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Announcements

• Read Chapter 6 from the book
• The book does the power flow using the polar form for the Ybus elements 

• Homework 2 is due on Thursday September 17

• For homework 2 you’ll need to commercial version of 

PowerWorld Simulator.  
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DC Power Flow Example

Example from Power System Analysis and Design, by Glover, Overbye, Sarma, 6th Edition
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The output

of the

generator at

bus 3 is  now

440 MW



DC Power Flow in PowerWorld

• PowerWorld allows for easy switching between the dc 

and ac power flows (case Aggieland37)
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To use the 

dc approach

in PowerWorld

select Tools,

Solve, DC

Power Flow

Notice there

are no 

losses
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Linear System Solution: Introduction

• A problem that occurs in many is fields is the solution 

of linear systems Ax = b where A is an n by n matrix 

with elements aij, and x and b are n-vectors with 

elements xi and bi respectively

• In power systems we are particularly interested in 

systems when n is relatively large and A is sparse
– How large is large is changing 

• A matrix is sparse if a large percentage of its elements 

have zero values

• Goal is to understand the computational issues 

(including complexity) associated with the solution of 

these systems 
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Introduction, cont.

• Sparse matrices arise in many areas, and can have 

domain specific structures

– Symmetric matrices

– Structurally symmetric matrices

– Tridiagnonal matrices

– Banded matrices

• A good (and free) book on sparse matrices is available at 

www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

• ECEN 615 is focused on problems in the electric power 

domain; it is not a general sparse matrix course

– Much of the early sparse matrix work was done in power!
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Gaussian Elimination

• The best known and most widely used method for 

solving linear systems of algebraic equations is 

attributed to Gauss

• Gaussian elimination avoids having to explicitly 

determine the inverse of A, which is O(n3)

• Gaussian elimination can be readily applied to sparse 

matrices

• Gaussian elimination leverages the fact that scaling a 

linear equation does not change its solution, nor does 

adding on linear equation to another

1 2 1 22 4 10 2 5x x x x+ = → + =    
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Gaussian Elimination, cont.

• Gaussian elimination is the elementary procedure in 

which we use the first equation to eliminate the first 

variable from the last n-1 equations, then we use the 

new second equation to eliminate the second variable 

from the last n-2 equations, and so on

• After performing n-1 such eliminations we end up with 

a triangular system which is easily solved in a 

backward direction
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Example 1

• We need to solve for x in the system

• The three elimination steps are given on the next 

slides; for simplicity, we have appended the r.h.s. 

vector to the matrix 

• First step is set the diagonal element of row 1 to 1 (i.e., 

normalize it)

1

2

3

4

2 3 1 0 20

6 5 0 2 45

2 5 6 6 3

4 2 2 3 30

x

x

x

x

−     
    − − −
    =

− − −    
    

−    
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Example 1, cont.

• Eliminate x1 by subtracting row 1 from all the rows 

below it

 
1

1
2

multiply row by 

     

 

−1  2

3

multiply row by

and add to row

    −1  4

 4

multiply row by

and add to row

  

 

1 6 

2

multiply row by  

and add to row

3 1
1 0 10

2 2

0 4 3

0 8 7 6 23

0 4 7 3 10

1
15

2

−

−

− − − −

− − −

 
 
 
 
 
 
 
 
 
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Example 1, cont.

• Eliminate x2 by subtracting row 2 from all the 

rows below it

    
1

2
4

multiply row by

    2 8

3

multiply row by

and add to row  

    

  

2 4

4

multiply row by

and add to row

−

−

−

−

 
 
 
 
 
 
 
 
 

3 1
1 0 10

2 2

0 1

0 0 1 2 7

0 0 1 1 5

3 1 15

4 2 4
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Example 1, cont.

• Elimination of  x3 from row 3 and 4

−

−

−

−

 
 
 
 
 
 
 
 
 

3 1
1 0 10

2 2

0 1

0 0 1 2 7

0 0 0 1 2

3 1 15

4 2 4
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 3   1multiply row by

 3    -1

  4

multiply row by

and add to row



Example 1, cont.

