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Announcements 

• Read Chapter 8 and Appendices 3B and 3E of 

Chapter 3 

• Homeworks 6 and 7 are assigned today, with 

Homework 6 due on Nov 12 and Homework 7 by 

Nov 24 

• The second exam will be in class on Nov 17 

• Distance learners will be able to take the exam from Nov 

16 to Nov 18  

• Associated with Homework 7 will be student 

presentations; these will be about 15 minutes during 

class on Nov 19 or Nov 24 

• Other times can be arranged for the distance learners 
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OPF Problem Formulation 

• The OPF is usually formulated as a minimization with 

equality and inequality constraints 

 

 

 

 

 

where x is a vector of dependent variables (such as the 

bus voltage magnitudes and angles), u is a vector of 

the control variables, F(x,u) is the scalar objective 

function, g is a set of equality constraints (e.g., the 

power balance equations) and h is a set of inequality 

constraints (such as line flows)  

min max

min max

Minimize F( , )

( , )

( , )



 

 

x u

g x u 0

h h x u h

u u u
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LP OPF Solution Method 

• There are different OPF solution techniques.  One 

common approach uses linear programming (LP) 

• The LP approach iterates between 

– solving a full ac or dc power flow solution 

• enforces real/reactive power balance at each bus 

• enforces generator reactive limits 

• system controls are assumed fixed  

• takes into account non-linearities 

– solving a primal LP 

• changes system controls to enforce linearized constraints 

while minimizing cost 
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LP Standard Form 

The standard form of the LP problem is 

Minimize    

s.t.               

                     

where         n-dimensional column vector

                   n-dimensional row vector

            









cx

Ax b

x 0

x

c

       m-dimensional column vector

                   m×n matrix

For the LP problem usually n>> m





b

A

Maximum problems can 

be treated as minimizing 

the negative 

The previous examples were not in this form! 
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Marginal Costs of Constraint 
Enforcement in LP 

1
1

If we would like to determine how the cost function

will change for changes in , assuming the set

of basic variables does not change 

then we need to calculate 

( ) ( )

So the

B B B B
B B

z 
  

   
  

b

c x c A b
c A λ

b b b

 values of  tell the marginal cost of enforcing

each constraint. 

λ
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The marginal costs will be used to determine the OPF 

locational marginal costs (LMPs) 



Nutrition Problem Marginal Costs 

• In this problem we had basic variables 1, 2, 3; 

nonbasic variables of 4 and 5 
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 

 

B

B

1

1
B N N

1

1
B

2 3 1 20 4

1 3 0 12 2.67

4 3 0 24 4

2 3 1 0

0.2 0.25 0 1 3 0 0.044

4 3 0 0.039









     
        
     
          

   
     
   
      

x A b A x

λ c A

There is no marginal cost with the first constraint since it is not 

binding; values tell how cost changes if the b values were changed 



Lumber Mill Example Solution 

 

1 2

1 2 3

1 2 4

1 2 3 4

1 2 3 4

1

Minimize    -(100 120 )

s.t.                2 2 8

                     3 5 15

                     , , , 0

The solution is  2.5, 1.5, 0, 0

2 2 35
Then  = 100 120

3 5 10

x x

x x x

x x x

x x x x

x x x x





  

  



   

  
  

  
λ





Economic interpretation of l is the profit is increased by 

35 for every hour we up the first constraint (the saw) and 

by 10 for every hour we up the second constraint (plane)   

1 2 3 4

An initial basic feasible solution

is 0, 0, 8, 15x x x x   
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Complications 

• Often variables are not limited to being  0 

– Variables with just a single limit can be handled by 

substitution;  for example if x  5 then x-5=z  0 

– Bounded variables, high  x  0 can be handled with a slack 

variable so x + y = high, and x,y  0  

• Unbounded conditions need to be detected (i.e., unable 

to pivot); also the solution set could be null  
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1 2 1 2

1 2 1 2

1 2 1

Minimize     s.t.  8

8 8 is a basic feasible solution

1 1 1 8

2 0 1 8

x x x x

x x y x

x x y

  

     







