
ECEN 615
Methods of Electric Power

Systems Analysis

Lecture 7: DC Power Flow,

Gaussian Elimination, Sparse Systems

Prof. Tom Overbye

Dept. of Electrical and Computer Engineering

Texas A&M University

overbye@tamu.edu

mailto:overbye@tamu.edu

Announcements

• Read Chapter 6 from the book
• The book does the power flow using the polar form for the Ybus elements

• Homework 2 is due on Thursday September 17

• For homework 2 you’ll need to commercial version of

PowerWorld Simulator.

1

DC Power Flow Example

Example from Power System Analysis and Design, by Glover, Overbye, Sarma, 6th Edition
2

The output

of the

generator at

bus 3 is now

440 MW

DC Power Flow in PowerWorld

• PowerWorld allows for easy switching between the dc

and ac power flows (case Aggieland37)

3

To use the

dc approach

in PowerWorld

select Tools,

Solve, DC

Power Flow

Notice there

are no

losses

slack

Aggieland Power and Light
SLACK345

SLACK138

HOWDY345

HOWDY138

HOWDY69

12MAN69

GIGEM69

KYLE69

KYLE138

WEB138

WEB69

BONFIRE69

FISH69

RING69

TREE69

CENTURY69

REVEILLE69

TEXAS69

TEXAS138

TEXAS345

BATT69

NORTHGATE69

MAROON69

SPIRIT69

YELL69

RELLIS69

WHITE138

RELLIS138

BUSH69

MSC69

RUDDER69

HULLABALOO138

REED69
AGGIE138 AGGIE345

 23%
A

MVA

 21%
A

MVA

 67%
A

MVA

 35%
A

MVA

 77%
A

MVA

 74%
A

MVA

 73%
A

MVA

 14%
A

MVA

 39%
A

MVA

 72%
A

MVA

A

MVA

 57%
A

MVA

 18%
A

MVA

 29%
A

MVA

 33%
A

MVA

 58%
A

MVA

 57%
A

MVA

 23%
A

MVA

 22%
A

MVA

 22%
A

MVA

A

MVA

 43%
A

MVA

 65%
A

MVA

 62%
A

MVA

A

MVA

 81%
A

MVA

 84%
A

MVA

 64%
A

MVA

 36%
A

MVA

 39%
A

MVA

 27%
A

MVA

 60%
A

MVA

 75%
A

MVA

 55%
A

MVA

 55%
A

MVA

 26%
A

MVA

 14%
A

MVA

 65%
A

MVA

1.00 pu

1.00 pu

1.00 pu

1.00 pu

1.00 pu

1.00 pu
1.00 pu

1.00 pu

1.00 pu

1.00 pu

1.00 pu

1.00 pu
1.00 pu

1.00 pu

1.00 pu

1.00 pu

1.00 pu

1.00 pu

1.00 pu

1.000 pu

1.00 pu

1.00 pu

1.00 pu

1.00 pu
1.00 pu

1.00 pu

1.00 pu 1.00 pu

1.00 pu
1.00 pu

 68%
A

MVA

1.00 pu

 65%
A

MVA

PLUM138

 17%
A

MVA

1.00 pu

A

MVA

1.00 pu

 26%
A

MVA

 862 MW

 34 MW
 0 Mvar

 59 MW
 0 Mvar

MW 0

 100 MW

 0 Mvar

 20 MW
 0 Mvar

 100 MW

 0 Mvar

 61 MW
 0 Mvar

 59 MW

 0 Mvar

 70 MW

 0 Mvar

 93 MW
 0 Mvar

 58 MW
 0 Mvar

MW 10
 36 MW

 0 Mvar

 96 MW
 0 Mvar

MW 45

 37 MW
 0 Mvar

 53 MW
 0 Mvar

 0.0 Mvar
 29 MW
 0 Mvar

 93 MW

 0 Mvar 82 MW
 0 Mvar

 0.0 Mvar

 35 MW

 0 Mvar

 25 MW

 0 Mvar

 38 MW
 0 Mvar 22 MW

 0 Mvar

 0.0 Mvar

 0.0 Mvar

 0.0 Mvar

 0.0 Mvar

 0.0 Mvar

 0.0 Mvar

MW 90

 31 MW

 0 Mvar

MW 50

 27 MW
 0 Mvar

MW 5

 49 MW
 0 Mvar

Total Losses: 0.00 MW

Total Load 1421.0 MW

MW 110

MW 50

deg 0

tap1.0875

tap1.0625

tap1.0000

 287.2 MW

 115.0 MW

 87%
A

MVA

 94%
A

MVA

 90%
A

MVA

 90%
A

MVA

 90%
A

MVA

123%
A

MVA

103%
A

MVA

3

Linear System Solution: Introduction

• A problem that occurs in many is fields is the solution

of linear systems Ax = b where A is an n by n matrix

with elements aij, and x and b are n-vectors with

elements xi and bi respectively

• In power systems we are particularly interested in

systems when n is relatively large and A is sparse
– How large is large is changing

