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Executive Summary 

With the large-scale deployment of PMUs in the U.S. and worldwide, a recurring theme 
has been the question of how to best extract useful “information” or “knowledge” from 
the very voluminous data that PMUs provide. While the direct control center display of 
PMU-based data is certainly important, particularly bus voltage angle values, this project 
focused on techniques the go beyond direct display of the raw PMU data. That is, the 
project focused on how information could be extracted from the PMU data, and then how 
this information could be used to improve power system situational awareness. Five 
different aspects of the problem are considered in Chapters 2 through 6.  

Chapter 2 considers how much information could be gleaned from the PMU data 
with an approach that makes minimal use of other a priori information about the 
system status and model parameters. It is based on a data analysis tool that has been 
widely utilized for compression and feature extraction in other industries: the Singular 
Value Decomposition (SVD).  The SVD method for PMU data processing views the 
physical power system as a power flow solver – taking time varying loads/injections as 
inputs, and producing PMU-measured angles and voltage magnitudes as outputs. By 
observing a time window of PMU measurements over an interval, forming a matrix of 
data, and computing the singular value decomposition of this matrix as this window 
“slides” forward in time, the Chapter 2 algorithm characterizes important aspects of the 
system’s input-to-output behavior. When the system is highly stressed, one sees outputs 
vary much more dramatically in response to time variation of the inputs. This efficiently 
computes information closely related to the Power Flow Jacobian matrix conditioning, 
with none of the state estimator and network data required to compute the PF Jacobian 
matrix itself – the algorithm uses PMU measurements only. Conditioning of the Power 
Flow Jacobian is a general indicator of robustness of a system operating point; more 
specifically, the smallest singular value of the power flow Jacobian (i.e., as it approaches 
zero) has long been utilized as a first indicator of vulnerability of a system to voltage 
collapse. Hence, one of the outputs of SVD-based PMU processing algorithm serves as a 
real-time indicator of system stress, tracking a well-established voltage stability 
performance metric without the need for detailed network parameter values or state 
estimator results. 

Chapter 3 presents an algorithm on how PMU data can be used to enhance existing 
power flow algorithms to improve situational awareness. The motivation for this 
application arises because in a variety of situations SE results may not be available. For 
example, smaller utility control systems may not have an SE, the SE may have failed to 
converge during rapidly changing system conditions, there may be a need to combine SE 
results with a larger system model, or people involved in nonoperational aspects of the 
power grid, such as marketers and power system planners, may not have access to SE 
results.  But often a power flow case is available that at least approximates (to some 
degree) the current operating condition. The Chapter 3 algorithm shows how existing 
linear programming (LP) based optimal power flow algorithms (OPF) can be used to 
change a power flow operating point to better match the bus voltage angles coming from 
the PMUs. The algorithm is demonstrated using a three bus case and a 13,000 bus case.  
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Chapter 4 presents the visualization of PMU-derived information associated with 
power system electromechanical oscillations using the Washington State University 
Oscillation Monitoring System (OMS). The inputs to the OMS are selected PMU bus 
voltage measurements. When a disturbance is detected the OMS uses a real-time Prony 
analysis with a moving time-window to determine the oscillation frequency and damping 
ratio. Results are visualized with a user-friendly, web-page interface.   

Two example visualizations are presented. In the first, the Damping Monitor display, 
there are three major areas. Left top is a frequency vs. damping ratio point chart, which 
shows all the modes in the frequency domain, and their damping ration on y-axis. The 
right top corner shows the time and a brief summary, which includes the status of each 
mode. The bottom of the display is the mode shape area, which shows mode shapes of up 
to 4 modes, in a radial fashion. In the second, the Event Monitor display, there are two 
areas. The top area shows the mode frequency and the damping ratio with a dial like 
chart. The bottom part shows the mode shape, as in the Damping Monitor display.  

Chapter 5 considers how PMU data can improve situational awareness by 
improving the load models used for power system analysis platforms. The 
mathematical models for loads used in most security (operational reliability) analysis 
range in detail from simple impedances to generic dynamic models and full-blown 
induction motor models. These load models typically have various parameters that 
describe their behavior and power consumption. In hour and day-ahead analysis, the 
loads are essentially based on power forecasts. Two things about these load models are 
important in the analysis. The first thing is the model structure (static, dynamic etc.); the 
second is the model parameter values.   

Since PMUs provide virtually real-time values of voltages and currents, they have the 
potential to be useful in producing virtually real-time load models for security 
(operational reliability) analysis. If the PMU data come from locations that could be 
considered “load buses”, then analysis of these measurements could provide information 
on the structure of the load model and the parameters of the model. This portion of the 
project developed a process to perform this analysis.   

This process was then evaluated with simulated phasor data using a 3-machine, 9-bus 
system, and a 9-machine, 30-bus system. For each system, several cases with different 
load models were simulated using the automatic identification procedure. The voltage 
variation was detected to start the estimation process. The load type was determined by 
inspecting the P-V relation and by using the self-augmented model. LMA was used to 
estimate model parameters. Finally, the estimation results were validated by using the 
data after that until another voltage variation was detected. The results from both test 
cases using simulated phasor data indicate that the method could become a valuable tool 
for model identification in real time.  

The application of PMU data to improve reactive power monitoring and control is 
considered in Chapter 6. The ability to supply reactive power when it is needed can 
help a system to obtain a new stable operating point instead of becoming unstable. 
Generally, such reactive power control occurs only at the transmission system level. 
Chapter 6 develops a framework to allow control of distributed reactive-power capable 
devices located near the end-user. In particular, inverters such as those connected to PV 
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panels and pluggable-hybrid electric vehicles (PHEVs) can be used to operate at a 
leading power factor and thus supply reactive power.  

The communication and control for these reactive power resources can be coordinated in 
a hierarchical way. First, the voltage problem must be detected. Then, the appropriate 
response action needed to correct the voltage problem is computed. The solution at this 
stage gives locations and amounts of reactive power needed to correct the problem. 
Action requests are formulated and sent to an agent, which may be located in a relay on a 
feeder. This feeder agent may be upstream of several other relays and load controllers. 
The requests propagate downward. At each level, a set of response actions needed to 
fulfill the request are determined and sent to the next level in the hierarchy. Results are 
demonstrated using the IEEE 24-bus reliability test system.  

Future Research Steps 

With the rapid growth in PMU installations across many power systems it is clear that 
PMUs will play a role of increasing importance in power system operations. While this 
project has presented solid research for moving forward, there is certainly more work to 
be done.  The SVD work from Chapter 2 needs to be further tested and validated; also 
applications to other PMU-based measurements should be considered.  While the Chapter 
3 work of incorporating PMU-measurements into the power flow could also benefit from 
additional testing, it is at the stage in which commercial implementation should be 
considered.  The Chapter 4 OMS is currently undergoing utility testing; the associated 
visualizations could be enhanced based upon the results of this testing.  The Chapter 5 
load modeling work should having additional testing with actual PMU data; it could also 
be extended to consider more dynamic load models, such as induction machines and 
other devices such as synchronous generators.  Last, the Chapter 6 use of PMUs for 
improved  reactive power modeling as advanced to the point in which actual prototype 
installations can be considered.     
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1. Introduction 

1.1 Background and Problem Overview 

According to the August 2003 blackout report [37], one critical need for the power 
industry is an increase in its situational awareness. Over the last two decades much work 
has been done in determining the best ways to represent traditional SCADA and EMS 
information to operators to increase their understanding of grid conditions, with much of 
this work now finding its way into electric utility application. As this work has 
progressed, new devices have continuously been added to the power grid. One of the 
most interesting new devices deployed on the power system, the phasor measurement 
unit (PMU) [1], is just now beginning to see wide scale deployment in electric utility 
control center supervisory applications.  

From a situational awareness perspective there are three issues that make PMU 
measurements unique. First, they can provide relatively high measurement rates, with 
values of 30 times per second typical. This allows them to capture previously difficult to 
observe power system dynamics. Second, they provide a direct measure of the voltage 
and current phase angles, permitting these values to be displayed without the need to first 
perform a state estimation. This, coupled with their high measurement rate, means that 
voltage angles can now be used directly in power system visualizations. Of course from 
the voltage and current phasors other quantities such as real and reactive power flow can 
be easily calculated. Third, they can quickly provide synchronized values from anywhere 
within an entire interconnect. This allows their direct usage in interconnect-wide 
visualizations.  

To-date, most of the research regarding PMU integration into control centers has focused 
on applications in state estimation [2] and, more germane to this effort, on direct 
visualization of the bus voltage angles. For visualization the techniques that have been 
presented in the literature include a) the use of phase angle contouring, b) the geographic 
placement of bus voltage angle pie charts, and c) a combined dial like display that shows 
the voltage angles from a number of buses simultaneously. As examples, Figure 1.1, 
which reproduces Figure 5 of [3], shows a nice example of color contouring applied to 
the WECC system; Figure 1.2, which reproduces Figure 4 of [3], shows how pie charts 
placed in a geographic context can be used to display voltage phase angle variation across 
the WECC; Figure 1.3 which reproduces slide 10 of [4], shows a single representation of 
approximately thirty bus voltage phase angles.  
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Figure 1.1 WECC Display of voltage phase angles as a color contour and voltage 
magnitudes using thermometers 

 

Figure 1.2 BPA bus phase angle display from 2004 
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Figure 1.3 Bus voltage phase angle comparison dial 

For this project, rather than just seeking to expand on the earlier work done in direct 
visualization of the bus voltage angle values, we took a broader approach looking at how 
information contained within the PMU values (with a focus on bus voltage magnitudes) 
could be extracted to help in the broader situational awareness problem.  

1.2 Report Organization  

This report is organized into seven chapters. Chapter 2 presents a technique to use PMU-
based information to determine a system voltage stability metric that makes minimal use 
of other a priori information about the system status and model parameters. Chapter 3, 
discusses how PMU information can be used within existing power flow algorithms to 
enhance system situational awareness in situations in which a full state estimator solution 
is not available. Chapter 4 presents some visualization techniques that can enhance real-
time monitoring of power system oscillations using PMU values. Chapter 5 looks into 
how PMU values can be used to improve the load models used in the power flow and 
transient stability applications. Chapter 6 considers how the improved system 
observability offered by PMUs can be coupled with the growth in distributed reactive 
power resources to improve the overall grid voltage support. Finally, Chapter 7 provides 
a summary and directions for future research.  
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2. A Singular Value Decomposition Approach to PMU Data 

2.1 Background 

The Synchronized “Phasor Measurement Unit” (PMU) is familiar to most power 
engineers. Briefly, a PMU measures a windowed Fourier transform (“phasor”) of the 
nominally sinusoidal voltages, currents, powers throughout grid.  The innovation of the 
last two decades has been to use Global Positioning Satellite (GPS) technology to 
facilitate precise, low-cost time synchronization of these signals across large geographic 
distances. The result has been a growing number of synchronized measurements, 
typically at 30 or 60 Hz reporting rates (with analogous rates for 50 Hz systems), across a 
continental scale.  