• Then, we solve for  x by “going backwards”,    i.e., 

using back substitution: 

 − + =  =
2 3 4 2

3 1 15
7

4 2 4
x x x x

= −
4

2x

− =  =
3 4 3

2 7 3    x x x

+ − =  =
1 2 3 1

3 1
10 1

2 2
x x x x
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LU Decomposition

• What we did with Gaussian elimination can be thought 

of as changing the form of the matrix to create two 

matrices with special structure

• One matrix, shown on the last slide, is upper triangular

• The second matrix, a lower triangular one, keeps track 

of the operations we did to get the upper triangular 

matrix

• These concepts will be helpful for a computer 

implementation of the algorithm and for its application 

to sparse systems
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LU Decomposition Theorem

• Any nonsingular matrix A has the following 

factorization:

where U could be the upper triangular matrix 

previously developed (with 1’s on its diagonals) and L

is a lower triangular matrix defined by

A = LU

−




1

=

(j )

i j

ij

a

0

j i

j i



LU Decomposition Application

• As a result of this theorem we can rewrite

• Can also be set so U has non unity diagonals

• Once A has been factored, we can solve for x by 

first solving for y, a process known as forward 

substitution, then solving for x in a process known 

as back substitution

• In the previous example we can think of L as a 

record of the forward operations preformed on b.  

Define 

Then 

Ax = LUx = b

y = Ux

Ly = b



LDU Decomposition

• In the previous case we required that the diagonals of 

U be unity, while there was no such restriction on the 

diagonals of L 

• An alternative decomposition is

where D is a diagonal matrix, and the lower triangular 

matrix is modified to require unity for the diagonals 

(we’ll just use the LU approach in 615) 

with  

A = LDU

L = LD



Symmetric Matrix Factorization

• The LDU formulation is quite useful for the case of a 

symmetric matrix 

• Hence only the upper triangular elements and the 

diagonal elements need to be stored, reducing storage 

by almost a factor of 2 

T

T T T

T

T

=

= =

=

A A

A = LDU U DL A

U L

A = U DU



Symmetric Matrix Factorization

• There are also some computational benefits from 

factoring symmetric matrices.  However, since 

symmetric matrices are not common in power 

applications, we will not consider them in-depth

• However, topologically symmetric sparse matrices are 

quite common, so those will be our main focus
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Pivoting

• An immediate problem that can occur with Gaussian 

elimination is the issue of zeros on the diagonal; for 

example

• This problem can be solved by a process known as 

“pivoting,” which involves the interchange of either 

both rows and columns (full pivoting) or just the rows 

(partial pivoting)

– Partial pivoting is much easier to implement, and actually can 

be shown to work quite well

0 1

2 3

 
 
 

A =

19



Pivoting, cont.

• In the previous example the (partial) pivot would just be 

to interchange the two rows

obviously we need to keep track of the interchanged 

rows!

• Partial pivoting can be helpful in improving numerical 

stability even when the diagonals are not zero

– When factoring row k interchange rows so the new diagonal is 

the largest element in column k for rows j  >= k

2 3

0 1

 
 
 

A =
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LU Algorithm Without Pivoting
Processing by row

• We will use the more common approach of having ones on 

the diagonals of L.  Also in the common, diagonally 

dominant power system problems pivoting is not needed.

The below algorithm is in row form (useful with sparsity!)

For i := 2 to n Do Begin  // This is the row being processed

For j := 1 to i-1 Do Begin  // Rows subtracted from row i

A[i,j] = A[i,j]/A[j,j]  // This is the scaling 

For k := j+1 to n Do Begin  // Go through each column in i

A[i,k] = A[i,k] - A[i,j]*A[j,k]

End;

End;

End;
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LU Example

• Starting matrix

• First row is unchanged; start with i=2

• Result with i=2, j=1; done with row 2

20 12 5

5 12 6

4 3 8

 − −
 
− − 
 − − 

A =

20 12 5

0.25 9 7.25

4 3 8

 − −
 
− − 
 − − 

A =

22

A[2,2]= A[2,2]-A[2,1]*A[1,2]

=12-(-0.25)*(-12) =9

A[2,3] = A[2,3]-A[2,1]*A[1,3]

=-6 –(-0.25)*(-5) = -7.25



LU Example, cont.

• Result with i=3, j=1;

• Result with i=3, j=2; done with row 3; done!

20 12 5

0.25 9 7.25

0.2 5.4 7

 − −
 
− − 
 − − 

A =

20 12 5

0.25 9 7.25

0.2 0.6 2.65

 − −
 
− − 
 − − 

A =

23

A[3,1]= A[3,1]/A[1,1]

=-4/20= -0.2

A[3,2] = A[3,2] – A[3,1]*A[1,2]

A[3,2] = -3 – (-0.2)*(-12) = -5.4

A[3,3] = 8 – (-0.2)*(-5) = 7

A[3,2]= A[3,2]/A[2,2]

=-5.4/9= -0.6

A[3,3] = A[3,3] – A[3,2]*A[2,3]

A[3,3] = 7 – (-0.6)*(-7.25) =2.65 



LU Example, cont.

