ECEN 615 Methods of Electric Power Systems Analysis

Lecture 14: Power Flow Sensitivities

Prof. Tom Overbye
Dept. of Electrical and Computer Engineering

Texas A&M University

overbye@tamu.edu

Announcements

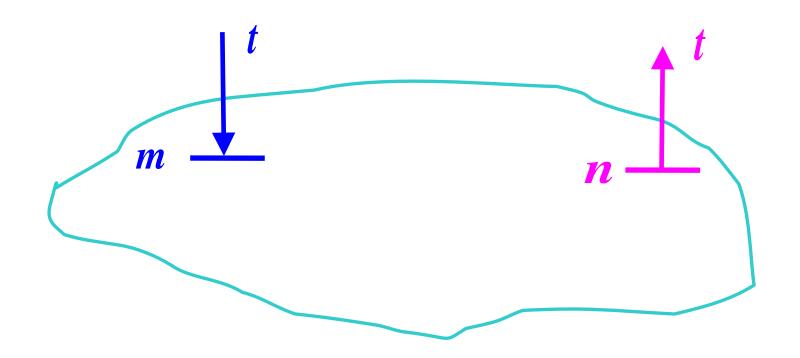
- Starting reading Chapter 9
- Homework 4 is due on Thursday October 14.

Distribution Factors

- Various additional distribution factors may be defined
 - power transfer distribution factor (PTDF)
 - line outage distribution factor (LODF)
 - line addition distribution factor (LADF)
 - outage transfer distribution factor (OTDF)
- These factors may be derived from the ISFs making judicious use of the superposition principle

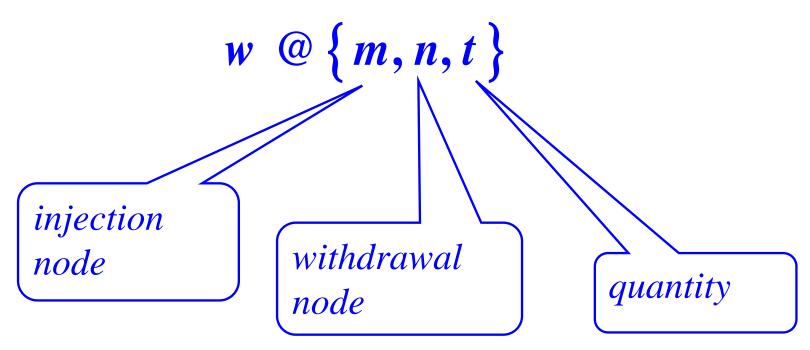
Definition: Basic Transaction

 A basic transaction involves the transfer of a specified amount of power t from an injection node m to a withdrawal node n



Definition: Basic Transaction

• We use the notation

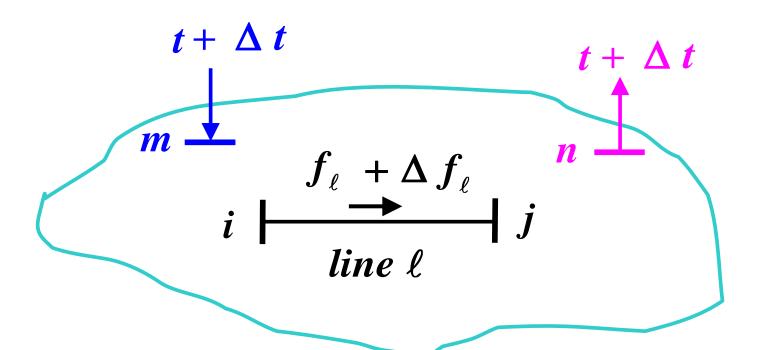


to denote a basic transaction

Definition: PTDF

- NERC defines a PTDF as
 - "In the pre-contingency configuration of a system under study, a measure of the responsiveness or change in electrical loadings on transmission system Facilities due to a change in electric power transfer from one area to another, expressed in percent (up to 100%) of the change in power transfer"
 - Transaction dependent
- We'll use the notation $\varphi_{\ell}^{(w)}$ to indicate the PTDF on line $\mathbb P$ with respect to basic transaction w
- In the lossless formulation presented here (and commonly used) it is slack bus independent

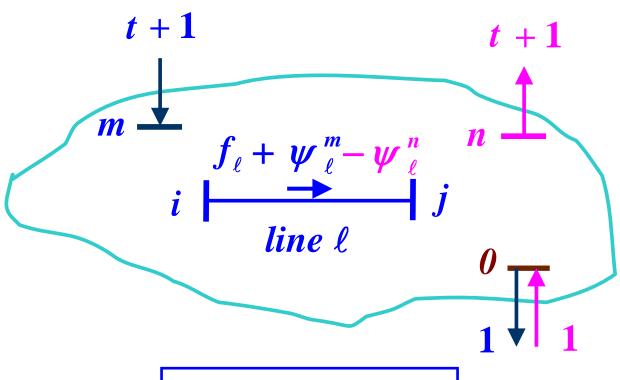
PTDFs



$$oldsymbol{arphi}_{\ell}^{(w)}$$
 @ $rac{\Delta f_{\ell}}{\Delta t}$

Note, the PTDF is independent of the amount t; which is often expressed as a percent