With the large-scale deployment of PMUs in the U.S. and worldwide, a recurring theme 
has been the question of how to best extract useful “information” or “knowledge” from 
this very voluminous data that PMUs provide. The portion of the  project reported here 
sought to address precisely this need, in a fashion that made minimal use of other a priori 
information about the system status or model parameters. In proposing this work, the 
techniques sought were described as a “model-free” evaluation of the power systems’ 
operational condition, to stress that the methods sought would almost exclusively use the 
real-time measurement data of the PMU’s themselves. In slightly more precise terms, the 
question to be addressed is: “how does one compress PMU data, and use it to compute 
real-time performance metrics that can inform grid control action?” 

The need for data reduction, compression, and feature extraction from voluminous data 
sets is hardly unique to power industry. Geological data processing, gene sequencing, 
bio-informatics, electronic commerce customer classification – all of these are problems 
with similar characteristics. There exists a long history of methods to achieve data set 
reduction/compression and feature identification in huge data sets. In both data 
compression and feature extraction, a common “Swiss Army Knife” for treating large 
data sets in many fields has been that of the Singular Value Decomposition (SVD) [5].  

In compression applications, SVD-based methods were an early competitor to the now 
ubiquitous jpeg algorithms for compression of digital image data. As will be reviewed in 
more detail below, the SVD is fundamentally a factorization of a matrix, that explicitly 
identifies and rank-orders the matrix’s “gains” (its singular values), while also identifying 
each “direction” (singular vectors) along which these gains act. From this perspective, its 
use as a image data reduction tool is apparent: one computes the SVD factorization for 
the two-dimensional array (matrix) representing an image, and compresses it by throwing 
away information associated with those directions having very low gain.  

For feature identification (in loose terms, the extraction of “knowledge”), one of the most 
common applications of SVD for large time and spatial series data sets is that of Principal 
Component Analysis (PCA) [6]. In its simplest form, the premise of PCA is that time 
sequence of vectors of data may be approximated as arising from Gaussian processes. In 
this context, the goal of PCA, using the singular value decomposition, is to identify 
coordinate bases that decompose the components of the observed vectors into 
uncorrelated variables  – the “principal components.”  In this context, the singular values 
identify the variance of each of the uncorrelated Gaussian random variables, while the 



 

 5

singular vectors identify the change of coordinates between the original measurement 
data and the new, uncorrelated coordinate system. 

These types of applications of SVD have precedent in prior PSERC-supported work. 
SVD methods were used as a filtering method for noise reduction in PMU data, as a step 
for estimating oscillatory modes in grid electro-mechanical dynamics (PSERC project S-
29, led by M. Venkatasubramanian). Principal component analysis and its nonlinear 
variants were employed for demand prediction in LMP market risk management (PSERC 
project M-17, led by S. Deng).  

The use of SVD methods to be proposed here, while building on concepts of Principal 
Component Analysis, and on the prior PSERC work, has a decidedly different flavor. Our 
underlying premise views the physical power system as defining a relation between its 
inputs (primarily loads at each bus, varying in time), mapped through the power flow 
behavior of the network (influenced by line switching and other contingencies), 
producing the PMU measured outputs of bus voltage magnitudes and phase angles. While 
this perspective is intentionally oversimplified for descriptive purposes here (i.e., PMU 
measurements may certainly include some of the “inputs,” as well as flow quantities), it 
provides a means to think about what information may be extracted from PMU data. In 
essence, we view the physical power system as power flow solver – it takes time varying 
load as input, and maps it to the PMU-measured angles and voltage magnitudes as 
outputs.  

By observing a time window of PMU measurements over an interval (thereby forming a 
matrix of data), and watching the behavior as this window “slides” forward in time, we 
should be able to observe characteristics of the map from inputs to outputs. When the 
system is highly stressed, we expect to see outputs vary more dramatically in response to 
time variation of the inputs. In terms of the SVD algorithms we propose, we should see 
the largest singular value (the maximum “gain” of the map) grow in size as the system 
becomes stressed. As we will elaborate when describing the proposed algorithms in more 
detail below, our hypothesis is that we can capture information closely related to the 
Power Flow Jacobian matrix conditioning, by computations using PMU measurements 
only. Conditioning of the Power Flow Jacobian is a general indicator of robustness of a 
system operating point; more specifically, the smallest singular value of the power flow 
Jacobian (i.e., if it approaches zero) has long been advocated as a first indicator of 
vulnerability of a system to voltage collapse [7]. To use these insights, we will make 
assumptions about the structure of the power flow problem, but will not assume any 
knowledge of the parameters that “feed” the power flow (i.e., no system topology or line 
admittance information will be used). This measurement-only framework delivers on the 
“model free” goal of the original project proposal. 

The new contribution to be reported here can be summarized in the following: 

Claim: A windowed SVD computation on PMU data tracks a well-established voltage 
stability performance metric, whose computation traditionally would normally require 
state estimation of operating point, and full information on network and load models. The 
method here instead offers a “model free,” real-time indicator of quasi-steady state grid 
performance, particularly relevant for control schemes to guard against voltage 
instability.  
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2.2 Singular Value Decomposition (SVD) Overview 

The SVD has become a very widely adopted tool in matrix analysis for a huge variety of 
applications; for a highly accessible article outlining its many applications, readers are 
encouraged to consult [5]. As noted above, in simplest algebraic terms, the SVD is 
simply a factorization of a matrix. Anticipating our application to the power flow 
formulated in real-valued coordinates of voltage phase angles and magnitudes, we 
consider J as an lxn matrix of real-valued elements, rank m, decomposed as 

 J U
diag(1, 2,...,m ) 0

0 0









V

T   (2.1) 

where U and V are unitary matrices (i.e., UUT = Identity Matrix), the boldface 0 entries 
represent all zero entry matrices of appropriate dimension, and ’s  positive, real-valued 
scalars. From this algebraic perspective, the unitary matrix VT represents a change of 
coordinates on the domain of the matrix (the “input” space of n-dimensional vectors). In 
this new coordinate system, the matrix operation may be viewed simply as scalar, 

positive, real “gains” 1, 2 , …, m acting along m basis component directions, with 
zero gain along the remaining n-m basis directions. The unitary matrix U then changes 
coordinate back to the native coordinate system for the range of J (the “output” space of 
l- dimensional vectors).  

A commonly used illustration in textbook approaches to the SVD is to look at these 
operations geometrically, and this geometric perspective is particularly useful in 
understanding our use of the SVD here. Suppose one had a set of unit length (2-norm) 
vectors in the input space, constituting all possible points on the surface of the Euclidean 
unit ball. If each of these vectors is operated on by the matrix J, the result in the output 
space is a generalized ellipse. The major axis of the ellipse aligns with the vector formed 

by the first column of U, and has length 1. The smallest non-zero axis of the ellipse 

aligns with column m of U, and has length m. For the case of matrix J being row rank 
deficient, the remaining l-m columns of U define directions along which the ellipse has 
zero expanse. This operator gain geometric viewpoint on the SVD is pictured below. 
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Figure 2.1 Geometric illustration of SVD of matrix J 

2.3 Singular Value Decomposition in Data Compression  

As noted above, there has been a long-standing history of use of SVD in data handling. 
The basic idea is quite simple: consider sequential acquisition (1, 2, …k…) of a vector of 
“l” measurements, denoting each such l-dimensional vector as m[k]. For running window 
of length n, construct a matrix, denoted M[k] as 

M[k] := [m[k-n+1], m[k-n+2], … m[k] ] 

Observe that at each new acquisition time k, M[k] is updated by adding the new column 
on the right, m[k] , and discarding the “oldest” data vector m[k-n], maintaining n 
columns. For our application, we may consider an vector of PMU measurements at time 
sample instant k, organized as a column, comprising m[k]. A n-length window of such 
vectors then composes matrix M[k]. In this context, consider a simple extreme case in 
which M[k] contains minimal information, and how this is reflected in the SVD. In 
particular, suppose the matrix M[k] consisted of the unchanging measurement values 
repeated in every column, indicating that the PMU measurements were unchanging over 
the time window. In this case, M[k] would, by definition, have rank of 1, and hence only 
one non-zero singular value. The entire matrix could be exactly reconstructed as  

M[k] = 1x[column 1 of U]x[row1 of V
T
] 

i.e., instead of lxn components of real valued data, the redundancy in this case is such that 
we need only one scalar, one l-dimensional vector, and one n-dimensional vector to 
represent M[k]. 
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2.4 Interpreting PMU Data in the SVD Perspective 

Consider a simple, quasi-steady-state, input-output view of the operation of the power 
system: the primary inputs are the continuously varying P-Q injections (loads being 
negative injections); the primary outputs are ’s and V’s of PMU data. As noted 
previously, the mapping between them is influenced by network switching, component 
failure, other structural changes in the transmission network and switched shunt devices. 
Driving the time variation of this process, we assume that injections have both a slowly 
varying component (e.g., the 24-hour load curve), and smaller magnitude, much faster 
random variation arising from the aggregation of many hundreds of thousands of 
individual pieces of customer equipment switching on and off in the loads connected to a 
particular substation. Both central limit theorem arguments and historic measurement 
data studies [7] suggest that the random part is often reasonably approximated as zero 
mean, small variance filtered white noise (as a rough estimate, one might take the 
variance to be approximately ~ 1% nominal load magnitude).  

Using this perspective with our previous suggestion of assembling a window of PMU 
measurements into a matrix M[k], let us suppose that the window length is short relative 
to the longer time scale on which slow, large magnitude load variations typically occur 
(i.e., if the slow load variation is the 24 hour day, the window length would be held to a 
duration less, typically much less, than 5 minutes). Under these circumstances, the 
variation in inputs (injections/loads) over the window is primarily driven by the random 
variation described above. While oversimplifying for conceptual purposes, suppose these 
random load variations at each bus were all of uniform magnitude, with this variance 
scaled to a normalized value of 1. In this case, our geometric picture would be very much 
like that of the figure above, mapping a unit ball in the input space, to a generalized 
ellipse in the output space. The inputs would be samplings vectors of injection variations, 
with each sample being a vector on a unit ball. This unit ball would be centered on the 
nominal injection values associated with the slow variation, approximated as constant 
over the short time window comprising M[k]). The mapping from inputs (load variations 
away from nominal values) to outputs (variations in phasor angles and magnitudes) 
would be that determined by the incremental behavior of the power flow solution; i.e., the 
mapping J would approximately correspond to the inverse of the power flow Jacobian 
about the nominal operating point over the window of interest. This conceptual picture is 
represented in the figure below. 
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Figure 2.2 Geometric view of the incremental approximation to power flow mapping 

As suggested in the figure above, it is important to grasp the geometric interpretation of 
the data captured in the matrix of windowed PMU data M[k]: it is a sampling of n vectors 
of PMU measurements, each of which is a point on the surface of the “output ellipse” in 
the figure. Provided the random variation of the injections is sufficiently “rich” over the 
time window sampled (i.e., the variations move across many directions in the input 
space), we can expect to get a wide sampling of points across the surface of the output 
ellipse. In this way, one captures information about the characteristics of the inverse 
power flow Jacobian that maps from the inputs to outputs. In particular, if the inverse 
power flow Jacobian has a maximum singular value of very large magnitude 
(correspondingly, if the smallest singular value of the Jacobian itself is approaching zero, 
as per [7]), then this is reflected in very high sensitivity from injection variation to phase 
angle and voltage magnitude variation.  