• Original matrix is used to hold L and U

20 12 5

5 12 6

4 3 8

1 0 0

0.25 1 0

0.2 0.6 1

20 12 5

0 9 7.25

0 0 2.65

 − −
 
− − = 
 − − 

 
 

= − 
 − − 

 − −
 

= − 
  

A = LU

L

U

With this approach

the original A matrix

has been replaced

by the factored values!
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Forward Substitution

Forward substitution solves              with values in b

being over written (replaced by the y values)

For i := 2 to n Do Begin  // This is the row being processed

For j := 1 to i-1 Do Begin 

b[i] = b[i] - A[i,j]*b[j]    // This is just using the L matrix

End;

End;

b = Ly
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Forward Substitution Example

10

Let  = 20

30

1 0 0

From before 0.25 1 0

0.2 0.6 1

[1] 10

[2] 20 ( 0.25)*10 22.5

[3] 30 ( 0.2)*10 ( 0.6)*22.5 45.5

y

y

y

 
 
 
  

 
 

= − 
 − − 

=

= − − =

= − − − − =

b

L
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Backward Substitution

• Backward substitution solves              (with values of y

contained in the b vector as a result of the forward 

substitution)

For i := n to 1 Do Begin  // This is the row being processed

For j := i+1 to n Do Begin 

b[i] = b[i] - A[i,j]*b[j]    // This is just using the U matrix

End;

b[i] = b[i]/A[i,i]    // The A[i,i] values are <> 0 if it is nonsingular

End

y = Ux
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Backward Substitution Example

( )

( )

10

Let  = 22.5

45.5

20 12 5

From before 0 9 7.25

0 0 2.65

[3] (1/ 2.65)*45.5 17.17

[2] (1/ 9)* 22.5 ( 7.25)*17.17 16.33

[1] (1/ 20)* 10 ( 5)*17.17 ( 12)*16.33 14.59

x

x

x

 
 
 
  

 − −
 

= − 
  

= =

= − − =

= − − − − =

y

U
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Computational Complexity

• Computational complexity indicates how the number 

of numerical operations scales with the size of the 

problem

• Computational complexity is expressed using the “Big 

O” notation; assume a problem of size n

– Adding the number of elements in a vector is O(n)

– Adding two n by n full matrices is O(n2)

– Multiplying two n by n full matrices is O(n3)

– Inverting an n by n full matrix, or doing Gaussian 

elimination is O(n3)

– Solving the traveling salesman problem by brute-force 

search is O(n!)
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Computational Complexity

• Knowing the computational complexity of a problem 

can help to determine whether it can be solved (at least 

using a particular method)

– Scaling factors do not affect the computation complexity

• an algorithm that takes n3/2 operations has the same computational 

complexity of one the takes n3/10 operations (though obviously the 

second one is faster!)

• With O(n3) factoring a full matrix becomes 

computationally intractable quickly!

– A 100 by 100 matrix takes a million operations (give or take)

– A 1000 by 1000 matrix takes a billion operations 

– A 10,000 by 10,000 matrix takes a trillion operations!
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Sparse Systems

• The material presented so far applies to any arbitrary 

linear system

• The next step is to see what happens when we apply 

triangular factorization to a sparse matrix

• For a sparse system, only nonzero elements need to be 

stored in the computer since no arithmetic operations 

are performed on the 0’s

• The LU factorization is adapted to solve sparse systems 

in such a way as to preserve the sparsity as much as 

possible

31



Sparse Matrix History

• A nice overview of sparse matrix history is by Iain Duff 

at http://www.siam.org/meetings/la09/talks/duff.pdf

• Sparse matrices developed simultaneously in several 

different disciplines in the early 1960’s with power 

systems definitely one of the key players (Bill Tinney

from BPA)

• Different disciplines claim credit since they didn’t 

necessarily know what was going on in the others
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Sparse Matrix History

• In power systems a key N. Sato, W.F. Tinney, “Techniques for 

Exploiting the Sparsity of the Network Admittance Matrix,” 

Power App. and Syst., pp 944-950, December 1963

• In the paper they are proposing solving systems with up to 1000 buses 

(nodes) in 32K of memory!

• You’ll also note that in the discussion by El-Abiad, Watson, and Stagg 

they mention the creation of standard test systems with between 30 and 

229 buses (this surely included the now famous 118 bus system)

• The BPA authors talk “power flow” and the discussors talk “load flow.” 

