
ECEN 615
Methods of Electric Power 

Systems Analysis

Lecture 9: Sparse Systems, 

Advanced Power Flow 

Prof. Tom Overbye

Dept. of Electrical and Computer Engineering

Texas A&M University

overbye@tamu.edu

mailto:overbye@tamu.edu


Announcements

• Homework 3 should be done before the first exam 

but need not be turned in

• Start reading Chapter 7 (the term reliability is now 

often used instead of security)

• First exam is in class on Thursday Oct 1

• Distance learning students do not need to take the exam 

during the class period

• Closed book, notes.  One 8.5 by 11 inch notesheet and 

calculators allowed

• Last’s years exam is available in Canvas

1



Tinney Scheme 2

• The Tinney Scheme 2 usually combines adding the fills 

with the ordering in order to update the valence on-the-

fly as the fills are added

• As before the nodes are chosen based on their valence, 

but now the valence is the actual valence they have 

with the added lines (fills)

– This is also known as the Minimum Degree Algorithm (MDA)

– Ties are again broken using the lowest node number

• This method is quite effective for power systems, and is 

highly recommended; however it is certainly not 

guaranteed to result in the fewest fills (i.e. not optimal)

2



Tinney Scheme 2 Example

• Consider the previous network:

• Nodes 1,2,3 are chosen as before.  But once these 

nodes are eliminated the valence of 4 is 1, so it is 

chosen next.  Then 5 (with a new valence of 2 tied with 

7), followed by 6 (new valence of 2), 7 then 8.  

1 2 3

4 5
6

78

3



Coding Tinney 2

• The following slides show how to code Tinney 2 for 

an n by n sparse matrix A

• First we setup linked lists grouping all the nodes by 

their original valence

• vcHead is a pointer vector [0..mvValence] 

– If a node has no connections its incidence is 0

– Theoretically mvValence should be n-1, but in practice a 

much smaller number can be used, putting nodes with 

valence values above this into the vcHead[mvValence] is

4



Coding Tinney 2, cont.

• Setup a boolean vectors chosenNode[1..n] to indicate 

which nodes are chosen and BSWR[1..n] as a sparse 

working row; initialize both to all false

• Setup an integer vector rowPerm[1..n] to hold the 

permuted rows; initialize to all zeros

• For i := 1 to n Do Begin

– Choose node from valence data structure with the lowest 

current valence; let this be node k

• Go through vcHead from lastchosen level (last chosen level may 

need to be reduced by one during the following elimination process;

– Set rowPerm[i] = k; set chosenNode[k] = true

5



Coding Tinney 2, cont.

– Modify sparse matrix A to add fills between all of k’s adjacent 

nodes provided 

1. a branch doesn’t already exist

2. both nodes have not already been chosen (their chosenNode

entries are false)

• These fills are added by going through each element in row k; for 

each element set the BSWR elements to true for the incident nodes; 

add fills if a connection does not already exist (this requires adding 

two new elements to A)

– Again go through row k updating the valence data structure 

for those nodes that have not yet been chosen

• These values can either increase or go down by one (because of the 

elimination of node k)

6



Coding Tinney 2, cont.

• This continues through all the nodes; free all vectors 

except for rowPerm

• At this point in the algorithm the rowPerm vector 

contains the new ordering and matrix A has been 

modified so that all the fills have been added

– The order of the rows in A has not been changed, and its 

columns are no longer sorted 

7



Coding Tinney 2, cont

• Sort the rows of A to match the order in rowPerm

– Surprising sorting A is of computational order equal to the 

number of elements in A

• Go through A putting its elements into column linked lists; these 

columns will be ordered by row

• Then through the columns linked lists in reverse order given by 

rowPerm

– That is For i := n downto 1 Do Begin

p1 := TSparmatLL(colHead[rowPerm[i]).Head;

….

• That’s it – the matrix A is now readying for factoring

• Pivoting may be required, but usually isn’t needed in 

the power flow  

8



Some Example Values for Tinney 2

Number of 

buses

Nonzeros

before fills

Fills Total 

nonzeros

Percent

nonzeros

37 63 72 135 9.86%

118 478 168 646 4.64%

18,190 64,948 31,478 96,426 0.029%

62,605 228,513 201,546 430,059 0.011%

9



Tinney Scheme 3

• “Number the rows so that at each step of the process 

the next row to be operated upon is the one that will 

introduce the fewest new nonzero terms.” 

• “If more than one row meets this criterion, select any 

one. This involves a trial simulation of every feasible 

alternative of the elimination process at each step. 

Input information is the same as for scheme 2).”