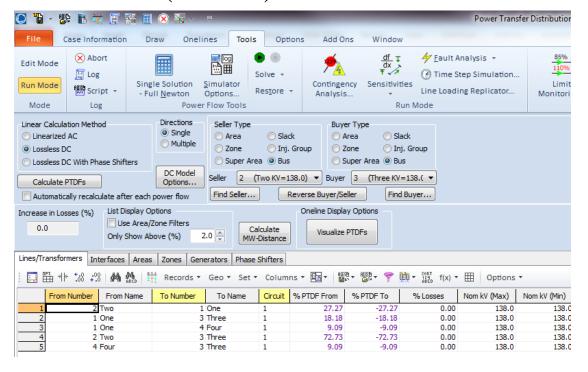
PTDF Evaluation



$$\varphi_{\ell}^{(w)} = \psi_{\ell}^{m} - \psi_{\ell}^{n}$$

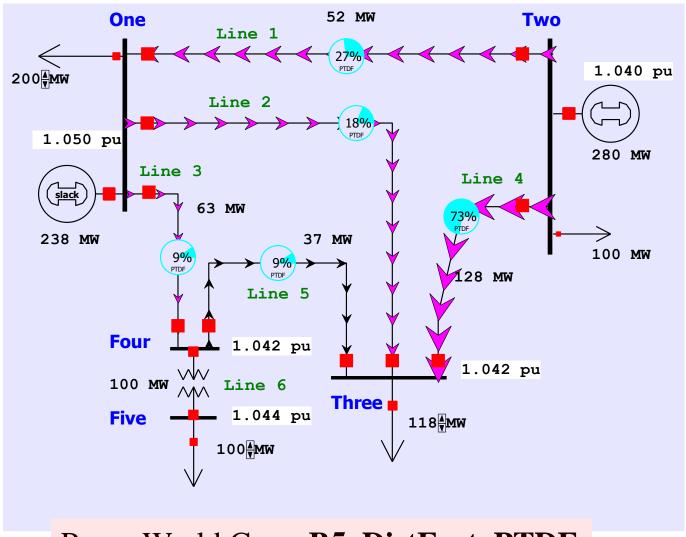
Calculating PTDFs in PowerWorld

- PowerWorld provides a number of options for calculating and visualizing PTDFs
 - Select Tools, Sensitivities, Power Transfer Distribution Factors (PTDFs)



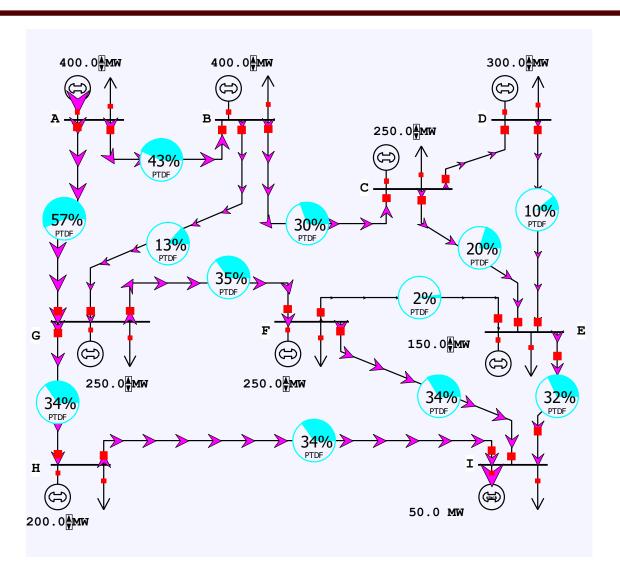
Results are shown for the five bus case for the Bus 2 to Bus 3 transaction

Five Bus PTDF Visualization



PowerWorld Case: **B5_DistFact_PTDF**

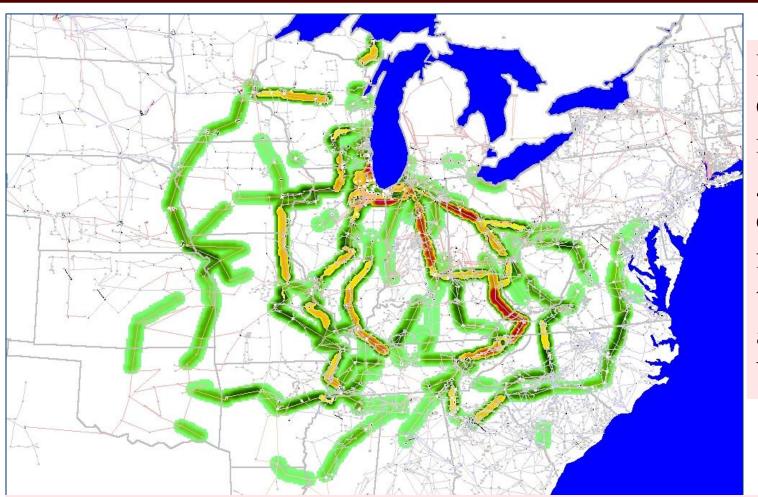
Nine Bus PTDF Example



Display shows the PTDFs for a basic transaction from Bus A to Bus I. Note that 100% of the transaction leaves Bus A and 100% arrives at Bus I

PowerWorld Case: **B9_PTDF**

Eastern Interconnect Example: Wisconsin Utility to TVA PTDFs



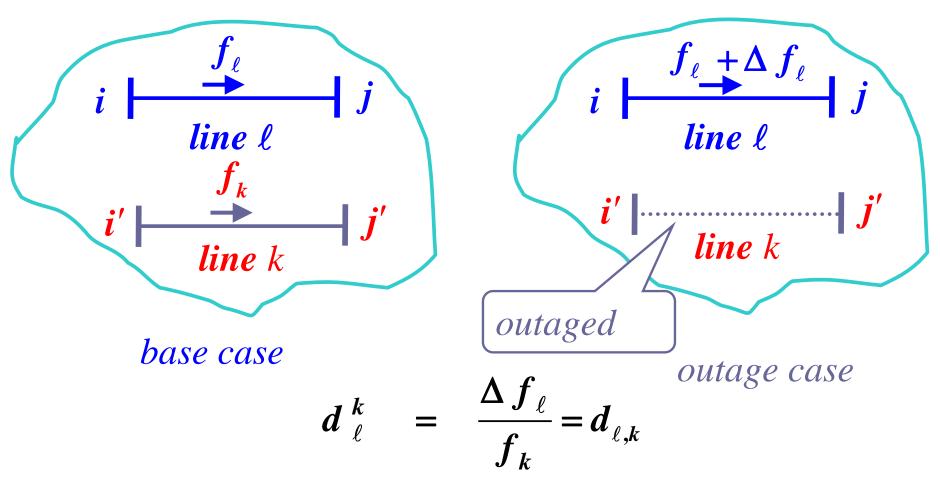
In this example multiple generators contribute for both the seller and the buyer