• A matrix is sparse if a large percentage of its elements

have zero values

• Goal is to understand the computational issues

(including complexity) associated with the solution of

these systems

4

Introduction, cont.

• Sparse matrices arise in many areas, and can have

domain specific structures

– Symmetric matrices

– Structurally symmetric matrices

– Tridiagnonal matrices

– Banded matrices

• A good (and free) book on sparse matrices is available at

www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

• ECEN 615 is focused on problems in the electric power

domain; it is not a general sparse matrix course

– Much of the early sparse matrix work was done in power!

5

Gaussian Elimination

• The best known and most widely used method for

solving linear systems of algebraic equations is

attributed to Gauss

• Gaussian elimination avoids having to explicitly

determine the inverse of A, which is O(n3)

• Gaussian elimination can be readily applied to sparse

matrices

• Gaussian elimination leverages the fact that scaling a

linear equation does not change its solution, nor does

adding on linear equation to another

1 2 1 22 4 10 2 5x x x x+ = → + =

6

Gaussian Elimination, cont.

• Gaussian elimination is the elementary procedure in

which we use the first equation to eliminate the first

variable from the last n-1 equations, then we use the

new second equation to eliminate the second variable

from the last n-2 equations, and so on

• After performing n-1 such eliminations we end up with

a triangular system which is easily solved in a

backward direction

7

Example 1

• We need to solve for x in the system

• The three elimination steps are given on the next

slides; for simplicity, we have appended the r.h.s.

vector to the matrix

• First step is set the diagonal element of row 1 to 1 (i.e.,

normalize it)

1

2

3

4

2 3 1 0 20

6 5 0 2 45

2 5 6 6 3

4 2 2 3 30

x

x

x

x

−     
    − − −
    =

− − −    
    

−    

8

Example 1, cont.

• Eliminate x1 by subtracting row 1 from all the rows

below it

1

1
2

multiply row by

−1 2

3

multiply row by

and add to row

 −1 4

 4

multiply row by

and add to row

1 6

2

multiply row by

and add to row

3 1
1 0 10

2 2

0 4 3

0 8 7 6 23

0 4 7 3 10

1
15

2

−

−

− − − −

− − −

 
 
 
 
 
 
 
 
 

9

Example 1, cont.

• Eliminate x2 by subtracting row 2 from all the

rows below it

1

2
4

multiply row by

 2 8

3

multiply row by

and add to row

2 4

4

multiply row by

and add to row

−

−

−

−

 
 
 
 
 
 
 
 
 

3 1
1 0 10

2 2

0 1

0 0 1 2 7

0 0 1 1 5

3 1 15

4 2 4

10

Example 1, cont.

• Elimination of x3 from row 3 and 4

−

−

−

−

 
 
 
 
 
 
 
 
 

3 1
1 0 10

2 2

0 1

0 0 1 2 7

0 0 0 1 2

3 1 15

4 2 4

11

 3 1multiply row by

 3 -1

 4

multiply row by

and add to row

Example 1, cont.

• Then, we solve for x by “going backwards”, i.e.,

using back substitution:

 − + =  =
2 3 4 2

3 1 15
7

4 2 4
x x x x

= −
4

2x

− =  =
3 4 3

2 7 3 x x x

+ − =  =
1 2 3 1

3 1
10 1

2 2
x x x x

12

LU Decomposition

• What we did with Gaussian elimination can be thought

of as changing the form of the matrix to create two

matrices with special structure

• One matrix, shown on the last slide, is upper triangular

• The second matrix, a lower triangular one, keeps track

of the operations we did to get the upper triangular

matrix

• These concepts will be helpful for a computer

implementation of the algorithm and for its application

to sparse systems

13

LU Decomposition Theorem

• Any nonsingular matrix A has the following

factorization:

where U could be the upper triangular matrix

previously developed (with 1’s on its diagonals) and L

is a lower triangular matrix defined by

A = LU

−




1

=

(j)

i j

ij

a

0

j i

j i

LU Decomposition Application

• As a result of this theorem we can rewrite

• Can also be set so U has non unity diagonals

• Once A has been factored, we can solve for x by

first solving for y, a process known as forward

substitution, then solving for x in a process known

as back substitution

• In the previous example we can think of L as a

record of the forward operations preformed on b.

