#### ECEN 667 Power System Stability

#### Lecture 7: Stability Overview, Synchronous Machine Modeling

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu



#### Announcements



- Homework 2 is due on Thursday September 23
- Read Chapter 5
- The EPG dinner will again take place this semester, hosted by Dr. Begovic and his wife on Saturday September 25th from 5 to 7:30pm. This is for all EPG Faculty, Staff and Students including families (and anyone in 667 is eligible). The meal will be catered. However you must RSVP by today at https://forms.gle/XyN3hc6Md1Mi3YUv9

# **Kersting Example 4.1**

For this example the full  $\mathbf{Z}$  matrix is

 $\mathbf{Z} = \begin{bmatrix} 0.4013 + j1.4133 & 0.0953 + j0.8515 & 0.0953 + j0.7266 & 0.0953 + j0.7524 \\ 0.0953 + j0.8515 & 0.4013 + j1.4133 & 0.0953 + j0.7802 & 0.0953 + j0.7865 \\ 0.0953 + j0.7266 & 0.0953 + j0.7802 & 0.4013 + j1.4133 & 0.0953 + j0.7674 \\ 0.0953 + j0.7524 & 0.0953 + j0.7865 & 0.0953 + j0.7674 & 0.6873 + j1.5465 \end{bmatrix}$ 

- Partition the matrix and solve  $\mathbf{Z}_p = [\mathbf{Z}_A \mathbf{Z}_B \mathbf{Z}_D^{-1} \mathbf{Z}_C]$
- The result in  $\Omega$ /mile is

 $\mathbf{Z}_{p} = \begin{bmatrix} 0.4576 + 1.0780 & 0.1560 + j0.5017 & 0.1535 + j0.3849 \\ 0.1560 + j0.5017 & 0.4666 + j1.0482 & 0.1580 + j0.4236 \\ 0.1535 + j0.3849 & 0.1580 + j0.4236 & 0.4615 + j1.0651 \end{bmatrix}$ 

# Kersting Example 4.1, cont.



• Then to convert to the sequence matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha^2 & \alpha \\ 1 & \alpha & \alpha^2 \end{bmatrix} \text{ with } \alpha = 1 \angle 120^{\circ}$$

Then

$$Z_{s} = \mathbf{A}^{-1} \mathbf{Z}_{p} \mathbf{A} = \begin{bmatrix} 0.7735 + j1.9536 & 0.0256 + j0.0115 & -0.321 + j0.0159 \\ -0.0321 + j0.0159 & 0.3061 + j0.6270 & -0.0723 - j0.0060 \\ 0.0256 + j0.0115 & 0.0723 - j0.0059 & 0.3061 + j0.6270 \end{bmatrix}$$

The diagonal elements are the sequence values, with the positive and negative sequence values equal, and the zero sequence about three times their value. The non-zero off-diagonals indicates that there is mutual coupling between the phases.

#### **Substation Bus**



# Symmetric Line Spacing – 69 kV



#### **Bundled Conductor Pictures**





The AEP Wyoming-Jackson Ferry 765 kV line uses 6-bundle conductors. Conductors in a bundle are at the same voltage!

Photo Source: BPA and American Electric Power

#### Returning to the Simulation: Generator Angles on Different Reference Frames



Average of Generator Angles Reference Frame



Synchronous Reference Frame

Both are equally "correct", but it is much easier to see the rotor angle variation when using the average of generator angles reference frame

# Plot Designer with New Plots with the WSCC Nine Bus Case



Note that when new plots are added using "Add Plot", new Folders appear in the plot list. This will result in separate plots for each group

### **Gen 3 Open Contingency Results**



The left figure shows the generator speed, while the right figure shows the generator mechanical power inputs for the loss of generator 3. This is a severe contingency since more than 25% of the system generation is lost, resulting in a frequency dip of almost one Hz. Notice frequency does not return to 60 Hz.

# Load Modeling



- The load model used in transient stability can have a significant impact on the results
- By default PowerWorld uses constant impedance models but makes it very easy to add more complex loads.
- The default (global) models are specified on the Options, Power System Model page.



These models are used only when no other models are specified.