Contours show lines that would carry at least 2% of a power transfer from Wisconsin to TVA

Line Outage Distribution Factors (LODFs)

- Power system operation is practically always limited by contingencies, with line outages comprising a large number of the contingencies
- Desire is to determine the impact of a line outage (either a transmission line or a transformer) on other system real power flows without having to explicitly solve the power flow for the contingency
- These values are provided by the LODFs
- The LODF d_{ℓ}^{k} is the portion of the pre-outage real power line flow on line k that is redistributed to line \mathbb{Z} as a result of the outage of line k

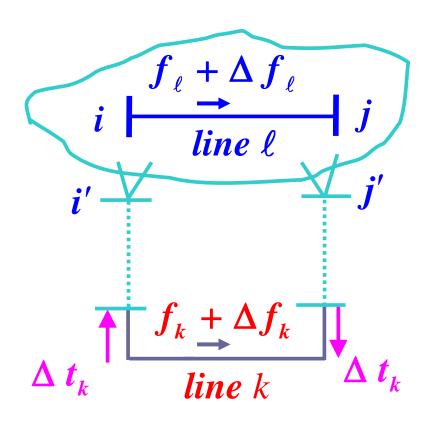
LODFs



Best reference is Chapter 7 of the course book

LODF Evaluation

We simulate the impact of the outage of line k by adding the basic transaction $w_k = \{i', j', \Delta t_k\}$



and selecting Δt_k in such a way that the flows on the dashed lines become exactly zero

In general this Δt_k is not equal to the original line flow

LODF Evaluation

• We select Δt_k to be such that

$$f_k + \Delta f_k - \Delta t_k = 0$$

where Δf_k is the active power flow change on the line k due to the transaction w_k

• The line k flow from basic transaction w_k depends on its PTDF $\Delta f_k = \varphi^{(w_k)} \Delta t_k$

it follows that
$$\Delta t_k = \frac{f_k}{1 - \varphi_k^{(w_k)}} = \frac{f_k}{1 - (\psi_k^{i'} - \psi_k^{j'})}$$

LODF Evaluation

• For the rest of the network the impacts of the outage of line k are the same as the impacts of the additional basic transaction w_k

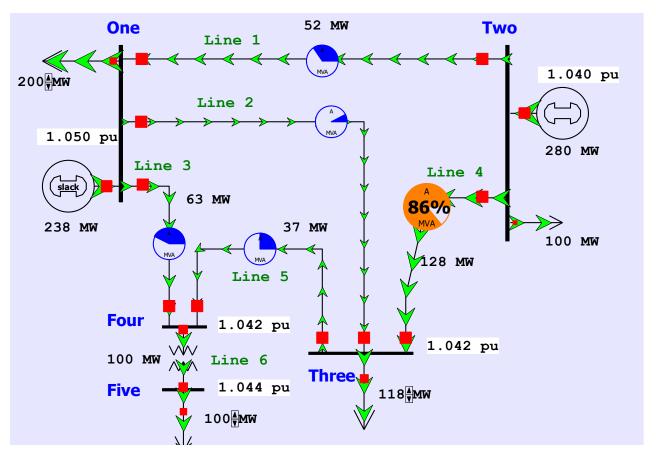
$$\Rightarrow \Delta f_{\ell} = \varphi_{\ell}^{(w_k)} \Delta t_k = \frac{\varphi_{\ell}^{(w_k)}}{1 - \varphi_k^{(w_k)}} f_k$$

• Therefore, by definition the LODF is

$$d_{\ell}^{k} = \frac{\Delta f_{\ell}}{f_{k}} = \frac{\varphi_{\ell}^{(w_{k})}}{1 - \varphi_{k}^{(w_{k})}}$$

Five Bus Example

• Assume we wish to calculate the values for the outage of line 4 (between buses 2 and 3); this is line k



Say we wish to know the change in flow on the line 3 (Buses 3 to 4). PTDFs for a transaction from 2 to 3 are 0.7273 on line 4 and 0.0909 on line 3

Five Bus Example

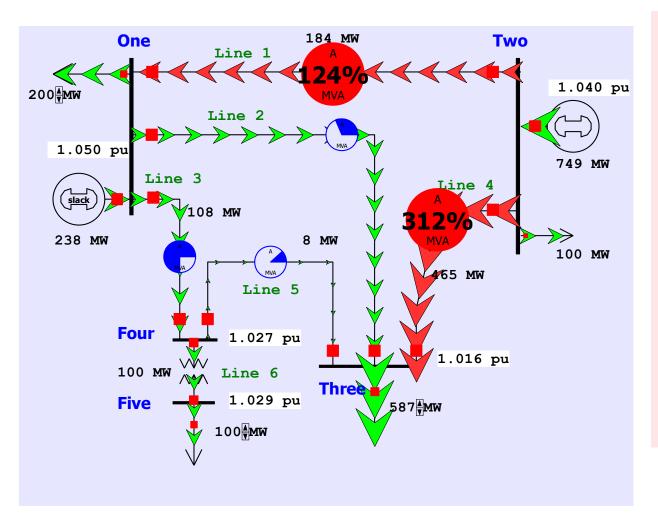
Hence we get

$$\Delta t_k = \frac{f_k}{1 - \varphi_k^{(w_k)}} = \frac{128}{1 - 0.7273} = 469.4$$