• Tinney 3 takes more computation and in general does 

not give fewer fills than the quicker Tinney 2

• Tinney got  into the NAE in 1998

These are direct quotes from the Tinney-Walker 1967 IEEE Proceedings Paper



Sparse Forward Substitution with  a 
Permutation Vector

Pass in b in bvector

For i := 1 to n Do Begin 

k = rowPerm[i];  // this is the only change, except using k

p1 := rowHead[k];  // the row needs to be ordered correctly!

While p1 <> rowDiag[k] Do Begin 

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

End;

11



Sparse Backward Substitution with 
Permutation Vector

Pass in b in bvector

For i := n downto 1 Do Begin 

k = rowPerm[i]; 

p1 := rowDiag[k].next;  

While p1 <> nil Do Begin 

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

bvector[k] := bvector[k]/rowDiag[k].value;

End;

• Note, numeric problems such as matrix singularity are 

indicated with rowDiag[k].value being zero!
12



Sparse Vector Methods

• Sparse vector methods are useful for cases in solving 

Ax=b in which

– A is sparse

– b is sparse

– only certain elements of x are needed

• In these right circumstances sparse vector methods can 

result in extremely fast solutions!

• A common example is to find selected elements of the 

inverse of A, such as diagonal elements.  

13



Sparse Vector Methods

• Often times multiple solutions with varying b values 

are required

– A only needs to be factored once, with its factored form used 

many times 

• Key reference is 

W.F. Tinney, V. Brandwajn, and S.M. Chan, "Sparse Vector 

Methods", IEEE Transactions on Power Apparatus and 

Systems, vol. PAS-104, no. 2, February 1985, pp. 295-300

14



Sparse Vector Methods Introduced

• Assume we are solving Ax = b with A factored so we 

solve LUx = b by first doing the forward substitution 

to solve Ly = b and then the backward substitution to 

solve Ux = y

• A key insight: In the solution of Ly = b if b is sparse 

then only certain columns of L are required, and y is 

often sparse 

• =

y1

.

.

.

yn

b1

.

.

.

bn

15

=x



Fast Forward Substitution

• If b is sparse, then the fast forward (FF) substitution 

takes advantage of the fact that we only need certain 

columns of L

• We define {FF} as the set of columns of L needed for 

the solution of Ly = b; this is equal to the nonzero 

elements of y

• In general the solution of Ux = y will NOT result in x

being a sparse vector 

• However, oftentimes only certain elements of x are 

desired

– E.g., the sensitivity of the flows on certain lines to a change 

in generation at a single bus; or a diagonal of A-1
16



Fast Backward Substitution

• In the case in which only certain elements of x are 

desired, then we only need to use certain rows in U

below the desired elements of x; define these columns 

as {FB}

• This is known as a fast backward substitution (FB), 

which is used to replace the standard backward 

substitution
x1

x2

.

.

.

xn

y1

y2

.

.

.

yn

17

=x



Factorization Paths

• We observe that 

– {FF} depends on the sparsity structures of L and b

– {FB} depends on the sparsity structures of U and x

• The idea of the factorization path provides a 

systematic way to construct these sets

• A factorization path is an ordered set of nodes 

associated with the structure of the matrix

• For FF the factorization path provides an ordered list 

of the columns of L

• For FB the factorization path provides an ordered list 

of the rows of U
18



Factorization Path

• The factorization path is traversed in the forward 

direction for FF and in the reverse direction for FB

– Factorization paths should be built using doubly linked 

lists       

• A singleton vector is a vector with just one nonzero 

element.  If this value is equal to one then it is a unit 

vector as well..

19



Factorization Path, cont.

• With a sparse matrix structure ordered based upon 

the permutation vector order the path for a singleton 

with  a now zero at position arow is build using the 

following code:

p1:= rowDiag[arow]; 

While p1 <> nil Do Begin 

AddToPath(p1.col);   // Setup a doubly linked list!

p1 := rowDiag[p1.col].next;  

End;

20



Path Table and Path Graph

• The factorization path table is a vector that tells the 

next element in the factorization path for each row in 

the matrix

• The factorization path graph shows a pictorial view of 

the path table 

21



20 Bus Example

22



20 Bus Example

23

Only showing L



20 Bus Example

node k p(k) node k p(k)

24



20 Bus Example

• Suppose we wish to evaluate a sparse vector with the 

nonzero elements for components 2, 6, 7, and 12

• From the path table or path graph, we obtain the 

following factorization paths (f.p.)

• This gives the following path elements

→2 {2, 11, 12, 15, 17, 18, 19, 20}f.p. 

→6 {6, 16, 17, 18, 19, 20}f.p. 