Define

Then

Ax = LUx = b

y = Ux

Ly = b

LDU Decomposition

• In the previous case we required that the diagonals of

U be unity, while there was no such restriction on the

diagonals of L

• An alternative decomposition is

where D is a diagonal matrix, and the lower triangular

matrix is modified to require unity for the diagonals

(we’ll just use the LU approach in 615)

with

A = LDU

L = LD

Symmetric Matrix Factorization

• The LDU formulation is quite useful for the case of a

symmetric matrix

• Hence only the upper triangular elements and the

diagonal elements need to be stored, reducing storage

by almost a factor of 2

T

T T T

T

T

=

= =

=

A A

A = LDU U DL A

U L

A = U DU

Symmetric Matrix Factorization

• There are also some computational benefits from

factoring symmetric matrices. However, since

symmetric matrices are not common in power

applications, we will not consider them in-depth

• However, topologically symmetric sparse matrices are

quite common, so those will be our main focus

18

Pivoting

• An immediate problem that can occur with Gaussian

elimination is the issue of zeros on the diagonal; for

example

• This problem can be solved by a process known as

“pivoting,” which involves the interchange of either

both rows and columns (full pivoting) or just the rows

(partial pivoting)

– Partial pivoting is much easier to implement, and actually can

be shown to work quite well

0 1

2 3

 
 
 

A =

19

Pivoting, cont.

• In the previous example the (partial) pivot would just be

to interchange the two rows

obviously we need to keep track of the interchanged

rows!

• Partial pivoting can be helpful in improving numerical

stability even when the diagonals are not zero

– When factoring row k interchange rows so the new diagonal is

the largest element in column k for rows j >= k

2 3

0 1

 
 
 

A =

20

LU Algorithm Without Pivoting
Processing by row

• We will use the more common approach of having ones on

the diagonals of L. Also in the common, diagonally

dominant power system problems pivoting is not needed.

The below algorithm is in row form (useful with sparsity!)

For i := 2 to n Do Begin // This is the row being processed

For j := 1 to i-1 Do Begin // Rows subtracted from row i

A[i,j] = A[i,j]/A[j,j] // This is the scaling

For k := j+1 to n Do Begin // Go through each column in i

A[i,k] = A[i,k] - A[i,j]*A[j,k]

End;

End;

End;
21

LU Example

• Starting matrix

• First row is unchanged; start with i=2

• Result with i=2, j=1; done with row 2

20 12 5

5 12 6

4 3 8

 − −
 
− − 
 − − 

A =

20 12 5

0.25 9 7.25

4 3 8

 − −
 
− − 
 − − 

A =

22

A[2,2]= A[2,2]-A[2,1]*A[1,2]

=12-(-0.25)*(-12) =9

A[2,3] = A[2,3]-A[2,1]*A[1,3]

=-6 –(-0.25)*(-5) = -7.25

LU Example, cont.

• Result with i=3, j=1;

• Result with i=3, j=2; done with row 3; done!

20 12 5

0.25 9 7.25

0.2 5.4 7

 − −
 
− − 
 − − 

A =

20 12 5

0.25 9 7.25

0.2 0.6 2.65

 − −
 
− − 
 − − 

A =

23

A[3,1]= A[3,1]/A[1,1]

=-4/20= -0.2

A[3,2] = A[3,2] – A[3,1]*A[1,2]

A[3,2] = -3 – (-0.2)*(-12) = -5.4

A[3,3] = 8 – (-0.2)*(-5) = 7

A[3,2]= A[3,2]/A[2,2]

=-5.4/9= -0.6

A[3,3] = A[3,3] – A[3,2]*A[2,3]

A[3,3] = 7 – (-0.6)*(-7.25) =2.65

LU Example, cont.