$$d_{3}^{4} = \frac{\Delta f_{3}}{f_{4}} = \frac{\varphi_{3}^{(w_{4})}}{1 - \varphi_{4}^{(w_{4})}} = \frac{0.0909}{1 - 0.7273} = 0.333$$

$$\Delta f_3 = (0.333) f_4 = 0.333 \times 128 = 42.66 \text{MW}$$

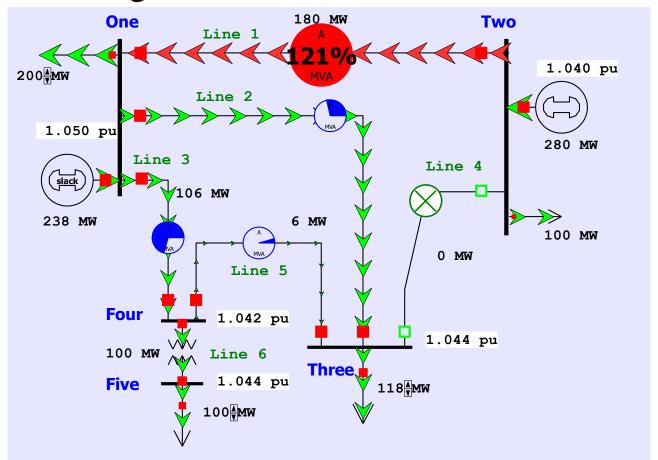
Five Bus Example Compensated



Here is the system with the compensation added to bus 2 and removed at bus 3; we are canceling the impact of the line 4 flow for the reset of the network.

Five Bus Example

Below we see the network with the line actually outaged



The line 3 flow changed from 63 MW to 106 MW, an increase of 43 MW, matching the LODF value

Developing a Critical Eye

• In looking at the below formula you need to be thinking about what conditions will cause the formula to fail $o^{(w_k)}$

to fail
$$\Rightarrow \Delta f_{\ell} = \varphi_{\ell}^{(w_{k})} \Delta t_{k} = \frac{\varphi_{\ell}^{(w_{k})}}{1 - \varphi_{k}^{(w_{k})}} f_{k}$$

Here the obvious situation is when the denominator is zero

- That corresponds to a situation in which the contingency causes system islanding
 - An example is line 6 (between buses 4 and 5)
 - Impact modeled by injections at the buses within each viable island

Calculating LODFs in PowerWorld

- Select Tools, Sensitivities, Line Outage Distribution **Factors**
 - Select the Line using dialogs on right, and click Calculate LODFS; below example shows values for line 4

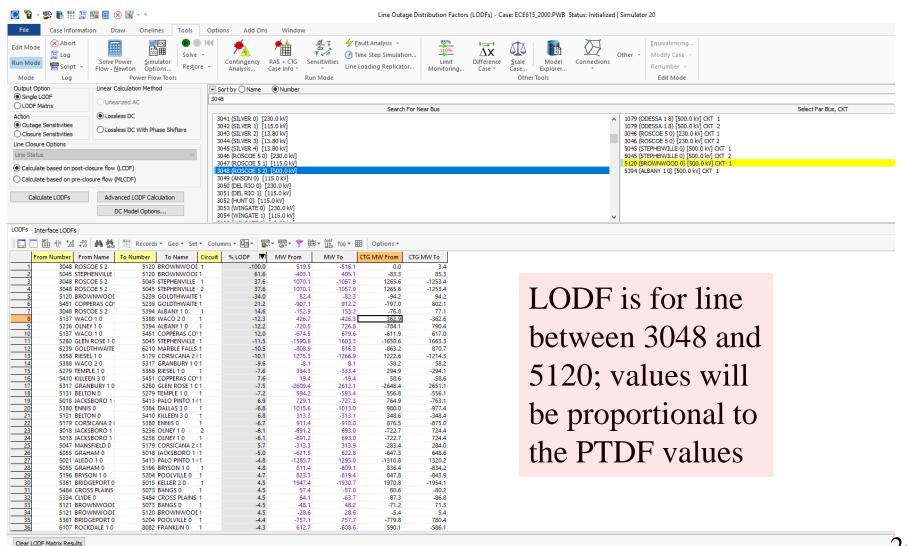


Blackout Case LODFs

- One of the issues associated with the 8/14/03 blackout was the LODF associated with the loss of the Hanna-Juniper 345 kV line (21350-22163) that was being used in a flow gate calculation was not correct because the Chamberlin-Harding 345 kV line outage was missed
 - With the Chamberlin-Harding line assumed in-service the value was 0.362
 - With this line assumed out-of-service (which indeed it was)
 the value increased to 0.464