This is the type of ill conditioning of operating point that we seek to quantify in 
computing the SVD measure for the windowed PMU data. In particular, we propose to 
track the largest singular value of a running window of PMU measurements; in the 

notation developed, we propose tracking the time varying quantity 1(M[k]). In addition, 

the components of corresponding singular vector U1 carries the very useful information 
of the relative contribution of each measurement to this largest singular value. While one 
could certainly consider additional information to be garnered from singular values and 
vectors other than the largest, these refinements were not pursued in the course of 
research presented here, and await future work. 
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Figure 2.3 Geometric view of power flow mapping – lightly stressed case 

 

Figure 2.4 Geometric view of power flow mapping – highly stressed case 
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2.5 Caveats and Practical Issues 

In considering the conceptual picture described in the preceding section, there are several 
practical issues and departures from the ideal to be considered. Most obviously, while it 
is clear that PMU deployment rapidly expanding in the U.S. and around the globe, one 
may still only expect only a modest subset of all phasor angles and voltages to be 
available as PMU measurements (i.e., PMU’s measurement density is a modest % of all 
bulk power system buses). Therefore, in terms of the viewpoint of the preceding section, 
the mapping  that produces the available PMU measurements is only a subset of the 
rows of the Power Flow Jacobian Inverse. A key criterion for using the method proposed 
here is that the largest singular value of this smaller matrix produce behavior comparable 
to that of the full Jacobian inverse.  

While this topic remains in need of more rigorous analytic study in future work, heuristic 
study (i.e., sample comparisons in a large number of numeric test cases) conducted here 
indicated that a density of PMU measurements at approximately 10% of all buses, when 
this buses were distributed throughout the network, typically produced very similar 
behavior of largest singular value of the reduced Jacobian inverse (with rows 
corresponding just to measurement locations) and that of the full Jacobian inverse (all 
rows).  This framework may offer a very tractable formulation for optimizing 
measurement placement, and in future work it will prove interesting to compare this 
metric for quality of measurement placement with more established work that 
characterizes measurement placement quality based on observability and conditioning of 
the state estimation problem.  

Another aspect of the scenario above that bears scrutiny is the assumption that the output 
quantity of interest is the deviation of PMU measurements away from a nominal value for 
the window period. As a pragmatic computational heuristic to capture the “nominal,” it is 
natural to simply compute the running mean of the each PMU measurement over the 
window. If this mean is subtracted from the actual measurement, and the M[k] is 
constructed from these deviations, the algorithm becomes very close to the computation 
that would be performed in PCA.  

Our numerical experience to date in both synthetic test systems and with actual PMU data 
suggests that this form of the algorithm is useful for identifying points in time at which 
switching event of contingencies occur, but less useful as a measure of overall 
conditioning and “stress level” on the system. Our experience suggests that maintaining 
the “raw” PMU measurements in constructing M[k], without any subtraction of the mean, 
provides the best metric of system stress. We argue that by this approach, one is 
capturing both the effect of major changes in operating point that may stress the system, 
along with changes in the conditioning of the power flow Jacobian. However, we must 
also again stress that the work presented here is only a preliminary scoping study into the 
possibilities of this newly developed  method for using PMU data. Undoubtedly, future 
work will reveal improved algorithms for using both the raw, instantaneous singular 
value behavior, and the evolution of the means of the PMU measurements.  
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2.6 Computational Experiments in Synthetically Generated Data 

The initial proof-of-concept studies made use of the IEEE 14 and 118 bus test systems, 
with both power flow and singular value decomposition computations performed in the 
MATLAB environment. The basic procedure in these studies was straightforward, and 
may be described as follows: 

•   Construct sequential power flow computation; 
•   “Drive” computation by time sampled loads & generation dispatch, along 24 

demand curve, with 1% random load variation superimposed (computation to 
follow uses 15 sec sampling interval, 5760 samples per 24 hours); 

•   “Stress” system by randomly chosen switching in and out of lines over 24 study 
period; 

•   For (subset of buses) record angles and voltage magnitudes as hypothetical PMU 
measurements; 

In each of the test system study scenarios, the key premise is that the largest singular 
value of the rows of the inverse power flow Jacobian provided a benchmark of system 
conditioning. We will examine the impact of density of measurements by beginning from 
a case for the IEEE 14 bus test system in which every row of the inverse Jacobian is used, 
corresponding to the idealized case of a PMU measurement for every bus angle and 
magnitude. This will be followed by test case for the IEEE 118 bus system in which a bus 
measurement density of less that 10% is used (11 buses assumed instrumented, out of the 
possible 118). Two different selections of the 11 buses for measurements will be 
illustrated.  

Note that benchmark information from the power flow Jacobian is not expected to be 
available in real-world application of the SVD measure to PMU data, but rather serves as 
an off line test of the quality of the “model-free” computation, using the pseudo-PMU 
measurements only. In particular, we’ll seek to characterize the quality of the SVD-based 
PMU measure by comparing plots of:  
• Largest singular value of windowed PMU measurement matrix (labeled as “Sub-

window SingVal” in plots to follow); 
• Largest singular value of computed from appropriate rows of power flow 

Jacobian inverse (labeled as “SingVal inv-Jacobian” in plots to follow) 
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Figure 2.5 IEEE 14 bus example – idealized limit of PMU at every bus 

 

Figure 2.6 Figure: IEEE 118 bus case A – PMU penetration 11 out of 118 buses (PMU 
placement for case A: buses 9,12, 26, 28, 30, 32, 33, 78, 95, 101, 106) 
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Figure 2.7 IEEE 118 bus case B – PMU penetration 11 out of 118 buses (PMU placement 
case B: buses 9,14, 21, 29, 41, 55, 59, 64, 72, 84, 102) 

Interpreting these graphic results, we note first the very close match in behavior observed 
for the maximum singular values for the two measures in the 14 bus system test, for the 
idealized case of all rows of the Jacobian inverse maintained (i.e., every bus voltage and 
phase angle available in the PMU measurement set). While the scaling of the SVD 
quantities is of course very different, the qualitative shape of the curves matches 
extremely well. Our anticipated applications would involving use of the full information 
(the Jacobian inverse) from off-line studies to identify the scaling factor between the 
SVD of the Jacobian inverse, and that of the PMU-based computation, as well 
characterizing a threshold level at which the system would be flagged as entering an 
emergency state. This threshold might vary, depending on which areas of the system 
were most affected (as would be indicated by information in the singular vector 
corresponding to the largest singular value, column 1 of U). 

The results for the 118 bus system, with measurement density of less than 10% of buses, 
indicates some degradation of the agreement between the more exact Jacobian inverse 
calculation, and that obtained from the pseudo PMU data. However, the degree of 
qualitative agreement between the two computations remains quite good. It would appear 
that with the reduced measurement density, there are some line switching event that stress 
the system (as indicated in the exact PF Jacobian inverse), and yet do not produce a large 
increase in the maximum singular value of the measurements. Roughly speaking, these 
system stresses are not observable from the measurement set employed. This reflects the 
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inability of a relatively small bus measurement set to fully capture the impact of all 
possible line outages.  

2.7 SVD Tests on Bonneville Power Historic PMU Data Sets 

Staff at BPA, under the direction of Mr. Dmitry Kosterev, have collaborated with faculty 
at the University of Wisconsin-Madison in evaluating and testing the SVD-based PMU 
measure. As part of this effort, several sets of representative historic PMU data were 
provided for testing within the SVD framework. While adherence to non-disclosure 
agreements and Critical Energy Infrastructure Information protections prevent extensive 
descriptions of the data sets and the areas and operating conditions they represent, these 
sets provided a realistic framework in which to illustrate the nature of the SVD-based 
computation and its resulting output. The faculty of the University of Wisconsin express 
their gratitude to Bonneville Power Administration for this cooperation and data sharing. 

 

Figure 2.8 SVD-based PMU measure for BPA test data, 8-hour periods for 6 days, coded 
as S08, S09, S10, S22, S23, S24; horizontal axis hours, vertical axis maximum SVD on 

windowed measurements 

The plot of results on the BPA data illustrate the largest singular value computed for a 
windowed measurement set of 52 PMU channels, at a reporting rate of 30 samples per 
second. Six different days of data were provided, identified by legends of S08, S09, S10, 
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S22, S23, and S24. Each data set included the same 52 PMU measurements, spanning an 
eight hour interval of time from 11:00 AM to 7:00 PM on each of the days studied. The 
plot is displayed with units of hours on the horizontal axis, with “zero-hour” 
corresponding to the start time of 11:00 AM. The vertical axis displays the numeric value 
of the maximum singular value computed from the matrix of windowed measurements. 
The algorithm as developed suggests a window length of two to three times the 
dimension of the measurement set; for the 52 measurements here, a window length of 
150 was selected (specifically, the M[k] matrix was of dimension 52 rows, 150 columns). 
This window length of 150 samples, at a reporting rate of 30 samples/sec, corresponded 
to a 5 second window time interval. Hence the assumption of nominal injections 
remaining approximately constant over the window seems very credible. These 
computations did not have the benefit of an off-line, full information calculation of power 
flow Jacobian inverse against which to benchmark. Hence, the magnitude of the 
maximum singular value displayed on the vertical axis is meaningful only as a relative 
measure, to compare the degree of stress on the system across the six different days, at 
the different hours studied. However, even in this limited, relative interpretation of the 
SVD- measure, the BPA staff reviewing the results was that the SVD measure reported 
that these values agreed well with their engineering judgment as to the degree of system 
stress. 

2.8 Conclusions 

The work reported in this chapter has proposed a simple algorithm for extracting a real-
time indicator of system stress from PMU data. While the nature of the power system 
problem is such that the exact use and interpretation of the algorithm’s output are quite 
different, the basic computation is very close to the well-established use of Singular 
Value Decomposition (SVD) in Principal Component Analysis (PCA),  The organization 
of PMU measurements, and the computation proposed is extremely simple. One simply 
constructs a matrix, in which each column is a stacked vector of the available PMU 
measurements over a time window, with the most recently acquired measurements 
comprising the right-most column, the “oldest” measurements comprising the left-most 
column. The recommended window length is a number of samples equal to 2 to 3 times 
the number of available PMU measurements. One then simply computes and tracks the 
largest singular value of the matrix, updating at each sampling instant with the newly 
acquired vector of measurements. This computation is wholly measurement based, and 
may be termed a “model free” analysis.  

Based on underlying geometric properties of the SVD, and the relation between time 
varying power systems loads/injections and measured voltage phasor magnitudes and 
angles, this largest singular value computed from measurement data may be hypothesized 
to approximately track the largest singular value of the inverse power flow Jacobian. 
Numerical studies in IEEE test systems suggest that this hypothesis is very accurate when 
a complete set PMU measurements are available for every bus, and remains reasonable 
accurate in more realistic PMU penetration levels of slightly less than 10%.  

