
1

Coupled Infrastructure Simulation of Electric Grid
and Transportation Networks

Jessica L. Wert, Komal S. Shetye, Hanyue Li, Ju Hee Yeo,
Xiaodan Xu*, Alexander Meitiv*, Yanzhi Xu*, Thomas J. Overbye

Department of Electrical and Computer Engineering, *Texas Transportation Institute
Texas A&M University

College Station, Texas, United States
Email: {jwert, shetye, hanyueli, yeochee26, overbye}@tamu.edu, {X-Xu, A-Meitiv, Y-Xu}@tti.tamu.edu

Abstract—This paper presents a framework for coupled in-
frastructure studies between the electric power transmission
system and transportation networks. The proposed methodology
evaluates the impact of electric vehicle (EV) charging demand on
grid operation and power generation. Key modeling and coupling
considerations are presented for each network. Case studies
for various EV charging schemes are presented on networks
situated in Travis County, TX for illustration. System loading and
generation dispatch provide examples of two of the many analyses
enabled by this coupled infrastructure simulation framework.

Index Terms—EV charging, coupled infrastructure simulation

I. INTRODUCTION

Using the power grid to charge the increasing number of
electric vehicles (EVs) is invariably increasing the coupling
between two complex and critical infrastructure networks–
the power grid and transportation systems. Both have well-
established planning and operating principles, yet their nascent
coupling offers unique challenges. EVs at scale (high penetra-
tion scenarios) affect the grid on two distinct levels [1]:

1) at the point of common coupling; this is usually a
connection to the distribution system, either at home,
at a workplace, or at a public charging station, and

2) in the bulk power system as an aggregated new load.
Several papers have presented methods to model these

coupled networks. For instance, a comprehensive review of
different methods to couple transportation and grid networks
is provided in [2]. Flow models are used for each network
to determine steady-state distributions of vehicular flow on
each road in the transportation network and bus voltage and
line power flow in the grid network. These models are the
traffic assignment problem and the power flow, respectively.
The key approximation in [2], however, is the use of static
models for traffic simulation, with a recommendation to use
dynamic traffic assignment (DTA) for better spatio-temporal
estimation of the EV load.

Another common feature of existing work is the focus
on distribution systems. While this is warranted due to the
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prevalence of EV charging at this level, few works such as
[1] have looked into the equally significant upstream impacts
on the bulk power system. This is important for issues such
as generation and transmission resource adequacy, emissions,
etc. Even in such studies, some [3] use unit commitment
or economic dispatch for generation dispatch analysis, thus
ignoring important system constraints. Often, the EV load
is approximated from historical travel data from national
databases instead of calculating the actual EV energy con-
sumption. Regarding the actual coupling, simulation tools and
methods have been developed [4], [5], though implemented
only on small test systems or on large synthetic systems
without geographic information [6].

In this paper, the charging load from on-road EV operation
is developed based on a regional-level transportation simula-
tion and charging behavior simulation, considering different
EV penetration levels, congestion levels, and charging strate-
gies [7]. The unique contribution of the paper is the methodol-
ogy for a detailed geographic mapping between transportation
network links and nodes to the power transmission network
substations and service territories in order to aggregate the
EV load to the transmission substations. The overall objective
is to present the modeling considerations and framework for
the such coupled infrastructure studies. An overview of the
workflow developed for such studies is shown in Figure 1.

Fig. 1: Workflow overview for coupled infrastructure studies

Section II presents the details of EV modeling using DTA.
Section III then outlines the electrical system modeling and
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methodology of realistic integration of EV load to the system.
The specifics of the study scenarios are outlined in Section IV
and grid impact analysis results are presented in Section V.
Section VI concludes the paper by summarizing and outlining
future work. To demonstrate the methodology established, this
paper presents Travis County as the geographic location for
the case study. Located in Central Texas, Travis County is
home to the state’s capital city, Austin.