• Original matrix is used to hold L and U

20 12 5

5 12 6

4 3 8

1 0 0

0.25 1 0

0.2 0.6 1

20 12 5

0 9 7.25

0 0 2.65

 − −
 
− − = 
 − − 

 
 

= − 
 − − 

 − −
 

= − 
  

A = LU

L

U

With this approach

the original A matrix

has been replaced

by the factored values!

24

Forward Substitution

Forward substitution solves with values in b

being over written (replaced by the y values)

For i := 2 to n Do Begin // This is the row being processed

For j := 1 to i-1 Do Begin

b[i] = b[i] - A[i,j]*b[j] // This is just using the L matrix

End;

End;

b = Ly

25

Forward Substitution Example

10

Let = 20

30

1 0 0

From before 0.25 1 0

0.2 0.6 1

[1] 10

[2] 20 (0.25)*10 22.5

[3] 30 (0.2)*10 (0.6)*22.5 45.5

y

y

y

 
 
 
  

 
 

= − 
 − − 

=

= − − =

= − − − − =

b

L

26

Backward Substitution

• Backward substitution solves (with values of y

contained in the b vector as a result of the forward

substitution)

For i := n to 1 Do Begin // This is the row being processed

For j := i+1 to n Do Begin

b[i] = b[i] - A[i,j]*b[j] // This is just using the U matrix

End;

b[i] = b[i]/A[i,i] // The A[i,i] values are <> 0 if it is nonsingular

End

y = Ux

27

Backward Substitution Example

()

()

10

Let = 22.5

45.5

20 12 5

From before 0 9 7.25

0 0 2.65

[3] (1/ 2.65)*45.5 17.17

[2] (1/ 9)* 22.5 (7.25)*17.17 16.33

[1] (1/ 20)* 10 (5)*17.17 (12)*16.33 14.59

x

x

x

 
 
 
  

 − −
 

= − 
  

= =

= − − =

= − − − − =

y

U

28

Computational Complexity

• Computational complexity indicates how the number

of numerical operations scales with the size of the

problem

• Computational complexity is expressed using the “Big

O” notation; assume a problem of size n

– Adding the number of elements in a vector is O(n)

– Adding two n by n full matrices is O(n2)

– Multiplying two n by n full matrices is O(n3)

– Inverting an n by n full matrix, or doing Gaussian

elimination is O(n3)

– Solving the traveling salesman problem by brute-force

search is O(n!)

29

Computational Complexity

• Knowing the computational complexity of a problem

can help to determine whether it can be solved (at least

using a particular method)

– Scaling factors do not affect the computation complexity

• an algorithm that takes n3/2 operations has the same computational

complexity of one the takes n3/10 operations (though obviously the

second one is faster!)

• With O(n3) factoring a full matrix becomes

computationally intractable quickly!

– A 100 by 100 matrix takes a million operations (give or take)

– A 1000 by 1000 matrix takes a billion operations

– A 10,000 by 10,000 matrix takes a trillion operations!

30

Sparse Systems

• The material presented so far applies to any arbitrary

linear system

• The next step is to see what happens when we apply

triangular factorization to a sparse matrix

• For a sparse system, only nonzero elements need to be

stored in the computer since no arithmetic operations

are performed on the 0’s

• The LU factorization is adapted to solve sparse systems

in such a way as to preserve the sparsity as much as

possible

31

Sparse Matrix History

• A nice overview of sparse matrix history is by Iain Duff

at http://www.siam.org/meetings/la09/talks/duff.pdf

• Sparse matrices developed simultaneously in several

different disciplines in the early 1960’s with power

systems definitely one of the key players (Bill Tinney

from BPA)

• Different disciplines claim credit since they didn’t

necessarily know what was going on in the others

32

Sparse Matrix History

• In power systems a key N. Sato, W.F. Tinney, “Techniques for

Exploiting the Sparsity of the Network Admittance Matrix,”

Power App. and Syst., pp 944-950, December 1963

• In the paper they are proposing solving systems with up to 1000 buses

(nodes) in 32K of memory!

• You’ll also note that in the discussion by El-Abiad, Watson, and Stagg

they mention the creation of standard test systems with between 30 and

229 buses (this surely included the now famous 118 bus system)

• The BPA authors talk “power flow” and the discussors talk “load flow.”