Large magnitude for the maximum singular value of the power flow Jacobian inverse (or 
equivalently, approach to zero for the smallest singular value of the power flow Jacobian 
itself) has long been accepted as an indicator of operating point ill-conditioning, and 
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system vulnerability to voltage instability. Hence, given that the SVD-based PMU 
measure approximately tracks this maximum singular value of the power flow Jacobian 
inverse, without the requirement for any of the data needed to compute the Jacobian,  this 
work has succeeded in its initial goal of providing a model free indicator of system stress 
computed from PMU measurements. 

With this new framework established, many avenues for future work remain. As in 
traditional PCA algorithms, data scaling and bad data filtering are significant practical 
issues to be addressed. Likewise, more careful analytic study of optimal window size 
needs to be addressed, to improve upon the heuristics developed to date (window size 2-
to-3 times measurement vector size). More complete use of the information available in 
the singular vectors of the U and V unitary matrices requires exploration. Most significant 
may be the need to explore algorithms for calibrating the threshold of the SVD-based 
measure that would alert operators of the need for corrective action. Such algorithms will 
likely be based in part on off-line studies comparing to full-information calculation of the 
power flow Jacobian, as have been initial explored in this report, but may also benefit 
from use of statistical learning techniques over historical data sets. 
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3. PMU Enhanced Power Flow Solutions 

3.1 Background 

Phasor measurements units (PMUs) are beginning to be widely deployed in electric 
power systems, with this trend expected to continue, partially as a result of recent U.S. 
Department of Energy (DOE) smart grid funding. However even with this increase in the 
number of installations, PMUs will still only deployed at a small percentage of system 
buses for at least a number of years. This presents a challenge: how to get useful 
information from this small number of data points.  

The key driver for PMU technology is the application of the precise time sources 
provided by GPS (Global Positioning System) satellites to accurately measure the relative 
voltage and current phase angles at buses across an interconnect. While there is currently 
significant interest in the application of PMUs, the key ideas themselves are not new, 
with a paper from 1980 [8] indicating how the then new GPS system could provide 
precise time sources, and a paper from 1983 showing how this information could be used 
to accurately obtain power system phase angles [9] across a wide area. An interesting 
history of PMU applications is provided in [10].  

This characteristic of being able to directly measure the phase angles across an 
interconnected power grid is a key advantage that PMUs have over SCADA (with the 
other advantage being the much faster PMU sampling rate). The focus of this section is 
on the direct use of these bus phase angles within the power flow (quasi-steady state) 
time frame.  

One well known application of the PMU bus phase angles is within the state estimator 
(SE). The use of these measurements in the state estimator was first described in 1986 
[11]. The application of PMU values in SE continues to be an active area of research, 
with [12], [13], [14], and [15] several examples of this work.  

In contrast, this section describes how PMUs value can be utilized in an operational 
and/or analysis context beyond their use in SE. The motivation for this application arises 
because in a variety of situations SE results may not be available. For example, smaller 
utility control systems may not have an SE, the SE may have failed to converge during 
rapidly changing system conditions, there may be a need to combine SE results with a 
larger system model, or people involved in nonoperational aspects of the power grid, 
such as marketers and power system planners, may not have access to SE results.  But 
often a power flow case is available that at least approximates (to some degree) the 
current operating condition.  

3.2 The Global Properties of Bus Phase Angles  

Most power system measurements provide a localized view of the conditions on the 
electric grid. For example, a bus voltage magnitude measurement tells the voltage at a 
particular bus, while a line flow measurement tells the flow on a particular line. While 
these values can sometimes be used to infer information about system conditions one or 
two buses away, they certainly do not provide any global information. However, as will 
be shown here such information is provided by the bus phase angles. 
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For simplicity the remainder of section utilizes the dc power flow approach [16, pp. 75]. 
The dc power flow greatly simplifies the power flow by making a number of 
approximations including 1) completely ignoring the reactive power balance equations, 
2) assuming all voltage magnitudes are identically one per unit, 3) ignoring line losses, 
and 4) ignoring tap dependence in the transformer reactances. Hence the dc power flow 
reduces the power flow problem to a set of linear equations    

 P  =  B   (3.1) 

where P is the vector of bus real power injections, B is bus susceptance matrix, and is 
the vector of bus voltage angles. Since the equations are linear they always have a single 
solution, which can be directly calculated by solving   

   =  [B]-1  P (3.2) 

eliminating the need for iterations. While the dc power flow is certainly an 
approximation, it often provides reasonable results with respect to the real power flows in 
a system [17],[18], [19].  

What is clear from (3.2) is when using the dc power flow approximation the angle at any 
bus the system is an linear combination of the power injections at all the buses in the 
system. Note that while B is sparse, its inverse is not. Also recall that in a power flow bus 
phase angles are also specified with respect to the system slack bus, where the slack bus 
angle is usually assumed to be 0.  

To get a feel for the magnitude of a bus angle’s dependence on the power injections 
throughout the system, Figure 3.1 contours the bus phase angle to power injection 
sensitivities for the Wempleton 345 kV bus, located in Northern Illinois, using a 43,000 
bus model. The sensitivities are in degrees/per unit power injection using a 100 MVA 
base. Hence the figure is showing the values of one row of the inverse of the B matrix. 
The interesting result is that most locations matter, with sensitivities at many system 
buses a significant fraction of the values at Wempleton itself. The only locations with 
zero sensitivity are the system slack bus (Brown’s Ferry in Northern Alabama), and buses 
that are not part of the interconnect, such as Quebec. Therefore any power transaction 
between buses with different sensitivity values will be reflected in the Wempleton bus 
angle, indicating it is providing global information about the system state.  
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Figure 3.1 Dependence of Wempleton 345 kV bus angle (in Northern Illinois) on power 
injections throughout the Eastern Interconnect 

The flipside of this widespread dependence is that the problem of trying to estimate a 
particular bus injection based on a single phase angle measurement is completely under-
determined. However as the focus shifts from looking at a single phase angle to looking 
at phase angle differences, the phase angle difference to power injection sensitivities 
become more localized. For example, Figure 3.2 contours the sensitivities of the angle 
difference between two buses located on different sides of the Chicago Metro region (the 
Wempleton and Burnham 345 kV buses) to the power injections throughout the Eastern 
Interconnect. Hence the figure is showing the different between two rows in the [B]-1 
matrix. Note the change in the contour scale from between 0 and 3 degrees for Figure 3.1 
and between -1 and 1 degrees for Figure 3.1, with most of the Figure 3.2 values very 
close to zero. Figure 3.3 shows a zoomed view of the Figure 3.2 results; the location of 
the Wempleton bus is indicated by the high sensitivity values close to the 
Illinois/Wisconsin border, whereas Burnham is located near the bottom of Lake 
Michigan, close to the Illinois/Indiana border.  
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Figure 3.2 Dependence of phase angle difference between the Wempleton and Burnham 
345 kV bus angles (in Northern Illinois) on power injections throughout the Eastern 

Interconnect 

 

Figure 3.3 Zoomed view of Wempleton to Burnham phase angle difference sensitivities 
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While the phase angle difference between just two buses can say very little about the 
injection at a particular bus, what does become apparent from Figure 3.2 and Figure 3.3 is 
that such values could be used to get at least a qualitative feel for the net power flows 
between regions. For example, if the upper Midwest is exporting power to the rest of the 
Eastern Interconnect this will probably be indicated by a higher phase angle difference 
between Wempleton and Burnham. Expanding this concept to more bus angle 
measurements, the premise is that these measurements can be used to modify an existing 
power flow solution to better match a particular operating point. This idea is presented 
next.     

3.3 PMU Morphed Power Flow Solutions  

A common power system analysis task is to take an existing power flow case and then 
modify it to match a particular actual operating condition. This could be done in near 
real-time by an operations engineer for a utility without an SE, or it might be done days 
or months later by a market analyst trying to use publically available information, such as 
the FERC 714 data that tells hourly control area loads, to recreate the operating 
conditions of perhaps an entire interconnected system.  

A typical approach to accomplish this is to take a power flow case with branch statuses, 
and a load and generation profile that at least approximates matches the desired system 
operating point, and then modify the total loads for desired areas based upon the actual 
dispatch, change the statuses of important branches to match their actual values, and then 
set the outputs of important generators. However, because of the time consuming nature 
of this task, it is usually only done for a small portion of the entire system. What is often 
lacking in this approach at good estimates for the net power interchange.  

Here we propose to augment this process to include PMU values.  Of course from a SE 
perspective just using a handful of PMU values to try to estimate an entire power system 
operating point results in a hopelessly under-determined problem. But if one starts with a 
solved power flow, and then uses the small number of measurements to better estimate 
the operating point associated with the measurements, the problem is amendable to an 
application of an linear programming (LP) based optimal power flow (OPF) algorithm.  

The OPF algorithm, which was first formulated in the 1960’s [20], [21], involves the 
minimization of some objective function subject to a number of equality and inequality 
constraints:  

 Minimize F(x,u) 
     s.t. g(x,u) = 0 (3.3) 
 hmin  h(x,u)  hmax 
            umin  u   umax 

 
where x is a vector of the dependent variables (such as the bus voltage magnitudes and 
angles), u is a vector of the control variables, F(x,u) is the scalar objective function, 
g(x,u) is the set of equality constraints (e.g., the power flow equations), and h(x,u) is the 
set of inequality constraints. 

Over the years several different OPF solution approaches have been proposed, with an 
excellent literature survey recently presented in [22] and a tutorial in [23]. These 
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approaches can be broadly classified as either linear programming (LP) based methods or 
non-linear programming based methods. The algorithm utilized here is based upon the LP 
approach [24].  

Overall for a full ac system model the LP OPF algorithm iterates between solving the 
power flow to determine the power system violations, with an LP using a linearized 
model of system constraints to redispatch the control variables subject to certain equality 
and inequality constraints. The key to the computational efficiency of the LP itself is to 
minimize the number of constraints included in the LP tableau. Practically all the 
constraints of (3.3) are considered by either enforcing them using the power flow or, in 
the case of most nonbonding inequality constraints, monitoring but not enforcing them as 
long as they remain nonbonding.  

In the PMU morphed power flow approach presented here the set of binding constraints 
is setup to include the PMU bus angle measurements as equality constraints. Known 
system values, such as the output of generators or total area load, are treated as constants. 
Generators whose outputs are not known are treated as controls, as are the total area loads 
for areas without known values.  

For the main optimization the LP itself utilizes a primal simplex algorithm with explicitly 
bounded variables [25]: 

 Minimize cTu 

     s.t. Au = b (3.4) 

            umin  u   umax 
  

where u is the vector of control variables from (3.3) augmented to include the LP slack 
variables, c is the vector of the current control incremental costs, A contains the active 
constraints (primarily the measurement sensitivities), and b is the vector of 
measurements. Lack of feasibility is handled using the slack variable approach of [26]. 
The elements of each row in A can be calculated quite efficiently using the approach 
from [27].  