• Tinney and Walker present a much more detailed approach in 

their 1967 IEEE Proceedings paper titled “Direct Solutions of 

Sparse Network Equations by Optimally Order Triangular 

Factorization”
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Sparse Matrix Computational Order

• The computational order of factoring a sparse matrix, or 

doing a forward/backward substitution depends on the 

matrix structure

– Full matrix is O(n3)

– A diagonal matrix is O(n); that is, just invert each element

• For power system problems the classic paper is 

F. L. Alvarado, “Computational complexity in power 

systems,” IEEE Transactions on Power Apparatus and 

Systems, ,May/June 1976

– O(n1.4) for factoring, O(n1.2) for forward/backward

– For a 100,000 by 100,000 matrix changes computation for 

factoring  from 1 quadrillion to 10 million!
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Inverse of a Sparse Matrix

• The inverse of a sparse matrix is NOT in general a 

sparse matrix

• We never (or at least very, very, very seldom) explicitly 

invert a sparse matrix

– Individual columns of the inverse of a sparse matrix can be 

obtained by solving x = A-1b with b set to all zeros except for a 

single nonzero in the position of the desired column

– If a few desired elements of A-1 are desired (such as the 

diagonal values) they can usually be computed quite efficiently 

using sparse vector methods (a topic we’ll be considering soon)

• We can’t invert a singular matrix (whether sparse or 

full)
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Computer Architecture Impacts

• With modern computers the processor speed is many 

times faster than the time it takes to access data in main 

memory

– Some instructions can be processed in parallel 

• Caches are used to provide quicker access to more 

commonly used data

– Caches are smaller than main memory

– Different cache levels are used with the quicker caches, like 

L1, have faster speeds but smaller sizes; L1 might be 256K, 

whereas the slower L2 might be 2M

• Data structures can have a significant impact on sparse 

matrix computation
36



Full Matrix versus Sparse Matrix 
Storage

• Full matrices are easily stored in arrays with just one 

variable needed to store each value since the value’s 

row and column are implicitly available from its matrix 

position

• With sparse matrices two or three elements are needed 

to store each value

– The zero values are not explicitly stored

– The value itself, its row number and its column number

– Storage can be reduced by storing all the elements in a 

particular row or column together

• Because large matrices are often quite sparse, the total 

storage is still substantially reduced
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Sparse Matrix Usage Can Determine 
the Optimal Storage

• How a sparse matrix is used can determine the best 

storage scheme to use

– Row versus column access; does the structure change 

• Is the matrix essentially used only once? That is, its 

structure and values are assumed new each time used 

• Is the matrix structure constant, with its values changed

– This would be common in the N-R power flow, in which the  

structure doesn’t change each iteration, but its values do

• Is the matrix structure and values constant, with just the 

b vector in Ax=b changing

– Quite common in transient stability solutions
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Numerical Precision

• Required numerical precision determines type of 

variables used to represent numbers

– Specified as number of bytes, and whether signed or not

• For Integers

– One byte is either 0 to 255 or -128 to 127

– Two bytes is either smallint (-32,768 to 32,767) or word (0 to 

65,536)

– Four bytes is either Integer (-2,147,483,648 to 2,147,483,647) 

or Cardinal (0 to 4,294,967,295)

• This is usually sufficient for power system row/column numbers

– Eight bytes (Int64) if four bytes is not enough
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Numerical Precision, cont.

• For floating point values using choice is between four 

bytes (single precision) or eight bytes (double 

precision); extended precision has ten bytes

– Single precision allows for 6 to 7 significant digits

– Double precision allows for 15 to 17 significant digits

– Extended allows for about 18 significant digits

– More bytes requires more storage

– Computational impacts depend on the underlying device; on 

PCs there isn’t much impact; GPUs can be 3 to 8 times 

slower for double precision

• For most power problems double precision is best
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General Sparse Matrix Storage

• A general approach for storing a sparse matrix would be 

using three vectors, each dimensioned to number of 

elements
– AA: Stores the values, usually in power system analysis as double precision 

values (8 bytes)

– JR: Stores the row number; for power problems usually as an integer (4 

bytes)

– JC: Stores the column number, again as an integer

• If unsorted then both row and column are needed

• New elements could easily be added, but costly to delete

• Unordered approach doesn’t make for good computation since 

elements used next computationally aren’t necessarily nearby

• Usually ordered, either by row or column 
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Sparse Storage Example

• Assume

• Then 

5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

− 
 −
 =

− 
 
− − − 

A

 

 

 

5 4 4 3 3 2 4 3 2 10

1 1 2 2 3 3 4 4 4 4

1 4 2 4 3 4 1 2 3 4

= − − − − − −

=

=

AA

JR

JC

Note, this example is a symmetric matrix, but the 

technique is general
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