→7 {7, 14, 17, 18, 19, 20}f.p. 

→12  2f.p. already contained in that for node

{ }7,14, 6,16, 2,11,12,15,17,18,19, 20

25



20 Bus Example

Full path Desired subset

26



Remarks

• Since various permutations may be used to order a 

particular path subgroup, a precedence rule is 

introduced to make the ordering valid

• This involves some sorting operation; for the FF, the 

order value of a node cannot be computed until the 

order values of all lower numbered nodes are defined

• The order of processing branches above a junction node 

is arbitrary; for each branch, however, the precedence 

rule in force applies

• We can paraphrase this statement as: perform first 

everything above the junction point using the 

precedence ordering in each branch
27



Nine Bus Example

• We next consider the example of the 9-bus network 

shown below

• For the given ordering, the sparsity structure leads to 

the following path graph and the table

28



Nine Bus Example

k p(k)

1

2

3

4

5

6

7

8

9

4

3

6

7

7

8

8

9

0

29



Nine Bus Example

• Suppose next we are interested in the value 

determination of only component, node 1

– That is, calculating a diagonal of the inverse of the 

original matrix

• FF involves going down the path from 1-4-7-8-9, 

and the FB requires coming back up, 9-8-7-4-1 

• This example makes evident the savings in 

operations we may realize from the effective use of 

a sparse vector scheme

30



Nine Bus Example

31



Example Application

• In ongoing geomagnetic disturbance modeling work we 

need to determine the sensitivity of the results to the 

assumed substation grounding resistance

– Since the induced voltages are quasi-dc, the network is 

modeled by setting up the conductance matrix G = R-1

– Initial work focused on calculating the driving point 

impedance values, which required knowing diagonal elements 

of R, which were easily calculated with sparse vector methods

– But Rii depends on the assumed grounding values are nearby 

substations, so we need to determine this impact as well; so 

we’d like small blocks of the inverse of R, which will require 

using the unions of the factorization paths to get some Rij

32



Ordering for Shorter Paths

• The paper 1990 IEEE Transactions on Power Systems 

paper “Partitioned Sparse A-1 Methods” (by Alvarado, 

Yu and Betancourt) they introduce ordering methods 

for decreasing the length of the factorization paths

• Factorization paths also

indicate the degree to which

parallel processing could be

used in solving Ax = b by 

LU factorization

– Operations in the various paths

could be performed in parallel

Image from Alvarado 1990 paper
33



Computation with Complex and 
Blocked Matrices

• In the previous analysis we have implicitly assumed 

that the values involved were real numbers (stored as 

singles or doubles in memory)

• Nothing in the previous analysis prevents using other 

data structures for analysis

– Complex numbers would be needed if factoring the bus 

admittance matrix (Ybus); this is directly supported in some 

programming languages and can be easily added to others; all 

values are complex numbers

– Two by two block matrices are common for power flow 

Jacobian factorization; for this we use 2 by 2 blocks in the 

matrices and 2 by 1 blocks in the vectors

34



2 by 2 Block Matrix Computation

• By treating our data structures as two by two blocks, 

we reduce the computation required to add fills 

substantially

– Half the number of rows, and four times fewer elements

• Overall computation is reduced somewhat since we 

have four times fewer elements, but we do have more 

computation per element

35



2 by 2 Block Matrix Example

• In the backward substitution we had

For i := n downto 1 Do Begin 

k = rowPerm[i]; 

p1 := rowDiag[k].next;  

While p1 <> nil Do Begin 

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

bvector[k] := bvector[k]/rowDiag[k].value;

End;

36



2 by 2 Block Matrix Example

• We replace the scalar bvector entries by objects with 

fields .r and .i (for the real and imaginary parts) and we 

replace the p1.value field with four fields .ul, .ur, .ll

and .lr corresponding to the upper left, upper right, 

lower left and lower right values.  

• The first multiply goes from

bvector[k] = bvector[k] – p1.value*bvector[p1.col]

to 
bvector[k].r bvector[k].r p1.ul p1.ur bvector[p1.col].r

bvector[k].i bvector[k].i p1.ll p1.lr bvector[p1.col].i

       
= −        

       

37



2 by 2 Block Matrix Example

• The second numeric calculation changes from
bvector[k] := bvector[k]/rowDiag[k].value

• To 

• Which can be coded by directly doing the inverse as

bvector[k].r bvector[k].r rowDiag[k].lr -rowDiag[k].ur bvector[p1.col].r

bvector[k].i bvector[k].i -rowDiag[k].ll rowDiag[k].ul bvector[p1.col].idet

with

det=rowDiag[k].ul rowDiag[k].

