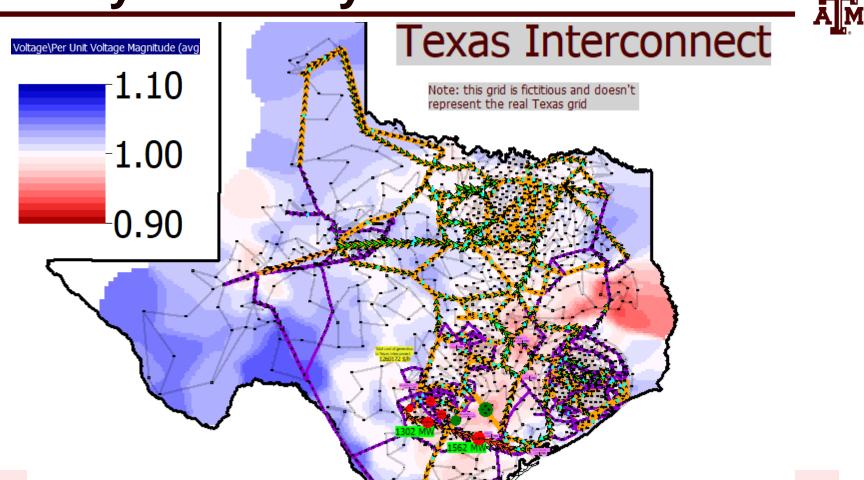
Five Bus Power System Solved



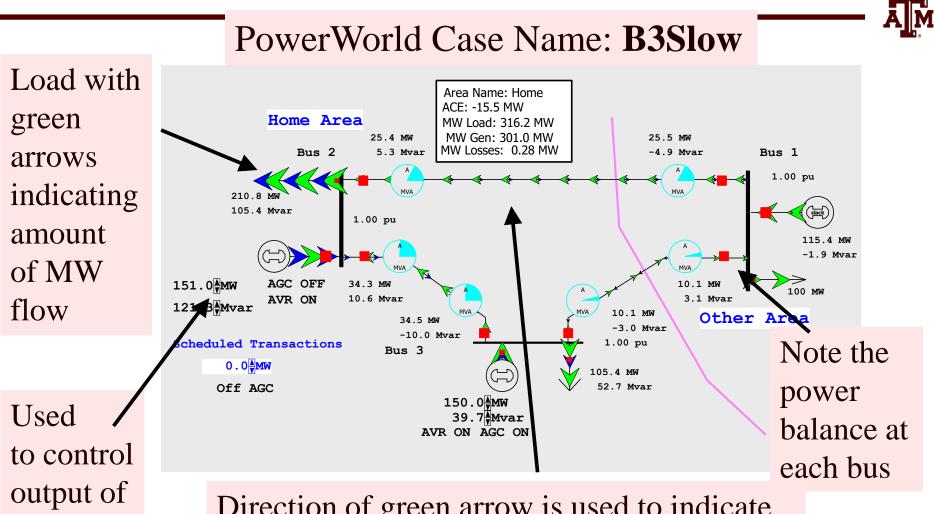
37 Bus Case Example

Voltage Control Example: 37 Buses

Power System Operations Overview


- Goal is to provide an intuitive feel for power system operation
- Emphasis will be on the impact of the transmission system
- Introduce basic power flow concepts through small system examples

Power System Basics


- All power systems have three major components: Generation, Load and Transmission/Distribution.
- Generation: Creates electric power.
- Load: Consumes electric power.
- Transmission/Distribution: Transmits electric power from generation to load.
 - Lines/transformers operating at voltages above 100 kV are usually called the transmission system. The transmission system is usually networked.
 - Lines/transformers operating at voltages below 100 kV are usually called the distribution system (radial).