2000 Bus LODF Example

Solution Animation Stopped



2000 Bus LODF Example

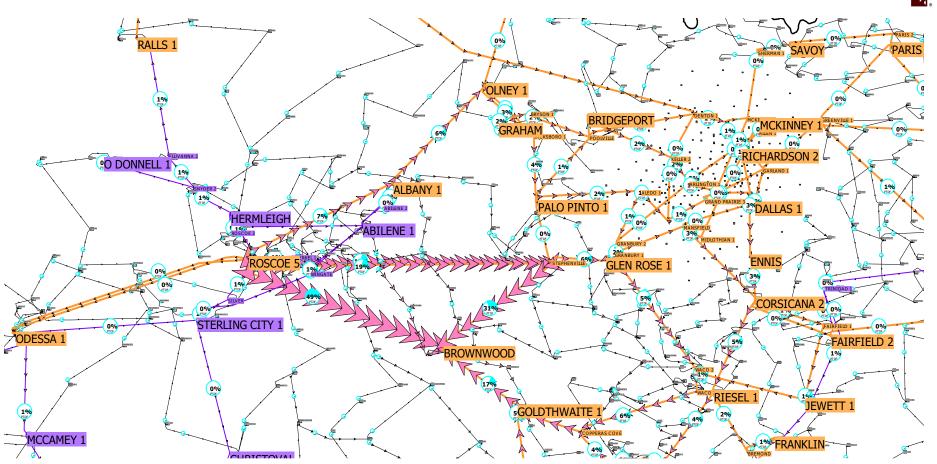


Image visualizes the PTDFs between buses 3048 and 5120

- LODFs can also be used to represent multiple device contingencies, but it is usually more involved than just adding the effects of the single device LODFs
- Assume a simultaneous outage of lines k₁ and k₂
- Now setup two transactions, w_{k1} (with value Δt_{k1}) and w_{k2} (with value Δt_{k2}) so

$$\begin{split} f_{k1} + \Delta f_{k1} + \Delta f_{k2} - \Delta t_{k1} &= 0 \\ f_{k2} + \Delta f_{k1} + \Delta f_{k2} - \Delta t_{k2} &= 0 \\ f_{k1} + \varphi \frac{(w_{k1})}{k1} \Delta t_{k1} + \varphi \frac{(w_{k2})}{k1} \Delta t_{k2} - \Delta t_{k1} &= 0 \\ f_{k2} + \varphi \frac{(w_{k1})}{k2} \Delta t_{k1} + \varphi \frac{(w_{k2})}{k2} \Delta t_{k1} - \Delta t_{k2} &= 0 \end{split}$$

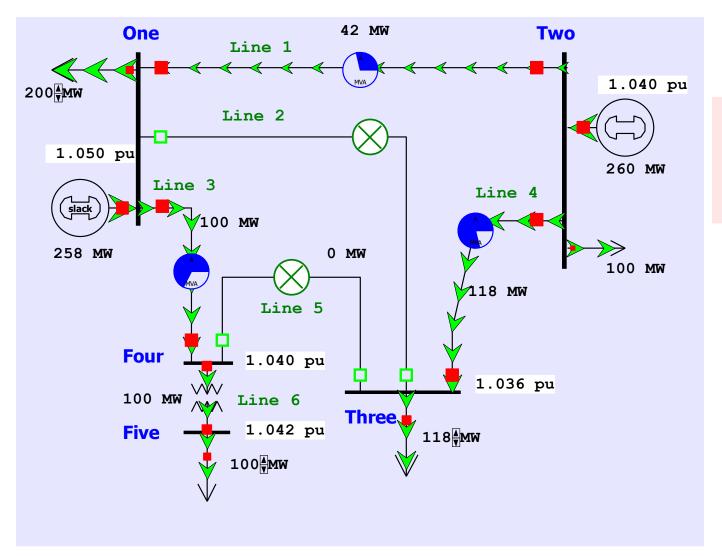
- Hence we can calculate the simultaneous impact of multiple outages; details for the derivation are given in C.Davis, T.J. Overbye, "Linear Analysis of Multiple Outage Interaction," *Proc. 42nd HICSS*, 2009
- Equation for the change in flow on line \mathbb{Z} for the outage of lines k_1 and k_2 is

$$\Delta f_{\ell} = \begin{bmatrix} d_{\ell}^{k_1} & d_{\ell}^{k_2} \end{bmatrix} \begin{bmatrix} 1 & -d_{k_1}^{k_2} \\ -d_{k_2}^{k_1} & 1 \end{bmatrix}^{-1} \begin{bmatrix} f_{k_1} \\ f_{k_2} \end{bmatrix}$$

• Example: Five bus case, outage of lines 2 and 5 to flow on line 4.

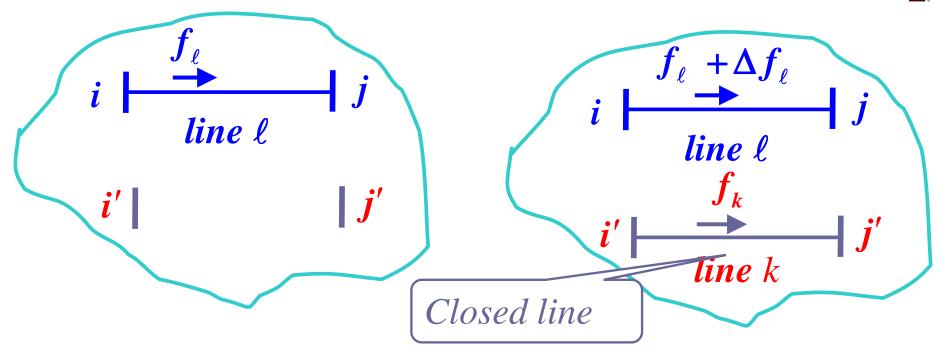
$$\Delta f_{\ell} = \begin{bmatrix} d_{\ell}^{k_1} & d_{\ell}^{k_2} \end{bmatrix} \begin{bmatrix} 1 & -d_{k_1}^{k_2} \\ -d_{k_2}^{k_1} & 1 \end{bmatrix}^{-1} \begin{bmatrix} f_{k_1} \\ f_{k_2} \end{bmatrix}$$

$$\Delta f_{\ell} = \begin{bmatrix} 0.4 & 0.25 \end{bmatrix} \begin{bmatrix} 1 & -0.75 \\ -0.6 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.336 \\ -0.331 \end{bmatrix} = 0.005$$