 Key to obtaining a reasonable solution is the selection of the control costs. One approach 
would be to use piecewise linear cost functions centered on the current control value to 
minimize the deviation from the power flow operating point. Such a curve is shown in 
Figure 3.4. 
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Figure 3.4 Piecewise linear cost function 

As an initial motivating example, Figure 3.5 shows a three bus system in which all three 
lines have impedances of j0.1 per unit, with bus 1 as the system slack. Hence the B 
matrix is  

 

20 10 0.0667 0.0333
,

10 20 0.0333 0.0667

   
       

-1B B  (3.5)  

and 

 

1
20 10 0.6 0.02 1.15deg

10 20 1.8 0.1 5.73deg

         
                   

θ  (3.6) 

which matches the values shown in the figure.  

 

Figure 3.5 Three bus system 
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Now consider an under-determined problem with this same network. Assume the load is 
known, and that the bus 2 phase angle is known (with respect to the bus 1 slack angle of 
0). The phase angle measurement introduces the constraint 

 PG2 * 0.0667 + (PG3 – 1.8) * 0.0333 = 2,meas  (3.7) 

This constraint would represent one row of A in (3.4). Another row of this matrix would 
be the power balance constraint 

 PG1 + PG2 + PG3 = 0  (3.8) 

This is a problem with three variables and two constraints, so an infinite number of 
solutions would give the specified phase angle. Nevertheless, the premise here is that by 
taking into account various power flow constraints, such as generator limits and 
(optionally) line flow constraints, it is possible to algorithmically morph the initial power 
flow into one that matches the measured angles.  

As a large system example, Figure 3.6 shows the bus phase angle contour for Northern 
Illinois using a 13,000 Midwest system model. This represents the starting power flow 
solution.  

 

 

Figure 3.6 13,000 bus Midwest system angle contour before transaction 

Next, the Figure 3.6 case was modified by setting up a 2000 MW transaction between the 
Northern Illinois (NI) area and the slack bus area (TVA). To implement the transaction 
the outputs of all the generators in NI were reduced using a participation factor approach, 
in which the generator participation factors were proportional to the rated MW capacity. 
This resulted in the new system operating point shown in Figure 3.7 13,000 bus Midwest 
system angle contour, with 2000 MW transaction to Slack Area 
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Figure 3.7 13,000 bus Midwest system angle contour, with 2000 MW transaction to Slack 
Area 

To demonstrate the algorithm, the starting point was the Figure 3.6 operating point. Then 
the algorithm was applied using four angle measurements from the Figure 3.7 operating 
point, and 25 generators set as controls. This resulted in the operating point shown in 
Figure 3.8  with the net NI interchange reduced by 1977 MWs. This change required 19 
LP primal iterations. A comparison between Figure 3.7 and Figure 3.8 indicates the close 
agreement in the two solutions, at least at a macroscopic level.  
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Figure 3.8 13,000 bus Midwest system angle contour, original case morphed using four 
angle measurements 
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4. Visualization of Oscillation Monitoring System Results 

4.1 Background 

Oscillation Monitoring System (OMS) is being developed at Washington State University 
(WSU) as a real-time operations toolbox for monitoring the damping ratio, frequency, as 
well as mode shape of poorly damped electromechnical oscillations in the power system 
from wide-area PMU measurements. OMS includes two engines as shown in the 
flowchart in Figure 4.1. Event analysis engine in Figure 4.1 carries out an automatic 
Prony type analysis of system responses during the occurrence of disturbances in the 
system. The complementary damping monitor engine in Figure 4.1 estimates the 
damping, frequency as well as mode shape of poorly damped oscillatory modes from 
ambient PMU measurements whenever such oscillations appear. Details on the two 
engines can be seen in [28], [29], [30].  

 

Figure 4.1: Flowchart of OMS 

Event 
Monitor 
Engine 

Damping 
Monitor 
Engine 
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Figure 4.2 shows an example of the results from the two engines for a recent event near 
the Cumberland plant at TVA [31]. In Figure 4.2, the system encountered a routine event 
at about 830 seconds. The event analysis engine of OMS then carries out moving time-
window analysis of the PMU measurements towards real-time Prony analysis and 
concludes the oscillation to be from a local mode (involving mainly one PMU or few 
nearby PMUs) of 1.2 Hz oscillations with +1.5% damping ratio. On the other hand, the 
damping monitor engine of OMS analyzes the real-time ambient PMU data  
continuously, and can estimate the dominant oscillatory mode to be the same local mode 
identified by Prony at 1.2 Hz with damping ratio of +1.8%. The two engines, namely, the 
event analysis engine and damping monitor engine serve as complementary engines in 
identifying the dominant poorly damped oscillatory modes of a power system whenever 
such modes exist. 

 

Figure 4.2 Illustration of OMS results from the two engines 

4.2 Visualization of OMS Results 

OMS has been implemented as an integral part of the Phasor Data Concentrator (PDC) at 
Tennessee Valley Authority (TVA) since 2008. The focus of the present PSERC project 
is to develop prototype visualization displays for showing the results of OMS onto secure 
web pages. Figure 4.3 shows information flow in the TVA OMS project. Whenever any 
of the two OMS engines gets a result, it is stored in the Results Database. Web server 
enquires results data from result database and refreshes the webpage, in a preset 
frequency (e.g., every 5 seconds). The changes will be shown on the remote client work 
station, and be available to system engineers and operators.  
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Figure 4.3 Data flow of OMS Project 

Results Database 
 
SQL database is used in this project. There are 7 tables in the results database: Event, 
Message, Message Source, Mode, Mode ID, Data Type, and Threshold. The information 
stored in each table is as follows: 

Event: detected Events, or, large disturbances. 
Threshold: various thresholds that are used to determine whether there is an 
event. 
Message: reference information and error message. 
Message Source: algorithm that generate this message. 
Mode: OMS engine results, i.e. mode information, including frequency, damping 
ratio, mode shape amplitude, mode shape phase angle. 
Data Type: defines the origin of result data: 1. Damping Monitor Detail, 2. 
Damping Monitor Consistent Result, 3. Event Monitor Prony Method Result, 4. 
Event Monitor Matrix Pencil Method Result, 5. Event Monitor HTLS Method 
Result, 6. Event Monitor Consistent Result.  
Mode ID: defines the meaning of each mode ID. Mode ID is a three digit number. 
The left digit is Data Type, middle digit is mode number. The right digit defined 
as: 1. Frequency, 2. Damping Ratio, 3. Mode Shape Amplitude, 4. Mode Shape 
Phase Angle, 5. Flag for Damping monitor or Relative Energy for Event Monitor.  
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Webpage Generation 
To generate a nice display and user friendly interface, ASP.NET and Microsoft Chart 
Control Tools are used in the webpage development. Background code is in C#.  

Figure 4.4 shows an example of damping monitor webpage captured from the TVA 
implementation. In the damping monitor display, there are three major areas. Left top is a 
frequency vs. damping ratio point chart. It clearly shows all the modes in the frequency 
domain, and their damping ration on y-axis. If there is not consistent result for 5 minutes, 
average value is calculated and range is displayed as white bars. The right top corner 
shows the time and a brief summary, which includes the status of each mode. The 
summary will change color according to the status of each mode. Bottom is mode shape 
area, which shows mode shapes of up to 4 modes, in a radial fashion. Different colors 
represent different signals, and the legends are listed on the right side. 

 

Figure 4.4 Snapshot example of a Damping Monitor webpage 

Figure 4.5 shows an example of an event monitor webpage. In the event monitor display, 
there are two areas. Top area shows the mode frequency and damping ratio. Damping 
ratio is shown in a dial like chart. The color of each area shows whether the mode is safe, 
caution, alert or alarm. Thus, it is very intuitive and very easy for operators to have quite 
reactions, since in the case of event, everything happens in seconds. The bottom part 
shows the mode shape, as in the damping monitor webpage. 
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Figure 4.5 Snapshot of an Event Monitor webpage 
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5. Application of PMU Values for Improved Load Models 

5.1 Background 

Load representation has a significant impact on system stability analysis [32], [33]. 
Loads, in combination with other dynamics, are among the main contributors of low 
voltage conditions, voltage instability and even collapse in the power system. And it is 
becoming more evident that load model uncertainty is a major source of simulation 
inaccuracy for planning and operations. As transfer limits of the power flow are 
determined by such studies, load model accuracy is critical for maintaining the secure and 
economic operation of the power system. While scientifically accurate models have been 
proposed for generators, lines, transformers and control devices, the same has not 
occurred for load models because of the random and aggregate nature of a load 
composition.  

There are two main approaches to developing load models: the physical component based 
approach and the measurement data based approach. We can determine the aggregate 
load model parameters if the parameters of all separate loads are well known. However, 
with the large number and types of loads connected at the transmission system level, such 
a physical component based approach to aggregate separate loads is numerically 
impractical. Therefore, in the absence of the precise information, we choose the 
measurement data based approach to obtain a reliable load model by implementing 
system identification techniques. This approach includes developing models with 
appropriate parameters and validating models with real-world response. Field 
measurements of voltage variations and the associated real and reactive power responses 
are required for the development and validation of the load models.  

The load models also need to be updated in a timely manner to assure the best 
performance since the loads are actually evolving with time. While many papers discuss 
how to express the load model [34], [35], [36], there have been few attempts to develop a 
dynamic load model with variable parameters and to detect the parameter changes when 
there is no large disturbance and, hence, no big voltage variation. The final report of the 
August 14, 2003, blackout also indicated that one cause of the blackout was that the 
operators were using non-real-time data to support real-time operations [37]. As such, 
one focus of this work is to identify and update the load models with real-time data, so 
that more accurate reliability analysis can be performed in operations. 

5.2 Overview of the Problem 

Load models are mathematical representations typically relating power consumption to 
the voltage and/or frequency at a bus. Accurate load models are required to correctly 
evaluate the security (operational reliability) condition of a power system. Transmission 
power flow limits are determined from studies of these conditions. Accurate load 
modeling is essential to provide secure and economic planning and operation of a power 
system. Various static and dynamic models based on mathematical and physical 
representations have been studied to describe the overall load characteristics [38]. 

Classical static load models have been used in production-grade load flow programs for 
years. Common static load models for active and reactive power are expressed in a 
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polynomial or an exponential form, and can include, if necessary, a frequency 
dependence term [39]. But in recent years, several studies have shown the critical effect 
of load representation in voltage stability studies [38], [39] and therefore the idea of using 
static load models in stability analysis is changing in favor of dynamic load models. 

Even though power system load has gained more attention, it is still considered one of the 
most uncertain and difficult components to model due to the large number of diverse load 
components, variable composition with time of day and week, weather and through time, 
and also because of lack of precise information on the composition of the load. 

With the availability of phasor measurement units (PMU), we now can get access to the 
dynamic phenomena of electric power systems and form an improved load 
representation. In addition, the combination of the accurate load models with real-time 
updated parameters will help us decrease the uncertainty margin, resulting in a reliable 
and economic operation of the power system. 