Complications 

• Degenerate Solutions 

– Occur when there are less than m basic variables > 0 

– When this occurs the variable entering the basis could also 

have a value of zero; it is possible to cycle, anti-cycling 

techniques could be used 

• Nonlinear cost functions 

– Nonlinear cost functions could be approximated by assuming 

a piecewise linear cost function  

•  Integer variables 

– Sometimes some variables must be integers; known as integer 

programming; we’ll discuss after some power examples  
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LP Optimal Power Flow 

• LP OPF was introduced in  

– B. Stott, E. Hobson, “Power System Security Control 

Calculations using Linear Programming,” (Parts 1 and 2) IEEE 

Trans. Power App and Syst., Sept/Oct 1978 

– O. Alsac, J. Bright, M. Prais, B. Stott, “Further Developments 

in LP-based Optimal Power Flow,” IEEE Trans. Power 

Systems, August 1990 

• It is a widely used technique, particularly for real power 

optimization; it is the technique used in PowerWorld 
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LP Optimal Power Flow 

• Idea is to iterate between solving the power flow, and 

solving an LP with just a selected number of 

constraints enforced 

• The power flow (which could be ac or dc) enforces 

the standard power flow constraints 

• The LP equality constraints include enforcing area 

interchange, while the inequality constraints include 

enforcing line limits; controls include changes in 

generator outputs 

• LP results are transferred to the power flow, which is 

then resolved  
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LP OPF Introductory Example 

• In PowerWorld load the B3LP case and then 

display the LP OPF Dialog (select Add-Ons, OPF 

Case Info, OPF Options and Results) 

• Use Solve LP OPF to 

solve the OPF, initially 

with no line limits  

enforced; this is similar 

to economic dispatch 

with a single power  

balance equality constraint 

• The LP results are available from various pages on 

the dialog 12 

Bus 2 Bus 1

Bus 3

slack

Total Cost

10.00 $/MWh

 60 MW  60 MW

 60 MW

 60 MW

120 MW

120 MW

10.00 $/MWh

10.00 $/MWh
1800 $/h

0.0 MW

  0 MW

MW180

180.0 MW

MW  0

120%

120%



LP OPF Introductory Example, cont 
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LP OPF Introductory Example, cont 

• On use Options, Constraint Options to enable the 

enforcement of the Line/Transformer MVA limits  
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LP OPF Introductory Example, cont. 

15 

Bus 2 Bus 1

Bus 3

slack

Total Cost

12.00 $/MWh

 20 MW  20 MW

 80 MW

 80 MW

100 MW

100 MW

10.00 $/MWh

14.00 $/MWh
1920 $/h

60.0 MW

  0 MW

MW180

120.0 MW

MW  0

100%

100%



Example 6_23 Optimal Power Flow 

Open the case Example6_23_OPF.  In this example 

the load is gradually increased 
16 

On the Options, 

Environment 

page the simulation can be  

set to solve an OPF when 

simulating 



Locational Marginal Costs (LMPs) 

• In an OPF solution, the bus LMPs tell the marginal 

cost of supplying electricity to that bus 

• The term “congestion” is used to indicate when there 

are elements (such as transmission lines or 

transformers) that are at their limits; that is, the 

constraint is binding 

• Without losses and without congestion, all the LMPs 

would be the same 

• Congestion or losses causes unequal LMPs 

• LMPs are often shown using color contours; a 

challenge is to select the right color range! 
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Example 6_23 Optimal Power Flow 
with Load Scale = 1.72 
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• LP Sensitivity Matrix (A Matrix) 

Example 6_23 Optimal Power Flow 
with Load Scale = 1.72 

The first row is the power balance constraint, while 

the second row is the line flow constraint.  The matrix 

only has the line flows that are being enforced.   
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Example 6_23 Optimal Power Flow 
with Load Scale = 1.82 

• This situation is infeasible, at least with available 

controls.  There is a solution because the OPF is 

allowing one of the constraints to violate (at high 

cost) 

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

0.95 pu1.04 pu

0.99 pu1.05 pu

 58%
A

MVA

 48%
A

MVA

 57%
A

MVA

 57%
A

MVA

133 MW

133 MW

 80 MW  80 MW 124 MW 124 MW

 64 MW

 64 MW

176 MW

176 MW

 42 MW

42 MW

 56 MW

11297.88 $/h

713.4 MW

235.47 $/MWh

1.82

16.82 $/MWh 20.74 $/MWh 22.07 $/MWh

15.91 $/MWh 1101.78 $/MWh

MW213

MW220

268 MW

 71 Mvar

143 MW

 54 Mvar

MW231.9

 71.3 Mvar

 71 MW

 36 Mvar

MW280

AGC ON

AGC ON

AGC ON

 89%
A

MV A

100%
A

MVA

100%
A

MVA
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Generator Cost Curve Modeling 