Flow goes from 117.5 to 118.0

Line Closure Distribution Factors (LCDFs)



base case

line k addition case

$$LCDF_{\ell}^{k} = \frac{\Delta f_{\ell}}{f_{k}} = LCDF_{\ell,k}$$

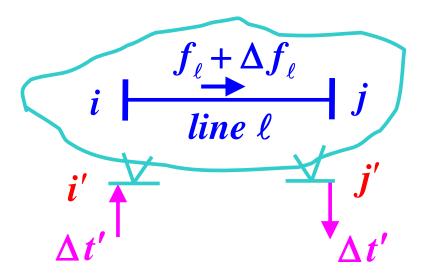
LCDF Definition

- The line closure distribution factor (LCDF), LCDF_{□,k}, for the closure of line k (or its addition if it does not already exist) is the portion of the line active power flow on line k that is distributed to line ② due to the closure of line k
- Since line k is currently open, the obvious question is, "what flow on line k?"
- Answer (in a dc power flow sense) is the flow that will occur when the line is closed (which we do not know)

LCDF Evaluation

• We simulate the impact of the closure of line k by imposing the additional basic transaction

$$\boldsymbol{w}_{k} = \left\{i', j', \Delta t_{k}\right\}$$



on the base case network and we select Δt_k so that

$$\Delta t_k = -f_k$$

LCDF Evaluation

• For the other parts of the network, the impacts of the addition of line k are the same as the impacts of adding the basic transaction w_k

$$\Delta f_{\ell} = \varphi_{\ell}^{(w_k)} \Delta t_{k} = -\varphi_{\ell}^{(w_k)} f_{k}$$

• Therefore, the definition is

$$LCDF_{\ell,k} = \frac{\Delta f_{\ell}}{f_k} = -\varphi_{\ell}^{(w_k)}$$

• The post-closure flow f_k is determined (in a dc power flow sense) as the flow that would occur from the angle difference divided by $(1 + \varphi_k^{(w_k)})$

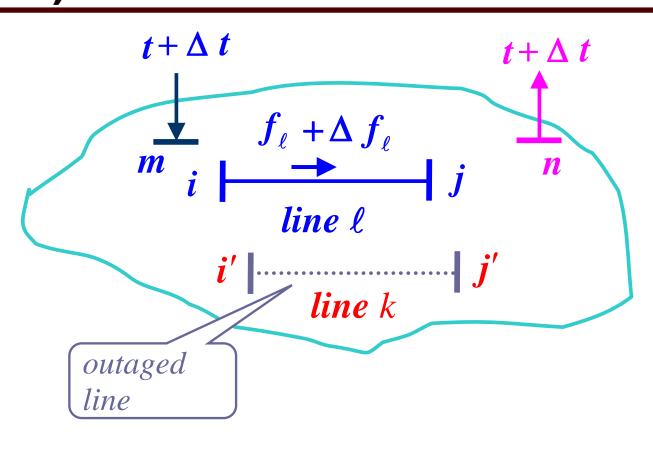
Outage Transfer Distribution Factor

- The outage transfer distribution factor (OTDF) is defined as the PTDF with the line k outaged
- The OTDF applies only to the post-contingency configuration of the system since its evaluation explicitly considers the line k outage

$$\left(\boldsymbol{\varphi}_{\ell}^{(w)} \right)^{k}$$

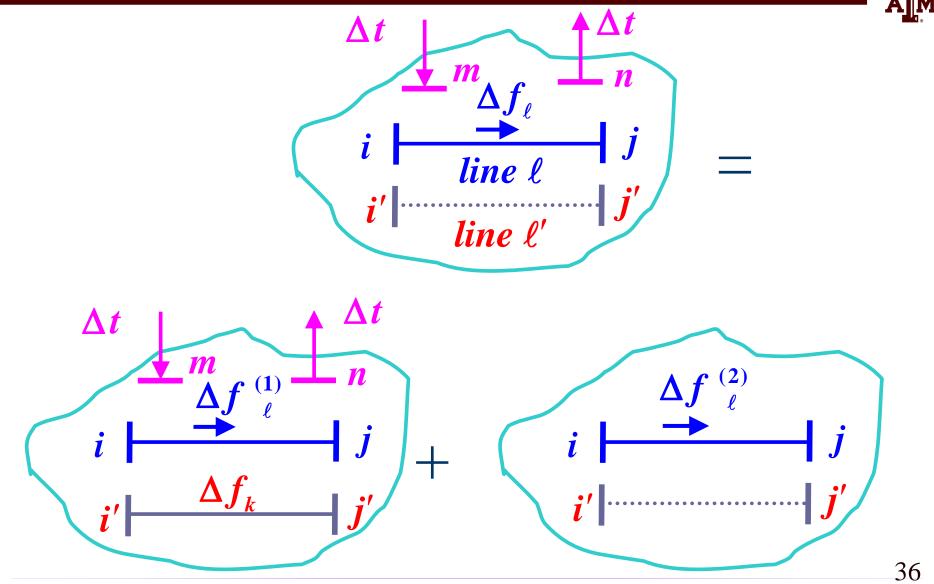
• This is a quite important value since power system operation is usually contingency constrained

Outage Transfer Distribution Factor (OTDF)



$$\left(\varphi_{\ell}^{(w)}\right)^{k} @ \frac{\Delta f_{\ell}}{\Delta t} \bigg|_{k \text{ outaged}}$$