5.3 Load Models  

Load models are classified mainly as static or dynamic. A static load model is not 
dependent on time, and therefore it describes the relation of the active and reactive power 
at any time with the voltage and/or frequency at the same instant of time. In contrast, a 
dynamic load model expresses this relation at any instant of time as a function of the 
voltage and/or frequency time history, including, typically, the present moment. 

We can summarize the relation as: 

 
௧ܲ ൌ ሺܩ ܸ:௧, ݂:௧, ሻߠ

ܳ௧ ൌ ሺܩ ܸ:௧, ݂:௧, ሻߠ
  (5.1)

where ܸ and ݂ are voltage and frequency, and ߠ is parameter set. 
 
ZIP model or polynomial model 
 
The static characteristics of the load can be classified into constant power, constant 
current and constant impedance load, depending on the relation of power to voltage. The 
ZIP model, (5.2), is a polynomial model that represents the sum of these three categories: 
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  (5.2)

ܸ is the nominal value of the system for the study, and the coefficients ܽ, ܾ, ܿ and 
ܽ, ܾ, ܿ are the parameters of the model. 

Exponential load model 

Equation (5.3) expresses the power dependence on the voltage as an exponential function 
where the exponent is not restricted to 0, 1, or 2 as in the ZIP model.  
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  (5.3)

The parameters of this model are ߙ௦,  ௦, and the coefficients of the active and reactiveߚ
power, ܲ and   ܳ. 

Generic nonlinear dynamic load models 

When the traditional static load models are not sufficient to represent the behavior of the 
load, a dynamic load model may be necessary.  

In 1993 a popular dynamic load model was proposed by Hill in [], which captures the 
usual nonlinear steady-state behavior plus load recovery and overshoot. Other similar 
dynamic load models [] have been developed based on the same philosophy, steady-state 
behavior plus transients. Such load models are call generic nonlinear dynamic (GNLD) 
load models. We will adopt the exponential recovery dynamic load model from Hill’s 
work.  

The mathematical expression of the model is  

 

ௗܲ ൌ ܲ ൬
ܸ

ܸ
൰
ఈ

 ݖ

ܶݖሶ ൌ െݖ  ܲ ൬
ܸ

ܸ
൰
ఈೞ

െ ܲ ൬
ܸ

ܸ
൰
ఈ

ܳௗ ൌ ܳ ൬
ܸ

ܸ
൰
ఉ

 ݖ

ܶݖሶ ൌ െݖ  ܳ ൬
ܸ

ܸ
൰
ఉೞ

െ ܳ ൬
ܸ

ܸ
൰
ఉ

  (5.4)

where ݖ and ݖ  are the corresponding recovery load states for real and reactive power, 
respectively; ܶ  and ܶ are the load recovery time constants; ௗܲ and ܳௗ are the real and 
reactive load power demands; and ܲ, ܳ, and ܸ denote nominal real, reactive power, 
and voltage, respectively. The exponents ߙ௦, ߙ௧, ߚ௦, and ߚ௧ stand for steady state and 
transient load-voltage dependences. 

Equation (5.4) is the additive aggregate dynamic load model. Similarly, there is the 
multiplicative aggregate dynamic load model: 
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  (5.5)

 

Nonparametric load models 

The nonparametric load models may consider the load or individual load components as a 
“black box,” and transfer functions can be used to represent the load dynamics due to 
voltage variations. 

The first-order linear dynamic load models can be characterized as functions of the 
change in system voltage 
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ଵܶݏ  1
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∆ܳ ൌ
݇௩  ܶ௩ݏ

ଵܶݏ  1
∆ܸ

  (5.6)

where ݇ and ܶ are the load parameters for real or reactive power as functions of voltage 
depending on the subscript and ଵܶ is the time constant of the load. 

Or we can use the difference equation: 
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  (5.7)

Frequency dependent load models 

Sometimes, the load model can also include frequency dependence, by multiplying the 
equations by the factor of the form: 

 
ൣ1  ሺ݂ܭ െ ݂ሻ൧

and ൣ1  ሺ݂ܭ െ ݂ሻ൧
  (5.8)
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where ݂ and ݂ are the nominal frequency and the frequency of the bus voltage, and the 
parameters ܭ and ܭ represent the frequency sensitivity of the model. 

Augmented load models 

Load models are not necessarily either static or dynamic. In fact, they are more likely to 
be a combination of both. We can use static models, either ZIP or exponential, 
augmented with dynamic ones to represent the loads 

 
ܲ ൌ ௦ܲ  ௗܲ

ܳ ൌ ܳ௦  ܳௗ
  (5.9)

where ௦ܲ, ܳ௦ are from Equation (5.2) or (5.3), and ௗܲ , ܳௗ are from Equation (5.4) or (5.5). 
GNLD also belongs to this category. 

Other widely used dynamic load models include the industrial load models (IM) using 
first or third or even higher order approximation for motors, or a combination of static 
and IM, such as [40], [41], [42]. A good summary of research and development in the 
area of load modeling can be found in [39].  

5.4 Load Identification  

The task of load modeling is in fact a system identification procedure. Two main 
approaches to develop the load models are the component-based approach and the 
measurement-based approach.  

The component-based approach requires three sets of data 

1. Load class mix data, which describe the percentage contribution of each of 
several load classes to the total active power load at the bus.  

2. Load composition data, which describe the percentage contribution of each of 
several load components to the active power consumption of a particular load 
class. 

3. Load characteristics data, which describe the electrical characteristics (e.g., power 
factor, voltage and frequency sensitivity) of each of the load components. 

For an area whose load composition and characteristics will not vary widely, the 
component-based approach has the advantage of not requiring system measurements and 
therefore being more readily put into use. 

For most systems, the loads are actually changing dramatically over time. Also, it is 
unrealistic to obtain all detailed individual components necessary for building the load 
model, not to mention the fact that it is impossible to update the data simultaneously. 
This work focuses on load modeling from a measurement-based approach. 

The measurement-based approach uses system identification techniques to estimate a 
proper model and its parameters. The process of system identification involves finding a 
suitable model structure (mathematical model) and appropriate parameters for this 
structure that can replicate the dynamic response between change in voltage and 
corresponding changes in active and reactive powers.  
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The overall procedure (shown in Figure 2.4) used in this work is summarized as follows:  

1. Data Acquisition  

a. Acquire measurement data (V, I, P, Q) 

2. Voltage Detection 

3. System Identification and Load Modeling 

a. Determine load structures to be used 

b. Identify which parameters can be estimated reliably from the available 
measurements 

c. Estimate parameters using a suitable method and an estimation criterion 

d. Validate the derived model 

4. System Accepted 

 

Our work is mainly in Step 2 and Step 3. 

 

Figure 5.1 Load modeling procedure flow chart 

5.4.1 Voltage variation detection 

Since the data acquired contains mixed information, a procedure for detecting voltage 
variation must be applied before beginning the load identification process. We compare 
the incoming preprocessed data; if the voltage variation is in order of or greater than 1%, 
we open a new window and start the model identification process.  
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5.4.2 Load structure selection 

Before engaging the complicated calculation, first we want to select a proper load 
structure to start with. Such selection could be based on the knowledge and experience of 
the system under study. 

P-V relation 

If no other information is available, we can identify whether static or dynamic load 
models are more suitable to describe the load with no complicated calculation or 
estimation, but, rather by inspecting the power-voltage relation and the first derivative of 
load power with respect to voltage. 

Self-adjusted augmented model 

Another approach to identify the load as static or dynamic is to use an augmented load 
model. If the dynamic part only accounts for a small portion, we can neglect the dynamic 
part and say the load is static. The results of this approach are illustrated in []. 

5.4.3 Parameter estimation 

After determining the right category of load model, the second step is to estimate 
parameters. That is, find a set of parameters for which the simulated results from 
proposed model best fit the measurement. In other words, find the optimal estimation of 
the parameters that minimizes the sum of the squares of the errors defined by  
 

  ݂ሺߠሻ ൌሺݕොሺߠሻെݕሻ
ଶ



  (5.10)

where ݕ is the actual (observed) power at time ݇, which would be the real and reactive 
power, ݕොሺߠሻ is the given model prediction, and ߠ is the parameter vector that needs to 
be estimated. 

Accompanying the development of different load models, various parameter estimation 
algorithms have been applied in identifying the models. Least-square methods are one of 
the most popular. Recently, more complex estimation techniques have been adopted in 
load model parameter estimation, such as genetic algorithms (Gas), simulated annealing 
(SA) and artificial neural networks (ANNs). The algorithm we choose here is the 
Levenberg-Marquardt algorithm (LMA). LMA is known for its robustness. Like other 
numeric minimization algorithms, LMA is an iterative procedure.    

5.4.4 Load Model Validation 

The derived parameter values need to be validated for their expected performance. The 
validation includes two steps: check the model quality on the identification data, and 
validate the model on a different set of measurement data. 

For the first step, the load model output (response) is simulated and then compared with 
the measured output using the obtained parameter values. We evaluate the performance 
of the developed load model using the following relative error 
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where ݕ and ݕො denote the measured and simulated (real or reactive) power, 
respectively. If ߝ௬ is less than the desired threshold, say 1%, the dynamic load model is 
said to be acceptable.  

If the performance achieved on the identification data is acceptable, the second step is to 
validate the model on a different set of measurement data, since parameter variance error 
could not be detected from the training data set. We need to choose identification data 
and measurement data carefully because the parameter is always time-varying.  

5.5 Simulation Results 

In this section, several cases with different load models are simulated using the automatic 
identification procedure. The voltage variation is detected to start the estimation process. 
Load type is determined both by inspecting the P-V relation and by using the self-
augmented model. LMA is used to estimate model parameters. The identification data 
window is 3 s or until converge, whichever is larger. And the estimation results are 
validated by using the data after that until another voltage variation is detected.  