# Load Modeling



- More detailed models are added by selecting Case Information, Model Explorer, Transient Stability, Load Characteristics Models.
- Models can be specified for the entire case (system), or individual areas, zones, owners, buses or loads.
- To insert a load model click right click and select insert to display the Load Characteristic Information dialog.

| 🍙 🍟 👺 🗄 🗮 😰 🕼 🗮 🕤 👻 Model Explorer: Load Characteristics - Case: wscc_9bus_Load.PWB Status: Initialized   Simulator 15 Beta 💷 🗸 🛪                           |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Case Information Draw Onelines Tools Options Add Ons Window                                                                                                 | Rig   |
| Edit Mode Schort Brimal LP 🕋 📶 📉 📈 💦 🕼                                                                                                                      | Rig   |
| Run Model Script × SCOPF OFF Case OPF Options PV OV Available Transfer Transient Stability Topology                                                         |       |
| Mode         Log         Optimal Power Flow (OPF)         PV and QV Curves (PVQV)         ATC         Transient Stability (SI )         Topology Processing | here  |
| Explore a Transient Stability Data - Load Characteristic                                                                                                    | 11010 |
| Explore Fields 臣 指 作 23 ( ) 為 Records * Geo * Set * Columns * 國 * 鬱 * 鬱 * ⑦ 曲 * 部 ( h) 田 Options *                                                          | 1     |
| In Metwork     In the work     In the work                                                                                                                  | 1002  |
| Branches Frout                                                                                                                                              |       |
| HE Dates Her How Booptrad                                                                                                                                   | colo  |
|                                                                                                                                                             | 2010  |
|                                                                                                                                                             |       |
|                                                                                                                                                             | 1     |

Right click here to get local menu and select insert.

# **Dynamic Load Models**

- Loads can either be static or dynamic, with dynamic models often used to represent induction motors
- Some load models include a mixture of different types of loads; one example is the CLOD model represents a mixture of static and dynamic models
- Loads models/changed in PowerWorld using the Load Characteristic Information Dialog
- Next slide shows voltage results for static versus dynamic load models
- Case Name: WSCC\_9Bus\_Load

#### WSCC Case Without/With Complex Load Models

• Below graphs compare the voltage response following a fault with a static impedance load (left) and the CLOD model, which includes induction motors (right)



# **Under-Voltage Motor Tripping**



- Vi = voltage at which trip will occur (default = 0.75 pu)
- Ti (cycles) = length of time voltage needs to be below Vi
   before trip will occur (default = 60 cycles, or 1 second)
- In this example change the tripping values to 0.8 pu and 30 cycles and you will see the motors tripping out on buses 5, 6, and 8 (the load buses) this is especially visible on the bus voltages plot. These trips allow the clearing time to be a bit longer than would otherwise be the case.
- Set Vi = 0 in this model to turn off motor tripping.

# 37 Bus System

Next we consider a slightly larger, ten generator, 37 bus system. To view this system open case
 AGL37\_TS. The system one-line is shown below.



To see summary listings of the transient stability models in this case select "Stability Case Info" from the ribbon, and then either "TS Generator Summary" or "TS Case Summary"

#### Transient Stability Case and Model Summary Displays



| X Models in Use X Generators X Load Characteristics X Load Summary   |             |                            |              |                |                 |  |  |  |  |  |  |
|----------------------------------------------------------------------|-------------|----------------------------|--------------|----------------|-----------------|--|--|--|--|--|--|
| : 🕎 📄 🎬 非 號 🐝 🌺 🌺 Records * Set * Columns * 📴 * 🏙 * 🗱 * 🇱 f(x) * 🌐 O |             |                            |              |                |                 |  |  |  |  |  |  |
| : Filter Advanced - TSModelSummaryObject - Find Remove Quic          |             |                            |              |                |                 |  |  |  |  |  |  |
| Model Class                                                          | Object Type | Active and<br>Online Count | Active Count | Inactive Count | Fully Supported |  |  |  |  |  |  |
| 1 Machine Model                                                      | GENSAL      | 1                          | 1            | 0              | YES             |  |  |  |  |  |  |
| 2 Machine Model                                                      | GENROU      | 9                          | 9            | 0              | YES             |  |  |  |  |  |  |
| 3 Exciter                                                            | IEEET1      | 10                         | 10           | 0              | YES             |  |  |  |  |  |  |
| 4 Governor                                                           | TGOV1       | 10                         | 10           | 0              | YES             |  |  |  |  |  |  |