• LP algorithms require linear cost curves, with 

piecewise linear curves used to approximate a 

nonlinear cost function 

• Two common ways 

of entering cost  

information are  

– Quadratic function 

– Piecewise linear curve 

• The PowerWorld OPF 

supports both types  
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Security Constrained OPF 

• Security constrained optimal power flow (SCOPF) is 

similar to OPF except it also includes contingency 

constraints 

– Again the goal is to minimize some objective function, 

usually the current system cost, subject to a variety of 

equality and inequality constraints 

– This adds significantly more computation, but is required to 

simulate how the system is actually operated (with N-1 

reliability) 

• A common solution is to alternate between solving a 

power flow and contingency analysis, and an LP 
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Security Constrained OPF, cont. 

• With the inclusion of contingencies, there needs to be 

a distinction between what control actions must be 

done pre-contingent, and which ones can be done post-

contingent 

– The advantage of post-contingent control actions is they 

would only need to be done in the unlikely event the 

contingency actually occurs 

• Pre-contingent control actions are usually done for line 

overloads, while post-contingent control actions are 

done for most reactive power control and generator 

outage re-dispatch  
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SCOPF Example 

• We’ll again consider Example 6_23, except now it has 

been enhanced to include contingencies and we’ve also 

greatly increased the capacity on the line between buses 

4 and 5; named Bus5_SCOPF_DC 

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

0.82 pu1.04 pu

1.00 pu1.05 pu

 36%
A

MVA

 80%
A

MVA

 57%
A

MVA

 12%
A

MVA

 53 MW

 53 MW

 82 MW  82 MW  26 MW  26 MW

 91 MW

 91 MW

  0 MW

  0 MW

 96 MW

96 MW

127 MW

5729.74 $/h

392.0 MW

14.70 $/MWh

1.00

14.33 $/MWh 14.87 $/MWh 15.05 $/MWh

14.20 $/MWh 15.05 $/MWh

MW135

MW173

147 MW

 39 Mvar

 78 MW

 29 Mvar

MW127.4

 39.2 Mvar

 39 MW

 20 Mvar

MW 84

AGC ON

AGC ON

AGC ON
 80%

A

MVA
100%

A

MVA

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

0.82 pu1.04 pu

1.00 pu1.05 pu

 36%
A

MVA

 80%
A

MVA

 57%
A

MVA

 12%
A

MVA

 53 MW

 53 MW

 82 MW  82 MW  26 MW  26 MW

 91 MW

 91 MW

  0 MW

  0 MW

 96 MW

96 MW

127 MW

5729.74 $/h

392.0 MW

319.73 $/MWh

1.00

14.33 $/MWh 14.87 $/MWh 15.05 $/MWh

14.20 $/MWh 1540.19 $/MWh

MW135

MW173

147 MW

 39 Mvar

 78 MW

 29 Mvar

MW127.4

 39.2 Mvar

 39 MW

 20 Mvar

MW 84

AGC ON

AGC ON

AGC ON100%
A

MVA

268%
A

MVA

Original with line 4-5 limit 

of 60 MW with 2-5 out  

Modified with line 4-5 limit 

of 200 MVA with 2-5 out  
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PowerWorld SCOPF Application 

Just click the button to solve 

Number of times 

to redo contingency 

analysis 
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LP OPF and SCOPF Issues 

• The LP approach is widely used for the OPF and 

SCOPF, particularly when implementing a dc power 

flow approach 

• A key issue is determining the number of binding 

constraints to enforce in the LP tableau 

– Enforcing too many is time-consuming, enforcing too few 

results in excessive iterations 

• The LP approach is limited by the degree of linearity 

in the power system 

– Real power constraints are fairly linear, reactive power 

constraints much less so   
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OPF Solution by Newton’s Method 

• An alternative to using the LP approach is to use 

Newton’s method, in which all the equations are 

solved simultaneously 

• Key paper in area is 

–  D.I. Sun, B. Ashley, B. Brewer, B.A. Hughes, and W.F. 