Case 1: 3-Machine, 9-Bus System with PSS/E Static Load Model 

The popular Western System Coordinating Council (WSCC) 3-machine, 9-bus system is 
used in the case study. Figure 2.6 is the one-line diagram of the system. PSS/E [43] was 
used to generate the data as a realistic simulation. The output of PSS/E was then used as 
the measurements for load identification. We use GENTRA for the machine model, 
IEEE1 for the exciter and TGOV1 for the governor. Both the static ZIP load model and 
static exponential load model are used in PSS/E simulation. Since we want to check the 
algorithm feasibility for updating time-variant parameters within normal operation 
conditions, we change the load parameters at times 5 s and 10 s, followed by a self-
clearing fault at 15 s. The GNLD model is used, and if the dynamic term is detected to be 
negligible, it will self-adjust to static load model. Table 5.1 shows the estimation results 
for the ZIP load model. 
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Figure 5.2 WSCC 3-machine, 9-bus systems 
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Table 5.1 ZIP Load Model Parameter Estimation 

  Actual ࣂ  Estimated ࣂෝ  ࣂࢿ  ࡼࢿ  ࢝ࡸ

Bus 5: 0‐5s  [0.4413 0.5022 0.3125] [0.4351 0.5146 0.3063] 3.4920e‐3 3.5414e‐8  45 

  5‐10s  [0.4413 0.5022 0.5000] [0.4256 0.5334 0.4845] 4.5820e‐2 2.8082e‐8  50 

  10‐15s  [0.3500 0.6000 0.3000] [0.3866 0.5268 0.3366] 1.1848e‐1 3.5039e‐8  43 

  15‐20s  [0.3500 0.6000 0.3000] [0.3498 0.6004 0.2998] 6.4751e‐4 3.5048e‐8  7 

Bus 6: 0‐5s  [0.3072 0.3555 0.2250] [0.3062 0.3575 0.2240] 4.7931e‐3 4.6258e‐8  45 

  5‐10s  [0.3072 0.3555 0.1000] [0.3115 0.3467 0.1045] 2.2454e‐4 5.5112e‐8  39 

  10‐15s  [0.3500 0.3000 0.2500] [0.3403 0.3197 0.2400] 4.6063‐2  4.7367e‐8  5 

  15‐20s  [0.3500 0.3000 0.2500] [0.3501 0.2999 0.2501] 3.1011e‐4 4.4943e‐8  4 

Bus 8: 0‐5s  [0.3391 0.3937 0.2500] [0.3387 0.3947 0.2495] 1.9867e‐3 5.4609e‐8  25 

  5‐10s  [0.3391 0.3937 0.3000] [0.3326 0.4070 0.2933] 2.2701e‐2 5.2193e‐8  43 

  10‐15s  [0.2000 0.5000 0.3000] [0.1947 0.5108 0.2945] 2.1531e‐2 4.2135e‐8  44 

  15‐20s  [0.2000 0.5000 0.3000] [0.2000 0.5001 0.3000] 1.7425e‐4 6.2022e‐8  7 

ߠ ൌ ሾܽ ܾ ܿሿ, and the initial value ߠ ൌ ሾ0.3 0.3 0.3ሿ  

 
Error is calculated as  
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  (5.12)

where ߝఏ is relative parameter error and ߝ is relative error of real power. ܮ௪ is the data 
length at which estimation starts to converge. Figure 5.3 shows the evolution of relative 
parameter error. 
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Figure 5.3 Relative parameter error for WSCC system with ZIP load model 

Table 5.2 shows the estimation results for exponential load model, and Figure 2.8 is the 
relative parameter error. 

 

Table 5.2 Exponential Load Model Parameter Estimation 

  Actual ࣂ  Estimated  ࣂ ࣂࢿ  ࡼࢿ  ࢝ࡸ

Bus 5: 0‐5s  [1.2565 1.2] [1.2566 1.2053] 3.0868e‐3 1.6202e‐5  50 

  5‐10s  [1.5079 1.2] [1.5079 1.2004] 2.0789e‐4 2.5290e‐5  10 

Bus 6: 0‐5s  [0.8844 1.4] [0.8843 1.4028] 3.7736e‐3 1.8826e‐5  10 

  5‐10s  [1.0809 1.4] [1.0808 1.4003] 1.8176e‐4 2.5407e‐5  10 

Bus 8: 0‐5s  [0.9875 0.8] [0.9874 0.8018] 1.4426e‐3 1.0686e‐5  34 

  5‐10s  [0.5925 0.8] [0.5925 0.7994] 5.0596e‐4 1.8298e‐5  6 

ߠ ൌ ሾ ܲ ߠ ௦ሿ, and the initial valueߙ ൌ ሾ1 1ሿ 
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Figure 5.4 Relative parameter error for WSCC system with exponential load model. 

Case 2: WSCC System with PST GNLD Load Model 
 
Power System Toolbox [44] is modified to include the GNLD load model. Simulation is 
performed to obtain the data. We change the load parameters at time 10 s. Table 5.3 
shows the estimation results for the GNLD model. 
 

Table 5.3 GNLD Model Parameter Estimation 

  Actual ࣂ  Estimated  ࣂ ࣂࢿ  ࡼࢿ  ࢝ࡸ

Bus 5: 0‐10s  [1.25   1.2    5.0    0.5] [1.2500 1.2000 5.000 

0.5000] 

3.6930e‐11 2.0707e‐11  9 

  10‐20s   [1.35   1.3    6.0    0.6] [1.3500 1.3000 6.000 

0.6000] 

3.9784e‐11 4.5283e‐13  28 

ߠ ൌ ሾ ܲ ௦ߙ ௧ߙ ܶሿ, and the initial value ߠ ൌ ሾ1 1 2 0.2ሿ

 
Nonparametric models are tested for this case. The difference models used are: 
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It is shown that nonparametric model is a good approximation of the original load. But its 
performance is not as good as that of GNLD, so it will not be selected in this case. Table 
5.4shows the estimation results using nonparametric model for GNLD load. Figure 2.9 is 
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the simulated results using estimation results of both GNLD and nonparametric models 
compared with measurement. 
 

Table 5.4 GNLD Model Parameter Estimation 

  Actual ࣂ  Estimated  ࣂ ࣂࢿ  ࡼࢿ

Bus 5:ܲ 0‐10s  N/A  [0.2644 0.6315 7.1740 0.1278 -7.0951 

1.0311 1.0303 1.0295] 

N/A 1.3538e‐2 

  ܲ10‐20s   N/A  [0.9591 0.0151 3.1562 0.0654 -3.1614 

1.0211 1.0221 1.0231] 

N/A 2.6213e‐3 

ߠ ൌ ሾܽଵ ܽଶ ܾଵଵ ܾଵଶ ܾଵଷ ܾଶଵ ܾଶଶ ܾଶଷሿ , and the initial value ߠ ൌ ሾ1 1 1 1 1 1 1 1ሿ. 

 

 

Figure 5.5 GNLD and nonparametric model simulated results compared with 
measurement. 

Case 3: WSCC System with PSS/E Frequency Dependent Load Model 
In this case, the model used in PSS/E has a frequency term for reactive power: 
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  (5.13)

Table 5.5 shows the estimation results. 
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Table 5.5 Exponential Load Model Parameter Estimation 

  Actual ࣂ  Estimated  ࣂ ࣂࢿ  ࡼࢿ  ࢝ࡸ

Bus 5: ܲ  [1.25   1.2    0.0] [1.2500 1.2005 0.0087] 4.9658e‐3 5.2693e‐3  11 

  ܳ   [0.50   1.6    5.0] [0.5000 1.6006 5.0123] 2.3094e‐3 7.0196e‐3  11 

ߠ ൌ ሾ ܲ ௦ߙ ሿ or ሾܳܭ ௦ߚ ொሿ, and the initial valueܭ ߠ ൌ ሾ1 1 0ሿ

 
Case 4: 30-Bus System using PowerWorld with Static Load Model 
 
The 30-bus, 9-machine system with ZIP load model is used in PowerWorld. Figure 5.6 
shows the one-line diagram of the system. Table 5.6 is the estimation results. 

 

 

Figure 5.6 30-bus, 9-machine system 
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Table 5.6 ZIP Load Model Parameter Estimation 

Bus  Actual ࣂ  Estimated  ࣂ ࣂࢿ  ࡼࢿ  ࢝ࡸ

3  [5.0    5.0    2.3] [4.9995 5.0011 2.2995] 1.7680e‐4 4.1222e‐8  26 

5  [5.0    5.0    4.0] [4.9992 5.0017 3.9992] 2.4954e‐4 4.1582e‐8  18 

10  [10.0  5.0    1.8] [9.9988 5.0025 1.7987] 2.6961e‐4 5.2461e‐8  36 

12  [10.0  10.0  2.9] [9.9970 10.006 2.8970] 5.0878e‐4 4.6082e‐8  22 

13  [0.0    20.0  3.0] [-0.0050 20.0099 2.9951] 5.9773e‐4 3.2200e‐8  22 

14  [20.0  0.0    2.2] [19.9956 0.0086 2.1958] 5.2207e‐4 3.7872e‐8  5 

15  [10.0  30.0  18.2] [9.9960 30.0080 18.1960] 2.6683e‐4 4.2821e‐8  27 

16  [20.0  10.0  27.8] [20.0027 9.9946 27.8027] 1.8637e‐4 3.7310e‐8  11 

17  [19.0  10.0  3.8] [19.0103 9.9795 3.8103] 1.1541e‐3 5.5814e‐8  22 

18  [0.0    0.0    45.0] [0.0003 -0.0006 45.0003] 1.7057e‐5 5.6805e‐10  18 

19  [8.0    2.0    8.3] [8.0001 1.9998 8.3001] 2.5954e‐5 3.4832e‐8  22 

20  [2.0    8.0    5.3] [1.9992 8.0016 5.2992] 1.9802e‐4 2.9231e‐8  29 

21  [20.0  30.0  24.4] [20.0005 29.9991 24.4005] 2.6609e‐5 3.2920e‐8  22 

24  [5.0    1.0    30.3] [4.9973 1.0053 30.2973] 2.1302e‐4 2.5281e‐8  30 

27  [0.0    0.0    20.0] [-0.0002 0.0003 19.9998] 2.0724e‐5 4.3467e‐10  17 

30  [9.0    1.0    13.4] [9.0003 0.9994 13.4003] 4.8236e‐5 3.0665e‐8  22 

33  [0.0    0.0    28.0] [0.0011 -0.0022 28.0011] 9.4986e‐5 4.1598e‐10  32 

34  [0.0    8.7    14.0] [-0.0005 8.7009 13.9996] 6.6753e‐5 2.1162e‐8  18 

37  [10.0  10.0  7.0] [10.0007 9.9986 7.0007] 1.0578e‐4 4.1939e‐8  18 

44  [9.0    0.8    50.0] [9.0028 0.794350.0028] 1.3667e‐4 3.0983e‐8  23 

48  [30.0  20.8  5.0] [30.0056 20.7887 5.0057] 3.7634e‐4 6.0972e‐8  22 

50  [10.0  3.0    1.1] [10.0011 2.9978 1.1011] 2.5147e‐4 6.5046e‐8  53 

53  [30.0  20.0  9.5] [29.9936 20.0128 9.4936] 4.2070e‐4 4.1011e‐8  4 

54  [10.0  0.0    2.43] [9.9999 0.0002 2.4299] 1.9426e‐5 4.8263e‐8  27 

55  [0.0    20.0  2.65] [-0.0013 20.0026 2.6487] 1.5908e‐4 2.5747e‐8  13 

56  [0.0    0.0    14.0] [0.0018  -0.0037 14.0019] 6.6543e‐2 1.3501e‐9  35 

ߠ ൌ ሾܽ ܾ ܿሿ, and the initial value ߠ ൌ ሾ3 3 3ሿ 
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6. Distributed Voltage Support on the Smart-Grid 

6.1 Background 

As PMU deployments become more common and their measurements become more 
available, there is greater real-time system observability. Improved monitoring motivates 
improved control, and this work examines a situation where end-user devices connected 
to the grid via inverters are used to provide reactive power support to the system. Devices 
such as solar panels and PHEVs are examples. More details of this work are available in 
[45] and [46] (also on the PSERC website).  This research has shown how to determine 
effective locations in the transmission system and how to control reactive power 
resources at those locations. We also have considered how to determine reactive support 
groups which parallel the regions of the secure communications architecture that is 
presented. Ultimately, our goal is to present how the Smart Grid can allow the utilization 
of available end-user devices as a resource to mitigate power system problems such as 
voltage collapse.  