OTDF Evaluation



OTDF Evaluation

• Since $\Delta f_{\ell}^{(1)} = \varphi_{\ell}^{(w)} \Delta t$

and
$$\Delta f_k = \varphi_k^{(w)} \Delta t$$

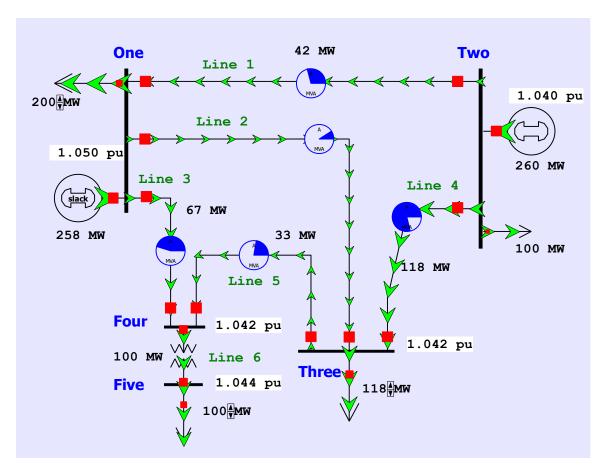
then
$$\Delta f_{\ell}^{(2)} = d_{\ell}^{k} \Delta f_{k} = d_{\ell}^{k} \varphi_{k}^{(w)} \Delta t$$

so that

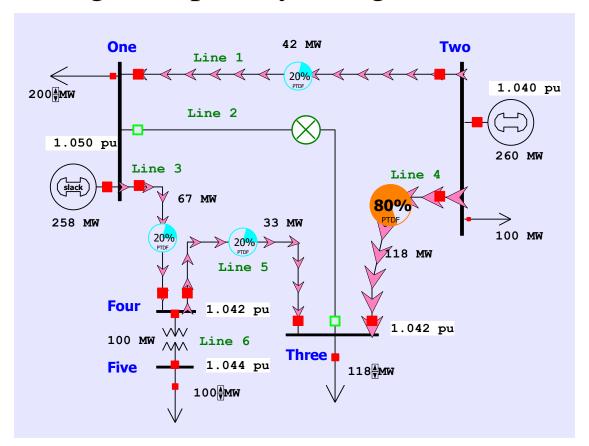
$$\Delta f_{\ell} = \Delta f_{\ell}^{(1)} + \Delta f_{\ell}^{(2)} = \left[\varphi_{\ell}^{(w)} + d_{\ell}^{k} \varphi_{k}^{(w)} \right] \Delta t$$

$$\left(\boldsymbol{\varphi}_{\ell}^{(w)}\right)^{k} = \boldsymbol{\varphi}_{\ell}^{(w)} + \boldsymbol{d}_{\ell}^{k} \boldsymbol{\varphi}_{k}^{(w)}$$

 Say we would like to know the PTDF on line 1 for a transaction between buses 2 and 3 with line 2 out



• Hence we want to calculate these values without having to explicitly outage line 2



Hence the value we are looking for is 0.2 (20%)

• Evaluating: the PTDF for the bus 2 to 3 transaction on line 1 is 0.2727; it is 0.1818 on line 2 (from buses 1 to 3); the LODF is on line 1 for the outage of line 2 is - 0.4

• Hence
$$\left(\varphi_{\ell}^{(w)}\right)^{k} = \varphi_{\ell}^{(w)} + d_{\ell}^{k} \varphi_{k}^{(w)}$$

$$0.2727 + (-0.4) \times (0.1818) = 0.200$$

• For line 4 (buses 2 to 3) the value is

$$0.7273 + (0.4) \times (0.1818) = 0.800$$

August 14, 2003 OTDF Example

- Flowgate 2264 monitored the flow on Star-Juniper 345 kV line for contingent loss of Hanna-Juniper 345 kV normally the LODF for this flowgate is 0.361
 - flowgate had a limit of 1080 MW
 - at 15:05 EDT the flow as 517 MW on Star-Juniper, 1004 MW on Hanna-Juniper, giving a flowgate value of 520+0.361*1007=884 (82%)
 - Chamberlin-Harding 345 opened at 15:05, but was missed
 - At 15:06 EDT (after loss of Chamberlin-Harding 345) #2265
 had an incorrect value because its LODF was not updated.
 - Value should be 633+0.463*1174=1176 (109%)
 - Value was 633 + 0.361*1174=1057 (98%)

UTC Revisited

- We can now revisit the uncommitted transfer capability (UTC) calculation using PTDFs and LODFs
- Recall trying to determine maximum transfer between two areas (or buses in our example)
- For base case maximums are quickly determined with PTDFs

$$u_{m,n}^{(0)} = \min_{\varphi_{\ell}^{(w)} > 0} \left\{ \frac{f_{\ell}^{max} - f_{\ell}^{(0)}}{\varphi_{\ell}^{(w)}} \right\}$$

Note we are ignoring zero (or small) PTDFs; would also need to consider flow reversal

UTC Revisited

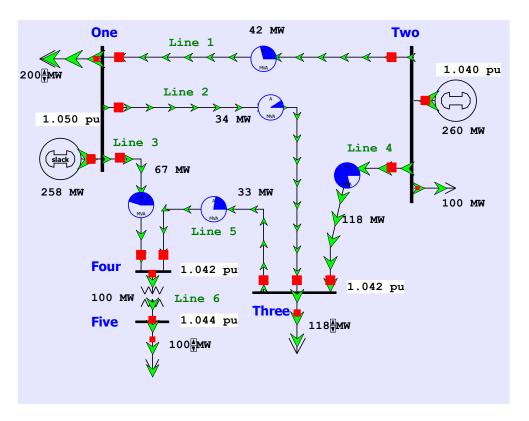
For the contingencies we use

$$u_{m,n}^{(1)} = \min_{\left(\varphi_{\ell}^{(w)}\right)^{k} > 0} \left\{ \frac{f_{\ell}^{max} - f_{\ell}^{(0)} - d_{\ell}^{k} f_{k}^{(0)}}{\left(\varphi_{\ell}^{(w)}\right)^{k}} \right\}$$