Tinney, "Optimal Power Flow by Newton Approach", IEEE 

Trans. Power App and Syst., October 1984 

• Problem is  

Minimize ( )

s.t.           ( )=

                ( )

f



x

g x 0

h x 0

For simplicity x represents 

all the variables and we can 

use h to impose limits on 

individual variables 
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OPF Solution by Newton’s Method 

• During the solution the inequality constraints are 

either binding (=0) or nonbinding (<0) 

– The nonbinding constraints do not impact the final 

solution 

• We’ll modify the problem to split the h vector into 

the binding constraints, h1 and the nonbinding 

constraints, h2  

1

2

Minimize ( )

s.t.           ( )=

                ( )

                ( )

f





x

g x 0

h x 0

h x 0
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OPF Solution by Newton’s Method 

• To solve first define the Lagrangian 

 

 

• A necessary condition for a minimum is that the 

gradient is zero  

 
1 2 1( , , ) ( ) ( )+ ( )

Let  = 

T TL f x λ λ x μ g x λ h x

z x μ λ

29 

1

2

( )

( )
( )

L

z

L
L

z

 
 
 
 

    
 
 
 
 

z

z
z 0

M

Both  and l are 

Lagrange Multipliers 



OPF Solution by Newton’s Method 

• Solve using Newton’s method.  To do this we need 

to define the Hessian matrix 

 

 

 

 

 

• Because this is a second order method, as opposed 

to a first order linearization, it can better handle 

system nonlinearities  

2 2 2

2 2
2

2

( ) ( ) ( )

( ) ( )
( ) ( )

( )

i j i j i j

i i j

j i

L L L

x x x x

L L
L

z z x

L

x

 l



l

   
 
      

   
     

     
 
 
   

z z z

z z
z H z 0 0

z
0 0
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OPF Solution by Newton’s Method 

• Solution is then via the standard Newton’s method.  

That is 

31 

   

 

max

(k)

max

1(k 1) (k)

Set iteration counter k=0, set k

Set convergence tolerance 

Guess 

While ( )  and k < k

    ( ) ( )

    k = k + 1

End While

L

L







 

  

z

z

z z H z z

No iteration is 

needed for a 

quadratic function 

with linear 

constraints 



Example 

• Solve  

   

 

   

2 2

1 2 1 2

2 2

1 2 1 2

1
1

2

2

1 2

2

Minimize x x  such that 3x 2 0

Solve initially assuming the constraint is binding

L , x x 3x 2

2x 3

L , 2x     

3x 2

2 0 3

L , , 0 2 1

3

x

x

L

x

L

x
x

L

l l

l

l l

l

l l

   

    

 
 
   
   

      
     
 
 
 

  

x

x

x H x

1

1

2

1 2 0 1 2 0.6

1 0 2 1 2 0.2

1 0 0 1 1 0 2 0.4

x

x

l



           
           

   
           
                      

No iteration is 

needed so any 

“guess” is fine.  

Pick (1,1,0) 

Because l is positive the constraint is binding 32 



Newton OPF Comments 

• The Newton OPF has the advantage of being better 

able to handle system nonlinearities 

• There is still the issue of having to deal with 

determining which constraints are binding 

• The Newton OPF needs to implement second order 

derivatives plus all the complexities of the power flow 

solution 

– The power flow starts off simple, but can rapidly get complex 

when dealing with actual systems  

• There is still the issue of handling integer variables  
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Mixed-Integer Programming 

• A mixed-integer program (MIP) is an optimization 

problem of the form 

34 

Minimize    

s.t.               

                     

where         n-dimensional column vector

                   n-dimensional row vector

                   m-dimensional column vector

   











cx

Ax b

x 0

x

c

b

j

                m×n matrix

                   some or all x  integer

A



Mixed-Integer Programming 

• The advances in the algorithms have been substantial   

Notes are partially based on a presentation at Feb 2015 US National Academies Analytic 

Foundations of the Next Generation Grid by Robert Bixby from Gurobi Optimization titled 

“Advances in Mixed-Integer Programming and the Impact on Managing Electrical Power Grids” 

Speedups  

from 2009 

to 2015 were 

about a factor 

of 30 

35 



Mixed-Integer Programming 

• Suppose you were given the following choices? 