6.2 Detect and Respond Framework 

The reactive power capable devices, which may be located any place in the network, 
follow a chain of command structure analogous to the Incident Command System (ICS). 
In this system, actions are taken following a line of authority and responsibility. The ICS 
is a well-known, commonly-used, systematic tool for the command, control, and 
coordination of an emergency response. Personnel such as firefighters are a part of the 
ICS, and they use its framework to effectively manage an emergency situation such as a 
fire or a traffic accident to get the scene quickly under control. Recently, the oil well 
disaster oil in the Gulf of Mexico provides an example of an extremely large incident to 
which the response is coordinated using the ICS. Interestingly, a similar framework is 
needed for the intelligent control of reactive power control devices to respond efficiently 
when the power system is in crisis.  

Applying this concept to power system devices, each individual reports to only one 
supervisor. The individuals work in groups and the group members report to a particular 
supervisor or officer who in turn reports to another specific officer. The individual end-
user reactive-power-capable devices are the resources. Similarly to the personnel 
resources in the ICS, end-user devices do not normally work together, but they have the 
same goal in a crisis. An example of this hierarchical structure is shown in Figure 6.1. 



 

 49

 

Figure 6.1 Hierarchical structure of reactive support system 

Following the same structure, members of reactive support groups are responsible for 
assigning and coordinating the responses of those under their command. Distribution 
system buses and end-user devices also fall into this framework under the command of 
reactive support group members in the transmission system. The flowchart in Figure 6.2 
illustrates the detection and response process in this system. 
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Figure 6.2 Flowchart of Detection and Response Framework 

PMUs play an important role in the implementation of this framework. First of all PMUs 
are going to be instrumental in detecting voltage problems, which is the first step in 
initiating a response. Also, PMUs and other fast metering devices will also be important 
with respect to obtaining the most current information about the loads, both at the 
transmission system level and the distribution system level. A top-down detection-and-
response pattern using this concept may work in the following way: 

1. The Central EMS detects a voltage problem somewhere on the system. It 
computes a response that would mitigate the problem, using the approach 
described in this paper. It formulates action requests and sends them through the 
hierarchy where they are received by the feeder relays. 

2. Each feeder relay receives a reactive support request which originated from the 
EMS. The feeder relay agent computes a set of response actions that would allow 
it to fulfill the request, formulates the corresponding action requests, and sends 
them to the relays to which they are connected. 

3. Each relay receives the reactive support request from its feeder, computes a 
response action, formulates the corresponding action requests, and sends them to 
the load controllers it servers. 

4. Each controller then controls the loads under its supervision to meet the requests. 

These four types of communications and their accompanying responses each occur within 
a distinct realm. Each realm uses its own security parameters to deliver messages in a 
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timely way while ensuring secure exchange for its communicating partners. Key security 
requirements for this system as well as the potential solutions for providing an 
authenticated voltage control framework are discussed in [45] and [46].  

6.3 Distributed Reactive Power  

In this work, the only control actions considered are the injection of reactive power by 
end-user resources such as inverters, but such a scheme can be used to enact any 
corrective and preventative controls from other types of resources.  A reactive power 
control example is shown using the IEEE 24-Bus Reliability Test System (RTS) (Figure 
6.3) which has low voltages around 0.95 per unit. The lowest voltages in the system are 
at buses 3,4,8,9, and 24.  

 

Figure 6.3. IEEE 24-bus RTS 

Before control can be done, the controllability of the reactive component of loads must be 
classified. Initially, a load category can be assigned to each load based on prior 
knowledge, perhaps provided by the manufacturer or by the engineer performing the 
analysis, but these load categories will change over time and must be kept current. We 
define a Q-C bus as a bus which is selected to provide reactive power support. 
Classification incorporates knowledge about differing levels of reactive power control 
capability, and this helps select Q-C buses. In addition, selection of Q-C buses is based 
on sensitivities. The successfulness of this framework depends on having valid capability 
information about the available resources. To properly obtain the reactive power 
capabilities of Q-C buses, we must take high-quality measurements which are often 
reported back.  

For the RTS, we define the category “CAT1” to contain the loads which are completely 
controllable, and “CAT3” to contain the loads which are not controllable at all. It is 
assumed that there are no partially-controllable loads at this time. Buses 11, 12, and 17 
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have reactive power loads of zero, so they are considered to be “CAT3” buses. The slack 
bus and the PV buses are also considered as “CAT3” buses since the reactive power 
output cannot be specified. 

Using sensitivities and these load classifications, the five Q-C buses in the first column of 
Table 6.1 are obtained for the RTS. The value needed at each of these buses in order to 
make the voltage profile at the low-voltage buses within a tolerance of 1 per unit is 
determined, as shown in the second column of Table 6.1. Then, these adjustments are 
made in the system and the initial and final voltages are recorded in the third column of 
Table 6.1. Figure 6.4 shows the system voltages before and after the corrective action. 

 
 

Table 6.1. RTS Voltage Improvement 

Bus # Initial Qnet Final Qnet 
Initial 
voltage

Final 
voltage 

3 -37 MVAr 37 MVAr 0.9469 1.0057 
4 -15 MVAr 15 MVAr 0.9598 1.0022 
8 -35 MVAr 35 MVAr 0.9593 0.9975 
9 -36 MVAr 36 MVAr 0.9603 1.0050 
24 0.9594 0.9852 

 
 

 

Figure 6.4. RTS voltage profiles 

 

The use of reactive-only controls as opposed to other forms of corrective control has the 
advantage that such controllers are already available in the system but are not being 
utilized, and more are likely to be added, especially as the use of power electronics in 
homes increases. Also, the use of reactive power controls may prevent the need to shed 
load or change generation output as a corrective control. 

In this example, the five worst voltages completely overlap the four most effective 
“CAT1” locations. As systems become more heavily loaded, the two groups will likely 
no longer overlap, as the lowest-voltage buses will no longer be “CAT1” because they 
will no longer have reserves. Furthermore, at high load levels, the response will likely no 
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longer be so linear, making it more difficult to determine the proper size for the 
adjustments. A comparison of control using linear estimates of Qnet to the actual required 
values of Qnet is given in [46] or the RTS. 

Since reactive power support is local in nature and must be generated close to its point of 
consumption, such reactive power support must come from within the region with the 
voltage problems. These regions are called reactive support groups. Reactive support 
groups are buses chosen a priori to help each other. One main controller in each region 
can be responsible for obtaining the necessary reactive support for all devices in its 
region. This division allows us to consider a smaller region for communication and 
control, since it is likely that only a subset of the controllers will need to be involved in a 
given response. Reactive support groups also help make this framework extensible to 
decentralized control algorithms where perhaps these groups could coordinate with each 
other instead of relying on a central control. We utilize sensitivities and several clustering 
approaches to form these reactive support groups.  

For the RTS, some clusters formed using the VCI algorithm appear as groups in the first 
column of Table 6.2. For each group, we identify five supportive buses based on the 
maximum of the sensitivities of the voltages of the buses in column 1 to the reactive 
power injections at “CAT1” buses. The sensitivity to each supporter bus’s reactive power 
injection is given beneath the bus number:  

 

Table 6.2 Reactive Support Groups for the IEEE-24 Bus RTS 

Voltage-Coupled 
Groups 

5 Supporter Buses and their Corresponding 
Sensitivities

4 4 9 3 8 24
0.071 0.019 0.009 0.005 0.004

5 5 10 8 9 4
0.050 0.012 0.003 0.002 0.001

10 10 5 8 9 4
0.024 0.012 0.006 0.005 0.003

9,11,12 9 4 3 8 24
0.034 0.019 0.015 0.008 0.007

15,16,17 15 24 16 19 3
0.013 0.011 0.011 0.006 0.006

16,17,19 19 16 15 20 24
0.017 0.011 0.006 0.006 0.005

19,20 19 20 16 15 24
0.017 0.009 0.006 0.004 0.003

3,24 3 24 9 4 15
0.063 0.028 0.015 0.008 0.006

 
The grouping in Table 6.2 uses information about how voltages can be controlled with 
respect to other voltages and also ensures that each voltage has at least five supporters. 
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This organization is flexible enough to handle problems in a decentralized way instead of 
always in a top-down manner, although that is not the focus of this particular work. Such 
a situation would not need to rely on the Central EMS to send the control messages. 
Thus, potential applications of the framework extend beyond voltage control and could 
also benefit from the use of intelligent agents. 



 

 55

7. Summary and Directions for Future Work 

This project has presented research in six five different areas in which the measurements 
from PMUs can be used to enhance power system situational awareness. First, the use of 
Singular Value Decomposition (SVD) was presented to extract information from the 
PMU data without needing information about the system model. The work demonstrated 
that the SVD approach could be used to approximately track the maximum singular value 
of the inverse of the power flow Jacobian, a well established indicator for voltage 
instability. Still, many avenues for future work in this area remain, including practical 
issues such as data scaling and filtering, along with more analytic work to further 
determine optimal window sizes and improved heuristics. 

Second, the project considered how PMU data could be used to morph a power flow case 
to better reflect the power system conditions associated with the PMU measurements. 
The application of the common LP optimal power flow approach makes this approach 
quite amiable for implementation in existing power system analysis packages. Based on 
the examples considered here the approach seems promising, but further research is 
needed to test the algorithm using expanded data sets and system operating conditions. 

Chapter 4 presented two approaches in which information derived from Prony analysis of 
PMU data could be visualized to improve situational awareness associated with power 
system oscillations. As part of the WSU Oscillation Monitoring System (OMS), these 
visualizations are currently during going testing at TVA during which they will 
undoubtedly be further refined.  

The next chapter discussed how PMU data could be used to enhance the load models 
used in real-time and study mode analysis software. The use of real-time measurements 
to enhance both static and dynamic models was considered. Based on the results 
presented here using simulated phasor data, the indication is that the method could 
become a valuable tool for model identification in real time. Additional tests need to be 
done on larger systems and with actual PMU data. 

The last chapter looked at how PMU data could be used to improve situational awareness 
associated with reactive power aspects of power system operations. The research 
demonstrated how distributed, low voltage reactive power control devices such as solar 
array and PHEV inverters could be used to supply reactive power. Testing using small 
systems has been promising, with actual implementation in the University of Illinois 
campus power grid planned.  

In summary, with the rapid growth in PMU installations across many power systems it is 
clear that PMUs will play a role of increasing importance in power system operations. 
This project has presented solid research in several promising areas in which this PMU 
information can be used to not only enhance power system situational awareness, but also 
to improve operations and planning in general. While the project has covered much 
ground, there is certainly a great need for future research.  
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