#### Right click on a line and select "Show Dialog" for more information.

| - F     | v and Qv Curves  | (FVQV) AIC  | 110     | ansienii sia | Dility (15) | 010 30          | neuule 10              | pology Floce | ssing (nr) = D           | unuer      |             |                                |                    |                      |
|---------|------------------|-------------|---------|--------------|-------------|-----------------|------------------------|--------------|--------------------------|------------|-------------|--------------------------------|--------------------|----------------------|
| 🗙 Gen   | erator Model Use | × Model Sum | imary 🔾 | K Generat    | ors 🗙 Load  | l Characteristi | cs 🗶 Load              | Summary      |                          |            |             |                                |                    |                      |
| : 🕎 (   | .00. ≯k ⊞        | .00         | Reco    | rds 👻 Geo    | ▼ Set ▼ Co  | lumns 👻 📴 🕯     | - AUXB - AUXB - AUXB - | • 🌪 🏥 • '    | <sup>SORT</sup> f(x) ▼ ⊞ | Options •  |             |                                |                    |                      |
| : Filte | r Advanced 👻 G   | Senerator   |         | -            |             |                 | ▼ Find                 | Remove Qu    | ick Filter 🔻             |            |             |                                |                    |                      |
|         | Number of Bus    | Name of Bus | ID      | Status       | Gen MW      | MVA Base        | Machine                | Exciter      | Governor                 | Stabilizer | Other Model | Governor<br>Response<br>Limits | H (system<br>base) | TS Rcom<br>(system t |
| 1       | 14               | RUDDER69    | 1       | Closed       | 0.00        | 50.00           | GENROU                 | IEEET1       | TGOV1                    |            |             | Normal                         | 1.50000            | 0.0(                 |
| 2       | 16               | CENTURY69   | 2       | Closed       | 100.00      | 120.00          | GENROU                 | IEEET1       | TGOV1                    |            |             | Normal                         | 3.60000            | 0.00                 |
| 3       | 20               | FISH69      | 2       | Closed       | 91.75       | 130.00          | GENROU                 | IEEET1       | TGOV1                    |            |             | Normal                         | 3.90000            | 0.00                 |
| 4       | 28               | AGGIE345    | 1       | Closed       | 500.00      | 600.00          | GENROU                 | IEEET1       | TGOV1                    |            |             | Normal                         | 36.00000           | 0.00                 |
| 5       | 31               | SLACK345    | 1       | Closed       | 270.20      | 600.00          | GENROU                 | IEEET1       | TGOV1                    |            |             | Normal                         | 36.00000           | 0.00                 |
| 6       | 37               | SPIRIT69    | 1       | Closed       | 80.00       | 90.00           | GENSAL                 | IEEET1       | TGOV1                    |            |             | Normal                         | 2.70000            | 0.00                 |
| 7       | 44               | RELLIS69    | 1       | Closed       | 60.00       | 80.00           | GENROU                 | IEEET1       | TGOV1                    |            |             | Normal                         | 2.40000            | 0.00                 |
| 8       | 48               | WEB69       | 1       | Closed       | 12.30       | 80.00           | GENROU                 | IEEET1       | TGOV1                    |            |             | Normal                         | 2.40000            | 0.00                 |
| 9       | 53               | KYLE138     | 1       | Closed       | 250.00      | 300.00          | GENROU                 | IEEET1 🔍     | / TGOV1                  |            |             | Normal                         | 9.00000            | 0.00                 |
| 10      | 54               | KYLE69      | 1       | Closed       | 80.00       | 100.00          | GENROU                 | IEEET1       | TGOV1                    |            |             | Normal                         | 3.00000            | 0.00                 |