II. EV LOAD MODELING

A. Traffic Flow Modeling
To perform hourly dispatch or OPF simulations, a high

spatial and temporal resolution transportation model is needed
to supply the spatially resolved electricity demand from EV
operation. Mesoscopic DTA models can analyze the movement
of individual vehicles while using macroscopic traffic flow
theories without complicated vehicle interactions [8]. The
equilibrium-seeking DTA methods adopt an iterative approach
to simulate individual travel behavior under varying traffic
conditions and provide performance measures such as travel
time and cost under congestion. In this paper, a mesoscopic
simulation-based DTA model, DynusT [9], is used for the
analysis. The DynusT model takes the transportation network
and travel demand as inputs and generates vehicle trajectories
as output which are then used to estimate the on-road energy
consumption of EVs.

Using a pre-defined EV market penetration, a fraction of
trips is randomly assigned to be EV trips. An activity-based
vehicle energy model is needed to assess the impact of various
transportation-related attributes on energy use [10]. In this
study, a parameterized simulation-based inference approach is
followed to predict the energy consumption of EVs based on
on-road operating conditions [11]. The vehicle powertrain is
represented by a Bayesian Network statistical model, which
adopts the domain knowledge a priori, and can be trained using
a data-driven approach. The details of model development
and validation can be found in [11]. Commonly used energy
models for three typical EVs with 100-mile, 200-mile, and
300-mile ranges are utilized.

Finally, for each assigned EV within the network, the range
of the EV is randomly assigned based on the market share
of EVs that are estimated using EV sales data from 2011 to
2019 [12]. EVs with 100-mile, 200-mile, and 300-mile ranges
accounted for 25%, 13%, and 52% of the entire EV fleet,
respectively. The energy consumption rates per mile developed
from the EV energy models were matched to each trip based
on the road link-level driving distance and speed obtained
from the vehicle trajectories. As the second-by-second driving
profiles are not available in the DynusT output, the driving
cycles by different speeds from the Environmental Protection
Agency (EPA) Motor Vehicle Emission Simulator (MOVES)
model were used as a surrogate of link driving profiles. The
total on-road energy consumption is then converted to charging
demand using the following charging demand simulation.

B. EV Charging Load Modeling
By 2019, only 0.12% of registered vehicles in Texas were

EVs [13]. Due to the low market penetration and the lack

of observed EV charging data, the EV charging demand is
estimated under different hypothetical scenarios, with different
assumptions made for the spatial and temporal distributions
of charging load. The charging load profile by the hour
and by location is generated using two methodologies, i.e.,
a simplified and a realistic method. The simplified method
assumes the charging load equals the trip-level energy use
and is charged immediately at the end of the trip. In this case,
the charging load is directly aggregated at the trip end by
each hour (i.e., the “trip-end” scenario). An off-peak charging
profile is also constructed based on the trip-end scenario by
postponing the charging load assigned to peak hours (2:00
PM to 8:00 PM) to non-peak hours (10:00 PM to 4:00 AM
of the next day) to reduce electricity cost and peak demand
(“off-peak” scenario).

The realistic charging demand generation method will sim-
ulate the charging demand using a microscopic charging
behavior model which accounts for diversity in people’s range
anxiety and the characteristics of daily travel. The individual-
level charging load at different locations depends on the time-
of-day, trip characteristics, remaining battery range, and the
minimum range needed by individuals to complete trips. In
this case, people are more likely to charge by the end of all
travels within a day with battery closer to depletion, instead of
charging the vehicle in the middle of the day with sufficient
ranges left (referred to the ‘most likely’ scenario).

C. Transportation Network Model

The traffic modeling provides information on the energy
consumption of EVs. Coupled with parameters designed spe-
cific to each scenario through EV charging schemes, the
location and time of charging is determined. These models
provide the EV charging load at geographically-represented
nodes each hour of the day for the period of study. This infor-
mation provides the essential details that enable the coupled-
infrastructure modeling completed in this paper: the additional
load from EV charging, where, and when this charging occurs.

III. ELECTRIC GRID NETWORK MODELING

A. Test Case Overview

Synthetic electric grids are realistic and fictional power
network models. Based on publicly available data, and the
statistics of the real power networks, synthetic electric grids
are created to include detailed representations of grid elements
such as generators, loads, transmission lines, and transformers
[14], [15]. Some synthetic grids are also geographically sited,
which enables the possibility of coupled infrastructure map-
ping and co-simulation. Publicly available synthetic grids can
be used without the data confidentiality concerns [16].