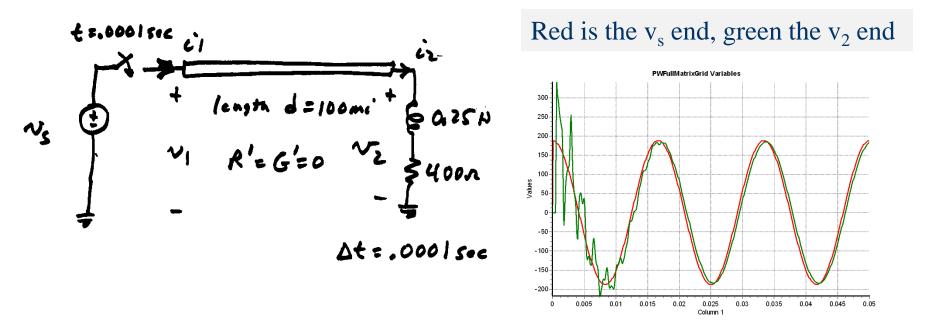
Large System Example: Texas 2000 Bus Synthetic System

This case requires the commercial version of PowerWorld since the GOS Version is limited to 42 Buses

Three Bus PowerWorld Simulator Case

Direction of green arrow is used to indicate direction of real power (MW) flow; the blue arrows show the reactive power

generator

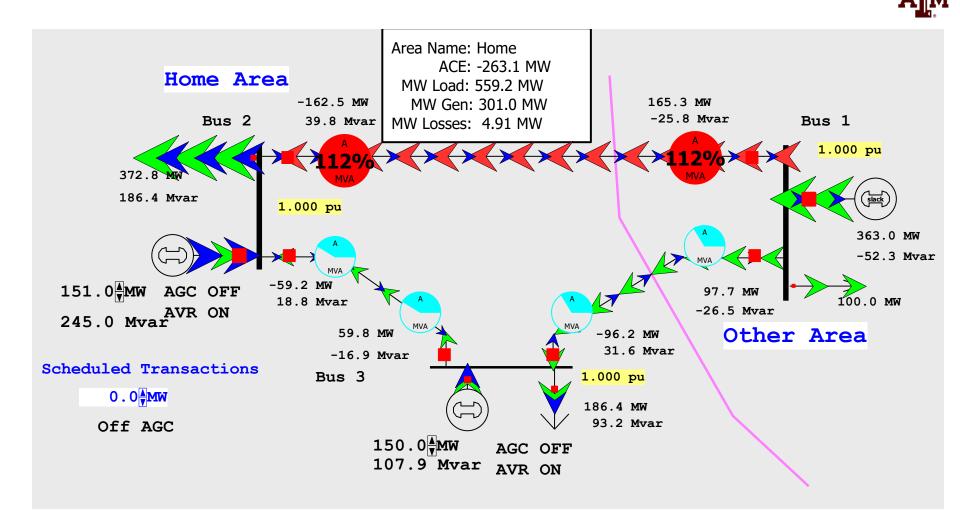

Basic Power Control

- A M
- Opening a circuit breaker causes the power flow to instantaneously (nearly) change.
- No other way to directly control power flow in a transmission line.
- By changing generation we can indirectly change this flow.
- Power flow in transmission line is limited by heating considerations
- Losses (I^2 R) can heat up the line, causing it to sag.

Modeling Consideration – Change is Not Really Instantaneous!

• The change isn't really instantaneous because of propagation delays, which are near the speed of light; there also wave reflection issues

