ECEN 667 Power System Stability

Lecture 11: Exciters and Governors

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- Read Chapter 4
- Homework 3 is due on Thursday Oct 7
- Homework 4 will not need to be turned in (just done before the first exam)
- Exam 1 will be on Oct 14 in class
 - For the distance learners we usually use Honorlock (though I know for some that won't work)
 - Exams are closed book, closed notes, but you can bring in one
 8.5 by 11 inch note sheet and can use calculators

Dynamic Models in the Physical Structure: Exciters

P. Sauer and M. Pai, Power System Dynamics and Stability, Stipes Publishing, 2006.

Exciter Models

Functional Block Diagram

Image source: Fig 8.1 of Kundur, Power System Stability and Control

Coupling with the Machine Models

- When initializing the models, the power flow results are used to determine the generator states, including the E_{FD};
 E_{FD} along with the terminal voltage is used to initialize the exciter
- During the simulation the exciter changes E_{FD}, which impacts the machine differential equations

GENROU block diagram

Types of Exciters

- None, which would be the case for a permanent magnet generator
 - primarily used with wind turbines with ac-dc-ac converters
- DC: Utilize a dc generator as the source of the field voltage through slip rings
- AC: Use an ac generator on the generator shaft, with output rectified to produce the dc field voltage; brushless with a rotating rectifier system
- Static: Exciter is static, with field current supplied through slip rings

DC2 Exciters

• Other dc exciters exist, such as the EXDC2, which is quite similar to the EXDC1

Vr limits are multiplied by the terminal voltage

Fig. 4. Type DC2 - DC Commutator Exciter

Image Source: Fig 4 of "Excitation System Models for Power Stability Studies," IEEE Trans. Power App. and Syst., vol. PAS-100, pp. 494-509, February 1981

ESDC4B

• A newer dc model introduced in 421.5-2005 in which a PID controller is added; might represent a retrofit

Image Source: Fig 5-4 of IEEE Std 421.5-2005

A M

Desired Performance

- A discussion of the desired performance of exciters is contained in IEEE Std. 421.2-2014 (update from 1990)
- Concerned with
 - large signal performance: large, often discrete change in the voltage such as due to a fault; nonlinearities are significant
 - Limits can play a significant role
 - small signal performance: small disturbances in which close to linear behavior can be assumed
- Increasingly exciters have inputs from power system stabilizers, so performance with these signals is important

Transient Response

• Figure shows typical transient response performance to a step change in input

Image Source: IEEE Std 421.2-1990, Figure 3

Small Signal Performance

- Small signal performance can be assessed by either the time responses, frequency response, or eigenvalue analysis
- Figure shows the typical open loop performance of an exciter and machine in the frequency domain

Figure 4—Typical Open-Loop Frequency Response of an Excitation Control System with the Synchronous Machine Open-Circuited

AC Exciters

- Almost all new exciters use an ac source with an associated rectifier (either from a machine or static)
- AC exciters use an ac generator and either stationary or rotating rectifiers to produce the field current
 - In stationary systems the field current is provided through slip rings
 - In rotating systems since the rectifier is rotating there is no need for slip rings to provide the field current
 - Brushless systems avoid the anticipated problem of supplying high field current through brushes, but these problems have not really developed

AC Exciter System Overview

Figure 8.3 Field-controlled alternator rectifier excitation system

Image source: Figures 8.3 of Kundur, Power System Stability and Control, 1994

ABB UNICITER

UNICITER[®] Brushless Excitation Brushless excitation system – Electrical diagram

Image Source: qdoc.tips/brushlessexcitationsystemsupgrade-pdf-free.html

ABB UNICITER Example

UNICITER[®] Example Hydro Power Plant – Horizontal - Switzerland

- Old DC commutator exciter
- by Brown Boveri
- Date of manufacture: 1960

New UNICITER[®] by ABB GTSC Birr

Image Source: qdoc.tips/brushlessexcitationsystemsupgrade-pdf-free.html

ABB UNICITER Rotor Field

Image Source: qdoc.tips/brushlessexcitationsystemsupgrade-pdf-free.html

AC Exciter Modeling

• Originally represented by IEEET2 shown below

Image Source: Fig 2 of "Computer Representation of Excitation Systems," IEEE Trans. Power App. and Syst., vol. PAS-87, pp. 1460-1464, June 1968

EXAC1 Exciter

• The F_{EX} function represent the rectifier regulation, which results in a decrease in output voltage as the field current is increased

K_D models the exciter machine reactance

Image Source: Fig 6 of "Excitation System Models for Power Stability Studies," IEEE Trans. Power App. and Syst., vol. PAS-100, pp. 494-509, February 1981

EXAC1 Rectifier Regulation

Image Source: Figures E.1 and E.2 of "Excitation System Models for Power Stability Studies," IEEE Trans. Power App. and Syst., vol. PAS-100, pp. 494-509, February 1981

Initial State Determination, EXAC1

A]M

- To get initial states E_{fd} and I_{fd} would be known and equal
- Solve $V_e * F_{ex}(I_{fd}, V_e) = E_{fd}$
 - Easy if Kc=0, then In=0 and $F_{ex} = 1$