• Then as before $u_{m,n} = min\{u_{m,n}^{(0)}, u_{m,n}^{(1)}\}$

We would need to check all contingencies! Also, this is just a linear estimate and is not considering voltage violations.

$$w = \{2, 3, \Delta t\} \qquad \mathbf{f}^{(0)} = [42, 34, 67, 118, 33, 100]^{T}$$
$$\mathbf{f}^{max} = [150, 400, 150, 150, 150, 1,000]^{T}$$



Therefore, for the base case

$$u_{2,2}^{(0)} = \min_{\varphi_{\ell}^{(w)} > 0} \left\{ \frac{f^{\max}_{\ell} - f^{(0)}_{\ell}}{\varphi_{\ell}^{(w)}} \right\}$$

$$= min \left\{ \frac{150 - 42}{0.2727}, \frac{400 - 34}{0.1818}, \frac{150 - 67}{0.0909}, \frac{150 - 118}{0.7273}, \frac{150 - 33}{0.0909} \right\}$$

$$= 44.0$$

• For the contingency case corresponding to the outage of the line 2

$$u_{2,3}^{(1)} = \min_{\left(\varphi_{\ell}^{(w)}\right)^{2} > 0} \left\{ \frac{f_{\ell}^{max} - f_{\ell}^{(0)} - d_{\ell}^{2} f_{2}^{(0)}}{\left(\varphi_{\ell}^{(w)}\right)^{2}} \right\}$$

The limiting value is line 4

$$\frac{f_{\ell}^{max} - f_{\ell}^{(0)} - d_{\ell}^{2} f_{2}^{(0)}}{\left(\varphi_{\ell}^{(w)}\right)^{2}} = \frac{150 - 118 - 0.4 \times 34}{0.8}$$

Hence the UTC is limited by the contingency to 23.0

Additional Comments

- Distribution factors are defined as small signal sensitivities, but in practice, they are also used for simulating large signal cases
- Distribution factors are widely used in the operation of the electricity markets where the rapid evaluation of the impacts of each transaction on the line flows is required
- Applications to actual system show that the distribution factors provide satisfactory results in terms of accuracy
- For multiple applications that require fast turn around time, distribution factors are used very widely, particularly, in the market environment
- They do not work well with reactive power!

Least Squares

- So far we have considered the solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ in which \mathbf{A} is a square matrix; as long as \mathbf{A} is nonsingular there is a single solution
 - That is, we have the same number of equations (m) as unknowns (n)
- Many problems are overdetermined in which there more equations than unknowns (m > n)
 - Overdetermined systems are usually inconsistent, in which no value of x exactly solves all the equations
- Underdetermined systems have more unknowns than equations (m < n); they never have a unique solution but are usually consistent

Method of Least Squares

- The least squares method is a solution approach for determining an approximate solution for an overdetermined system
- If the system is inconsistent, then not all of the equations can be exactly satisfied
- The difference for each equation between its exact solution and the estimated solution is known as the error
- Least squares seeks to minimize the sum of the squares of the errors
- Weighted least squares allows differ weights for the equations

Least Squares Solution History

- The method of least squares developed from trying to estimate actual values from a number of measurements
- Several persons in the 1700's, starting with Roger Cotes in 1722, presented methods for trying to decrease model errors from using multiple measurements
- Legendre presented a formal description of the method in 1805; evidently Gauss claimed he did it in 1795
- Method is widely used in power systems, with state estimation the best known application, dating from Fred Schweppe's work in 1970

Least Squares and Sparsity

- In many contexts least squares is applied to problems that are not sparse. For example, using a number of measurements to optimally determine a few values
 - Regression analysis is a common example, in which a line or other curve is fit to potentially many points)
 - Each measurement impacts each model value
- In the classic power system application of state estimation the system is sparse, with measurements only directly influencing a few states
 - Power system analysis classes have tended to focus on solution methods aimed at sparse systems; we'll consider both sparse and nonsparse solution methods

Least Squares Problem

Consider
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 $\mathbf{A} \in \mathbf{i}^{m \times n}$, $\mathbf{x} \in \mathbf{i}^{n}$, $\mathbf{b} \in \mathbf{i}^{m}$

or

$$\begin{bmatrix} (\mathbf{a}^{1})^{T} \\ (\mathbf{a}^{2})^{T} \\ \vdots \\ (\mathbf{a}^{m})^{T} \end{bmatrix} \mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{22} & \dots & a_{2n} \\ \vdots & & \vdots & & \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$$

Least Squares Solution

- We write $(\mathbf{a}^i)^T$ for the row i of \mathbf{A} and \mathbf{a}^i is a column vector
- Here, $m \ge n$ and the solution we are seeking is that which minimizes $\mathbb{Z}\mathbf{A}\mathbf{x} \mathbf{b}\mathbb{Z}_p$, where p denotes some norm
- Since usually an overdetermined system has no exact solution, the best we can do is determine an **x** that minimizes the desired norm.

Choice of p

- We discuss the choice of *p* in terms of a specific example
- Consider the equation Ax = b with

$$\mathbf{A} = \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \qquad \text{with } b_1 \ge b_2 \ge b_3 \ge 0$$

(hence three equations and one unknown)

• We consider three possible choices for *p*:

Choice of p

(i)
$$p = 1$$

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{1}$$
 is minimized by $x^* = b_{2}$

$$(ii)$$
 $p=2$

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}$$
 is minimized by $x^{*} = \frac{b_{1} + b_{2} + b_{3}}{3}$

(iii)
$$p = \infty$$

$$\|\mathbf{A}\mathbf{x}-\mathbf{b}\|_{\infty}$$
 is minimized by $x^* = \frac{b_1 + b_3}{2}$