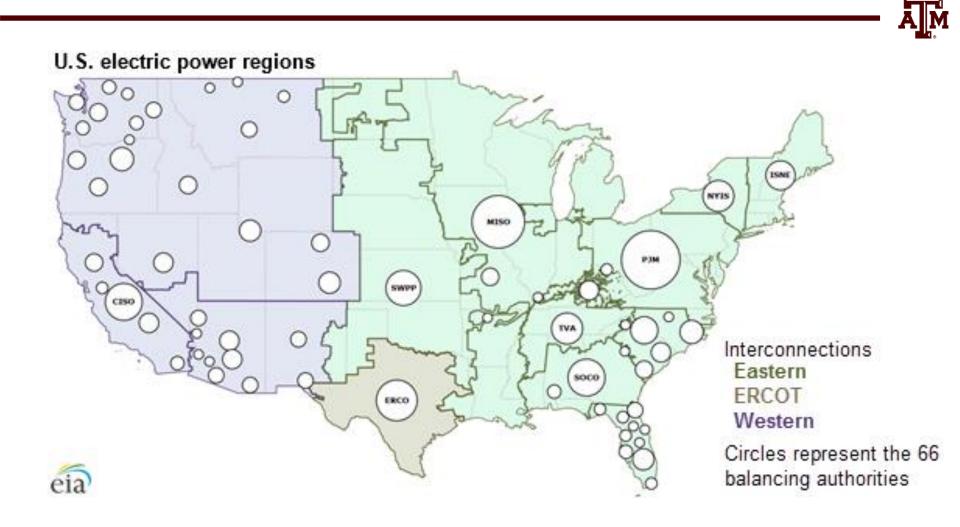
- This is covered in ECEN 667



Transmission Line Limits

- Power flow in transmission line is limited by heating considerations.
- Losses (I² R) can heat up the line, causing it to sag.
- Each line has a limit; many utilities use winter/summer limits.

Overloaded Transmission Line

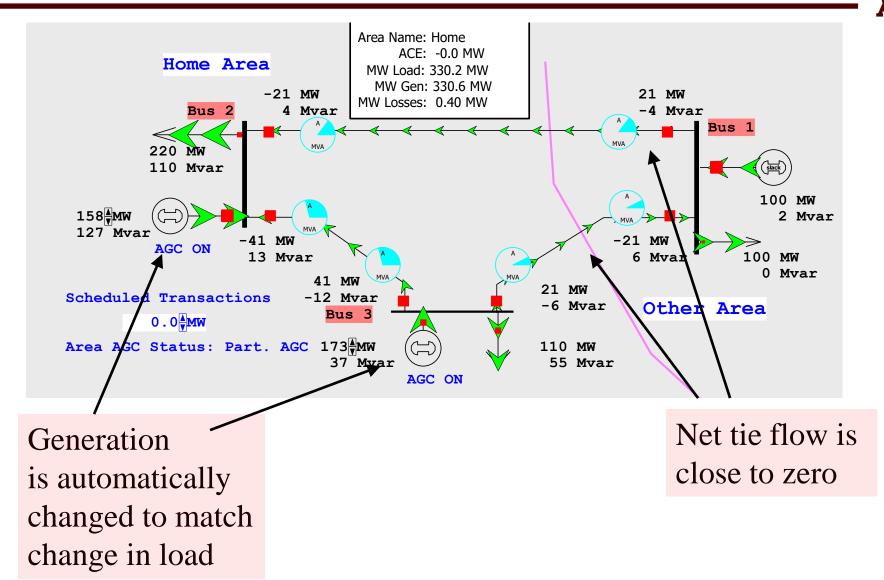

Interconnected Operation Balancing Authority (BA) Areas

- North American Eastern and Western grids are divided into balancing authority areas (BA)
 - Often just called an area
- Transmission lines that join two areas are known as tie-lines.
- The net power out of an area is the sum of the flow on its tie-lines.
- The flow out of an area is equal to

```
total gen - total load - total losses = tie-flow
```

US Balancing Authorities

Area Control Error (ACE)


- The area control error is the difference between the actual flow out of an area, and the scheduled flow
 - ACE also includes a frequency component that we will probably consider later in the semester
- Ideally the ACE should always be zero
- Because the load is constantly changing, each utility (or ISO) must constantly change its generation to "chase" the ACE
- ACE was originally computed by utilities; increasingly it is computed by larger organizations such as ISOs

Automatic Generation Control

- Most utilities (ISOs) use automatic generation control (AGC) to automatically change their generation to keep their ACE close to zero.
- Usually the control center calculates ACE based upon tie-line flows; then the AGC module sends control signals out to the generators every couple seconds.

Three Bus Case on AGC

₩