In this paper, a synthetic grid on the footprint of Travis
County, TX is used as the test case to demonstrate the coupling
of power and transportation networks [17]. The key statistics of
the synthetic system, Travis160, are provided in Table I. This
test case contains both transmission and distribution networks
[17]–[19]. Figure 2 provides a closer look at the Austin
downtown area in the synthetic test case, where the gray boxes
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Fig. 2: Zoomed-in view of downtown area in the Travis160
synthetic test case, geo-located in Travis County, Texas [17]

TABLE I: Overview Statistics of the Travis160 Test Case

Customer loads 307,236
Generator units 39
Feeders 448
69 kV transmission lines 229
230 kV transmission lines 34
Transmission buses 160
Distribution electric nodes 1,654,691

are transmission substations, blue and green lines are parts of
the transmission grid, and other lines are distribution feeders.

To reduce the computational demand of the coupled infras-
tructure simulation, the distribution models are simplified to
non-electrically modeled elements in the paper. Leveraging
the topology of the distribution system, substation service
areas are defined to map the locations of EV load to the
transmission-level substations.

B. Substation Service Areas

Substation service areas are defined to simplify the mapping
of EV load from a transportation node to the transmission-level
substation and to provide an understanding of the geographic
service of the system. Establishing the service territory of each
transmission substation leverages the geographic data on the
synthetic system as well as the topology of the distribution
system in the Travis160 synthetic case and uses Voronoi
polygons to establish tessellating service territories with the
electric model’s nodes central to each region.

The service area mapping procedure is summarized below:
1) Select a transmission-level substation,
2) Identify which distribution feeders correspond to the

selected substation,
3) Obtain geographic coordinates of identified distribution

feeder nodes,
4) Create Voronoi polygons to represent the reach of each

distribution node,
5) Aggregate Voronoi polygons to represent the selected

transmission-level substation’s service area,
6) Repeat steps 1 through 5, iterating through transmission-

level substations.
If the distribution system topology is not made available,

service areas can be approximated by creating Voronoi poly-
gons for each of the transmission-level substations.

Fig. 3: Transportation segments (lines) and transmission-level
substations (dots) colored according to substation service [7].

C. Mapping EV Load to the Electric Grid

The EV charging nodes are mapped to the transmission
system according to the substation service areas established
in III-B. If the EV charging node falls within the geographic
footprint of a substation, it indicates that its most proximate
distribution point of interconnection would aggregate to the
specified transmission-level substation and thus, its load is best
represented as an addition to the identified transmission-level
substation.

In practice, the mapping of all transportation nodes to the
service areas is performed once and the aggregation is cus-
tomized for varying charging demands informed by different
scenarios. Figure 3 provides a depiction of the transmission
substations and the roadway links which fall within their
service area. The aggregate EV load from charging along
these roadway segments are applied to the corresponding
transmission-level substation to include the EV charging load
in the electric model.

IV. SCENARIO DESIGN

A. Electric Grid Variation

Leveraging the geographic information associated with the
Travis160 synthetic test case, hourly time series of individual
loads and renewable generators are created to represent the
electric grid variation. For the bus-level load, a composition
ratio of residential, commercial, and industrial customer is es-
timated. Publicly available prototypical residential/commercial
building, and industrial facility load time series are then
aggregated to the transmission bus level through a heuristic
optimization process [20], [21]. For renewable generation
time series, wind and solar integration toolkit from National
Renewable Energy Laboratory is utilized [22], [23]. Given the
generator type and geographic location, a unique MW output
pattern is synthesized, reflecting the capacity factor, seasonal
variation and regional features of a specific renewable unit in
the Travis160 test case.

In this paper, the peak load day of the year is chosen for the
scenario design. During this 24-hour period, the total system
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(a) Base case load time series

(b) Base case renewable generation time series

Fig. 4: Load and renewable generation profile for the base case

load varies between 1511 MW and 2607 MW through a typical
daily cycle. The peak solar generation occurs at 1 PM with
27 MW output, and the system wind peaks at midnight with
460 MW generation. The load and generation profile for the
base case is shown in Figure 8.