1       
= −        

       

 lr - rowDiag[k].ll rowDiag[k].ur

bvector[k].r bvector[k].r rowDiag[k].ul rowDiag[k].ur bvector[p1.col].r

bvector[k].i bvector[k].i rowDiag[k].ll rowDiag[k].lr bvector[p1.col].i

1−

       
= −        

       

38



Sparse Matrix and Vector Method 
Summary

• Previous slides have presented sparse matrix and 

sparse vector methods commonly used in power 

system and some circuit analysis applications

• These methods are widely used, and have the ability to 

substantially speed up power system computations

• They will be applied as necessary throughout the 

remainder of the course

• We’ll now move on to sensitivity analysis with a quick 

introduction of contingency analysis

39



Modeling Transformers with Off-
Nominal Taps and Phase Shifts

• If transformers have a turns ratio that matches the ratio 

of the per unit voltages than transformers are modeled 

in a manner similar to transmission lines.

• However it is common for transformers to have a 

variable tap ratio; this is known as an “off-nominal” tap 

ratio

– The off-nominal tap is t, initially we’ll consider it a real 

number

– We’ll cover phase shifters shortly in which t is complex

40



Transformer Representation

• The one–line diagram of a branch with a variable tap 

transformer

• The network representation of a branch with off–

nominal turns ratio transformer is

k m

the tap is on 

the side of bus k

k

km km kmy = g + j b
mI

k

t :1

kI

41



Transformer Nodal Equations

• From the network representation

• Also

( )

( )

 

 
  −  − 

 

 
−   

 

k
m k k m m k k m m

k m

k m m k

E
I I y E E y E

t

y
y E   +  E

t

  =    =    =  

     =



   
− −   

   

1 k m k m

k k m k 2

y y
I I E E

t t t
  =    =  +

42



Transformer Nodal Equations

• We may rewrite these two equations as

    
−    

    
    
     −
     

2

k m k m kk

k m

k m
mm

y y EI

tt

y
y EI t

=

This approach was first presented in F.L. Alvarado, 

“Formation of Y-Node using the Primitive Y-Node 

Concept,” IEEE Trans. Power App. and Syst., 

December 1982

Ybus is still symmetric

here (though this will

change with phase

shifters)

43



The p-Equivalent Circuit for a 
Transformer Branch

k m
k my

t

 
− 

 
2

1 1
k my

t t

 
− 

 

1
1k my

t

44



Variable Tap Voltage Control

• A transformer with a variable tap, i.e., the variable t is 

not constant, may be used to control the voltage at 

either the bus on the side of the tap or  at the bus on the 

side away from the tap 

• This constitutes an example of single criterion control 

since we adjust a single control variable (i.e., the 

transformer tap t) to achieve a specified criterion: the 

maintenance of a constant voltage at a designated bus

• Names for this type of control are on-load tap changer 

(LTC) transformer or tap changing under load (TCUL)

• Usually on low side; there may also be taps on high 

side that can be adjusted when it is de-energized 
45



Variable Tap Voltage Control

• An LTC is a discrete control, often with 32 incremental 

steps of 0.625% each, giving an automatic range of 

10%

• It follows from the p–equivalent model for the 

transformer that the transfer admittance between the 

buses of the transformer branch and the contribution to 

the self admittance at the bus away from the tap 

explicitly depend on t

• However, the tap changes in discrete steps; there is also 

a built in time delay in how fast they respond 

• Voltage regulators are devices with a unity nominal 

ratio, and then a similar tap range
46



Ameren Champaign (IL) Test Facility 
Voltage Regulators

These are connected

on the low side of a 

69/12.4 kV 

transformer; each

phase can be

regulated separately 

47



Variable Tap Voltage Control in the 
Power Flow

• LTCs (or voltage regulators) can be directly included 

in the power flow equations by modifying the 

Ybus entries; that is by scaling the terms by 1, 1/t or 1/t2

as appropriate

• If t is fixed then there is no change in the number of 

equations

• If t is variable, such as to enforce a voltage equality, 

then it can be included either by adding an additional 

equation and variable (t) directly, or by doing an “outer 

loop” calculation in which t is varied outside of the NR 

solution
– The outer loop is used in PowerWorld because of limit issues 

48



Five Bus PowerWorld Example

PowerWorld Case: B5_Voltage

With an impedance

of j0.1 pu between

buses 4 and 5, the 

y node primitive 

with t=1.0 is

j10 j10

j10 j10

− 
 

− 

If t=1.1 then it is

.

. .

j10 j9 09

j9 09 j8 26

− 
 

− 

49