– Solve a MIP with today’s solution technology on a 1991 

machine 

– Solve a MIP with a 1991 solution on a machine from today? 

• The answer is to choose option 1, by a factor of 

approximately 300 

• This leads to the current debate of whether the OPF 

(and SCOPF) should be solved using generic solvers or 

more customized code (which could also have quite 

good solvers!) 

Notes are partially based on a presentation at Feb 2015 US National Academies Analytic 

Foundations of the Next Generation Grid by Robert Bixby from Gurobi Optimization titled 

“Advances in Mixed-Integer Programming and the Impact on Managing Electrical Power Grids” 36 



More General Solvers Overview 

• OPF is currently an area of active research 

• Many formulations and solution methods exist…  
– As do many tools for highly complex, large-scale 

computing! 

 

• While many options exist, some may work better for 

certain problems or with certain programs you already 

use 

 

• Consider experimenting with a new language/solver! 
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Gurobi and CPLEX 

• Gurobi and CPLEX are two well-known 

commercial optimization solvers/packages for 

linear programming (LP), quadratic programming 

(QP), quadratically constrained programming 

(QCP), and the mixed integer (MI) counterparts of 

LP/QP/QCP 

• Gurobi and CPLEX are accessible through object-

oriented interfaces (C++, Java, Python, C), matrix-

oriented interfaces (MATLAB) and other modeling 

languages (AMPL, GAMS) 
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Solver Comparison 

 Algorithm Type 
------------------ 

Solver 

LP/MILP 
linear/mixed integer 

linear program 

QP/MIQP 
quadratic/mixed integer 

quadratic program 

SOCP 
second order cone 

program 

SDP 
semidefinite 

program 

CPLEX* x x x 

GLPK x 

Gurobi* x x x 

IPOPT x 

Mosek* x x x x 

SDPT3/SeDuMi x x 

Linear programming can be solved by quadratic programming, 

which can be solved by second-order cone programming, which 

can be solved by semidefinite programming.  
39 



DC OPF and SCOPF 

• Solving a full ac OPF or SCOPF on a large system is 

difficult, so most electricity markets actually use the 

more approximate, but much simpler DCOPF, in which 

a dc power flow is used  

• PowerWorld includes this option in the Options, 

Power Flow Solution, DC Options  
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Example 6_13 DC SCOPF Results: 
Load Scalar at 1.20 

• Now there is not an unenforceable constraint on the line 

between 4-5 (for the line 2-5 contingency) because the 

reactive losses are ignored 
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Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

1.00 pu1.00 pu

1.00 pu1.00 pu

 62%
A

MVA

 58%
A

MVA

 46%
A

MVA

 45%
A

MVA

 42%
A

MVA

 26%
A

MVA

 14%
A

MVA

 87 MW

 87 MW

 63 MW  63 MW  59 MW  59 MW

 55 MW

 55 MW

124 MW

124 MW

 45 MW

45 MW

 28 MW

6942.99 $/h

470.4 MW

15.92 $/MWh

1.20

14.81 $/MWh 16.41 $/MWh 16.89 $/MWh

14.63 $/MWh 16.89 $/MWh

MW150

MW184

176 MW

  0 Mvar

 94 MW

  0 Mvar

MW152.9

  0.0 Mvar

 47 MW

  0 Mvar

MW136

AGC ON

AGC ON

AGC ON



2000 Bus Texas Synthetic DC OPF 
Example 

• This system does a DC OPF solution, with the 

ability to change the load in the areas  

The quite 

low LMPs 

are actually 

due to a  

constraint 

on a single 

230/115 kV 

transformer 
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Actual ERCOT LMPs on Nov 3, 2020 
at 10:05 am 

Source: www.ercot.com/content/cdr/contours/rtmLmp.html 43 



June 1998 Heat Storm: Two 
Constraints Caused a Price Spike 

Colored areas could NOT sell into Midwest because of  

constraints on a line in Northern Wisconsin and on a  

Transformer in Ohio 

 

44 

Price of  

electricity 

in Central 

Illinois went 

to $7500 

per MWh! 