B. Load Addition from EV Charging

This paper considers charging demand at 20% EV market
penetration. With different assumptions on charging behaviors
discussed in Section II, three EV load profiles are added to the
existing electric grid variation. Figure 5 shows the time series
for the EV charging demand. The three study scenarios with
EV charging considered, and one base scenario without EV
are summarized in Table II, with the peak and trough values
of the system load given.

Fig. 5: EV charging demand

TABLE II: Travis160 24-Hour Scenario Summary

Scenario # EV Charging Scheme Load Peak Load Trough
0 – 2607 MW 1511 MW
1 Trip-End 2825 MW 1539 MW
2 Off-Peak 2762 MW 1553 MW
3 Most Likely 2638 MW 1707 MW

Fig. 6: Impacts on most heavily loaded transformer

Fig. 7: Change in transformer %MVA load (Scenario 1, 4 PM)

V. GRID IMPACT ANALYSIS

A. System Loading

A key question to address while considering increasing EV
usage is whether the grid is able to meet the charging demand.
If not, system upgrades or special charging strategies may
be required. Using the OPF results, the loading on systems
elements such as lines and transformers as well as impacts
on bus voltages are determined. While 20% EV integration
did not cause any violations, the most noticeable effects were
on transformer loading. Across different charging scenarios,
the same four or five transformers in Travis County showed
the most increase in loading. Figure 6 shows the change in
MVA loading for the transformer that was the most heavily
loaded (i.e., 60%) in the base case, while Figure 7 shows the
change in loading for all transformers for scenario 1 at the peak
EV load time of the day (i.e., 4 PM). Such studies can help
indicate potential weak points or candidate upgrade locations
especially for more extreme scenarios of load increase etc.

B. Generation Dispatch

The generation dispatch of each scenario is determined
using optimal power flow (OPF) method to minimize the
system operation cost at each hour. Figures 8a, 8b, and 8c
visualize the additional generation dispatched due to the load
increase from EV charging, with three different charging
patterns. For all three EV charging scenarios, natural gas and
coal generators are dispatched with increased MW output to
meet the added electric demand, while the output of nuclear,
wind, and solar generators stay constant when compared to
the base case, where no EV charging is considered. During
the 24-hour period of the simulation for all three EV charging
scenarios, no line loading or bus voltage limits are violated.
Thus the wind and solar units can generate at their maximum
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(a) Additional dispatch for EV charging Scenario 1

(b) Additional dispatch for EV charging Scenario 2

(c) Additional dispatch for EV charging Scenario 3

Fig. 8: Additional generation dispatch for each EV charging
scenario, by unit type

for each hour following the pre-defined renewable MW output
time series, without being curtailed.

For the “trip-end” charging scenario, the additional MW
from natural gas and coal generators are relatively steady
throughout the daytime, since the charging is directly aggre-
gated at the end of the trip each hour. The generator dispatch
pattern of “off-peak” scenario is similar to that of “trip-end” in
the middle of the day. However, compared to the first scenario,
the generator output in the second scenario is reduced from
2:00 PM to 8:00 PM, and increased 10:00 PM to 4:00 AM.
Both “trip-end” and “off-peak” scenarios have relatively lower
generation dispatch during the night. The dispatch pattern for
the “most-likely” scenario is unique compared to the first
two scenarios. The additional generation dispatch is minimal
during the day, and increased drastically at night.

VI. SUMMARY AND FUTURE WORK

This paper presents a framework of coupled infrastructure
studies between the power transmission and transportation net-
works. The detailed modeling considerations for each network,
the points of coupling from EV charging, and the design of
testing scenarios are discussed. The grid impact study results
using three different charging patterns are also presented and
compared to the base scenario without EV charging.

Future work can expand on the methodology outlined in
this paper to include:

• Test systems on larger geographic footprints to enable
corridor analysis and renewable power purchase agree-
ment simulations for the power transmission network,

• Combined power transmission and distribution simulation
for distribution element overload prediction, and

• Smart EV charging patterns informed by grid operation
conditions and renewable energy forecasts.
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