• Tinney and Walker present a much more detailed approach in

their 1967 IEEE Proceedings paper titled “Direct Solutions of

Sparse Network Equations by Optimally Order Triangular

Factorization”

33

Sparse Matrix Computational Order

• The computational order of factoring a sparse matrix, or

doing a forward/backward substitution depends on the

matrix structure

– Full matrix is O(n3)

– A diagonal matrix is O(n); that is, just invert each element

• For power system problems the classic paper is

F. L. Alvarado, “Computational complexity in power

systems,” IEEE Transactions on Power Apparatus and

Systems, ,May/June 1976

– O(n1.4) for factoring, O(n1.2) for forward/backward

– For a 100,000 by 100,000 matrix changes computation for

factoring from 1 quadrillion to 10 million!
34

Inverse of a Sparse Matrix

• The inverse of a sparse matrix is NOT in general a

sparse matrix

• We never (or at least very, very, very seldom) explicitly

invert a sparse matrix

– Individual columns of the inverse of a sparse matrix can be

obtained by solving x = A-1b with b set to all zeros except for a

single nonzero in the position of the desired column

– If a few desired elements of A-1 are desired (such as the

diagonal values) they can usually be computed quite efficiently

using sparse vector methods (a topic we’ll be considering soon)

• We can’t invert a singular matrix (whether sparse or

full)

35

Computer Architecture Impacts

• With modern computers the processor speed is many

times faster than the time it takes to access data in main

memory

– Some instructions can be processed in parallel

• Caches are used to provide quicker access to more

commonly used data

– Caches are smaller than main memory

– Different cache levels are used with the quicker caches, like

L1, have faster speeds but smaller sizes; L1 might be 256K,

whereas the slower L2 might be 2M

• Data structures can have a significant impact on sparse

matrix computation
36

Full Matrix versus Sparse Matrix
Storage

• Full matrices are easily stored in arrays with just one

variable needed to store each value since the value’s

row and column are implicitly available from its matrix

position

• With sparse matrices two or three elements are needed

to store each value

– The zero values are not explicitly stored

– The value itself, its row number and its column number

– Storage can be reduced by storing all the elements in a

particular row or column together

• Because large matrices are often quite sparse, the total

storage is still substantially reduced
37

Sparse Matrix Usage Can Determine
the Optimal Storage

• How a sparse matrix is used can determine the best

storage scheme to use

– Row versus column access; does the structure change

• Is the matrix essentially used only once? That is, its

structure and values are assumed new each time used

• Is the matrix structure constant, with its values changed

– This would be common in the N-R power flow, in which the

structure doesn’t change each iteration, but its values do

• Is the matrix structure and values constant, with just the

b vector in Ax=b changing

– Quite common in transient stability solutions

38

Numerical Precision

• Required numerical precision determines type of

variables used to represent numbers

– Specified as number of bytes, and whether signed or not

• For Integers

– One byte is either 0 to 255 or -128 to 127

– Two bytes is either smallint (-32,768 to 32,767) or word (0 to

65,536)

– Four bytes is either Integer (-2,147,483,648 to 2,147,483,647)

or Cardinal (0 to 4,294,967,295)

• This is usually sufficient for power system row/column numbers

– Eight bytes (Int64) if four bytes is not enough

39

Numerical Precision, cont.

• For floating point values using choice is between four

bytes (single precision) or eight bytes (double

precision); extended precision has ten bytes

– Single precision allows for 6 to 7 significant digits

– Double precision allows for 15 to 17 significant digits

– Extended allows for about 18 significant digits

– More bytes requires more storage

– Computational impacts depend on the underlying device; on

PCs there isn’t much impact; GPUs can be 3 to 8 times

slower for double precision

• For most power problems double precision is best

40

General Sparse Matrix Storage

• A general approach for storing a sparse matrix would be

using three vectors, each dimensioned to number of

elements
– AA: Stores the values, usually in power system analysis as double precision

values (8 bytes)

– JR: Stores the row number; for power problems usually as an integer (4

bytes)

– JC: Stores the column number, again as an integer

• If unsorted then both row and column are needed

• New elements could easily be added, but costly to delete

• Unordered approach doesn’t make for good computation since

elements used next computationally aren’t necessarily nearby

• Usually ordered, either by row or column
41

Sparse Storage Example

• Assume

• Then

5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

− 
 −
 =

− 
 
− − − 

A

 

 

 

5 4 4 3 3 2 4 3 2 10

1 1 2 2 3 3 4 4 4 4

1 4 2 4 3 4 1 2 3 4

= − − − − − −

=

=

AA

JR

JC

Note, this example is a symmetric matrix, but the

technique is general

42