- Otherwise the F_{EX} function is represented by three piecewise functions; need to figure out the correct segment; for example for Mode 3

$$F_{ex} = \frac{E_{fd}}{V_e} = 1.732 \left(I_{fd} - I_n \right) = 1.732 \left(1 - \frac{K_c I_{fd}}{V_e} \right)$$

Rewrite as $\frac{E_{fd}}{1.732} = V_e - K_c I_{fd} \rightarrow \frac{E_{fd}}{1.732} + K_c I_{fd}$

Need to check to make sure we are on this segment

Static Exciters

- In static exciters the field current is supplied from a three phase source that is rectified (i.e., there is no separate machine)
- Rectifier can be either controlled or uncontrolled
- Current is supplied through slip rings
- Response can be quite rapid

EXST1 Block Diagram

- The EXST1 is intended to model rectifier in which the power is supplied by the generator's terminals via a transformer
 - Potential-source controlled-rectifier excitation system
- The exciter time constants are assumed to be so small they are not represented

Most common exciter in WECC with about 14% modeled with this type

Kc represents the commuting reactance

EXST4B

• EXST4B models a controlled rectifier design; field voltage loop is used to make output independent of supply voltage

Second most common exciter in WECC with about 13% modeled with this type, though V_e is almost always independent of I_T

Simplified Excitation System Model

- A very simple model call Simplified EX System (SEXS) is available
 - Not now commonly used; also other, more detailed models, can match this behavior by setting various parameters to zero

Compensation

- Often times it is useful to use a compensated voltage magnitude value as the input to the exciter
 - Compensated voltage depends on generator current; usually Rc is zero

$$E_c = \left| \overline{V_t} + \left(R_c + j X_c \right) I_T \right|$$

Sign convention is from IEEE 421.5

- PSLF and PowerWorld model compensation with the machine model using a minus sign (negative convention)
 - Specified on the machine base

$$E_c = \left| \overline{V_t} - \left(R_c + j X_c \right) I_T \right|$$

• PSSE requires a separate model with their COMP model also using a negative sign

Compensation

- Using the negative sign convention
 - if X_c is negative then the compensated voltage is within the machine; this is known as droop compensation, which is used reactive power sharing among multiple generators at a bus
 - If X_c is positive then the compensated voltage is partially through the step-up transformer, allowing better voltage stability
 - A nice reference is C.W. Taylor, "Line drop compensation, high side voltage control, secondary voltage control – why not control a generator like a static var compensator," IEEE PES 2000 Summer Meeting

Example Compensation Values

Graph shows example compensation values for large system; overall about 30% of models use compensation

Compensation Example 1

- Added EXST1 model to 4 bus GENROU case with compensation of 0.05 pu (on gen's 100 MVA base) (using negative sign convention)
 - This is looking into step-up transformer
 - Initial voltage value is

$$V_{t} = 1.072 + j0.22, \quad I_{t} = 1.0 - j0.3286$$
$$E_{c} = |1.072 + j0.22 - (j0.05)(1.0 - j0.3286)| = |1.0557 + j0.17| = 1.069$$

Case is **B4_comp1**

Compensation Example 2

 B4 case with two identical generators, except one in Xc = -0.1, one with Xc=-0.05; in the power flow the Mvars are shared equally (i.e., the initial value)

Case is **B4 comp2**

Plot shows the reactive power output of the two units, which start out equal, but diverage because of the difference values for X_c

Compensation Example 3

- B4 case with two identical generators except with slightly different Xc values (into net) (0.05 and 0.048)
- Below graphs show reactive power output if the currents from the generators not coordinated (left) or are coordinated (right); PowerWorld always does the coordinated approach

Compensation Benefits

• A reason for using compensation to control voltages in the transmission system is to move the source of voltage support closer to the load

Initial Limit Violations

- Since many models have limits and the initial state variables are dependent on power flow values, there is certainly no guarantee that there will not be initial limit violations
- If limits are not changed, this does not result in an equilibrium point solution
- PowerWorld has several options for dealing with this, with the default value to just modify the limits to match the initial operating point
 - If the steady-state power flow case is correct, then the limit must be different than what is modeled

Governor Models

Prime Movers and Governors

- Synchronous generator is used to convert mechanical energy from a rotating shaft into electrical energy
- The "prime mover" is what converts the orginal energy source into the mechanical energy in the rotating shaft
- Possible sources: 1) steam (nuclear, coal, combined cycle, solar thermal), 2) gas turbines, 3) water wheel (hydro turbines), 4) diesel/gasoline, 5) wind (which we'll cover separately)
- The governor is used to control the speed

Image source: http://upload.wikimedia.org/wikipedia/commons/1/1e/Centrifugal_governor.png

FIG. 4.-Governor and Throttle-Valve.

Prime Movers and Governors

- In transient stability collectively the prime mover and the governor are called the "governor"
- As has been previously discussed, models need to be appropriate for the application
- In transient stability the response of the system for seconds to perhaps minutes is considered
- Long-term dynamics, such as those of the boiler and automatic generation control (AGC), are usually not considered
- These dynamics would need to be considered in longer simulations (e.g. dispatcher training simulator (DTS)

Power Grid Disturbance Example

A M

36

Figures show the frequency change as a result of the sudden loss of a large amount of generation in the Southern WECC

Frequency Contour

Time in Seconds