#### **37 Bus Case Solution**



Graph shows the rotor angles following a line fault

# **Stepping Through a Solution**

• Simulator provides functionality to make it easy to see what is occurring during a solution. This functionality is accessed on the States/Manual Control Page

| Run Transient Stability Pause             | Abort Restore R          | eference For     | Contingency: Find | Sprit69                                                                              |                | $\sim$               |                                  |                               |                   |               |
|-------------------------------------------|--------------------------|------------------|-------------------|--------------------------------------------------------------------------------------|----------------|----------------------|----------------------------------|-------------------------------|-------------------|---------------|
| elect Step                                | States/Manual Control    |                  |                   |                                                                                      |                |                      |                                  |                               |                   |               |
| Simulation                                | Denote to Obr            | + T              |                   |                                                                                      |                |                      |                                  |                               |                   |               |
| Options                                   | Reset to Star            | rtnme            |                   |                                                                                      |                | Transfer Pres        | ent State to Po                  | wer Flow                      | Allow Saving of S | tate in Power |
| Result Storage                            | Run Until Speci          | fied Time        | 0.000000          | Run Until Time Restore Reference I<br>Number of Timesteps to Do Store Power Flow Sta |                |                      | ronco Dowor El                   | ace Power Flow Model Save Cas |                   |               |
| Plots                                     |                          |                  |                   |                                                                                      |                |                      | rence Fower Fi                   | Save case in PWAT office      |                   |               |
| Results from RAM                          | Do Specified Number      | of Timestep(s)   | 1 🗘 1             |                                                                                      |                |                      | low State in *.pwpfs File Save T |                               |                   | ime Snapshot  |
| Transient Limit Monitors                  | All Chatras              |                  | 4                 |                                                                                      |                |                      |                                  |                               |                   |               |
| <ul> <li>States/Manual Control</li> </ul> | All States State Limit V | iolations   Gene | ators Buses Tr    | ansient Stability \                                                                  | 'Bus   GIC GMa | atrix   Two Bus Equi | valents   Detai                  | led Performance               | Results           |               |
| - All States                              | : 📰 💽 🏪 카 🕻              | i8 ;08 ∰         | Records - Se      | t 👻 Columns 👻                                                                        |                | ₩₩ 👎 🛗 - 👬           | <sup>RT</sup> f(x) ▼ ⊞           | Options -                     |                   |               |
| Generators                                | Model Class              | Model ype        | Object Name       | At Limit S                                                                           | tate Ignored   | State Name           | Value                            | Derivative                    | Delta X K1        | ^             |
| Buses                                     | 1 Gen Synch. Ma          | GENROU           | 14 (RUDDER69)     | N                                                                                    | 0              | Angle                | -0.4928                          | 0.0000000                     | 0.0000000         |               |
| Transient Stability YBus                  | 2 Gen Synch. Ma          | GENROU           | 14 (RUDDER69)     | N                                                                                    | 0              | Speed w              | 0.0000                           | 0.0000000                     | 0.0000000         |               |
| GIC GMatrix                               | 3 Gen Synch. Ma          | GENROU           | 14 (RUDDER69)     | N                                                                                    | 0              | Eqp                  | 1.0341                           | 0.0000000                     | 0.0000000         |               |
| Two Bus Equivalents                       | 4 Gen Synch. Ma          | GENROU           | 14 (RUDDER69)     | N                                                                                    | 0              | PsiDp                | 1.0192                           | 0.0000000                     | 0.0000000         |               |
| Detailed Performance Dea                  | 5 Gen Synch. Ma          | GENROU           | 14 (RUDDER69)     | N                                                                                    | 0              | PsiQpp               | 0.0000                           | 0.0000000                     | 0.0000000         |               |
| Detailed Performance Resu                 | 6 Gen Synch. M           | GENROU           | 14 (RUDDER69)     | N                                                                                    | 0              | Edp                  | 0.0000                           | 0.0000000                     | 0.0000000         |               |
| Validation                                | 7 Gen Synch. Na          | GENROU           | 16 (CENTURY69     | N                                                                                    | 0              | Angle                | -0.0904                          | 0.0000000                     | 0.0000000         |               |
| SMIB Eigenvalues                          | 8 Gen Synch Ma           | GENROU           | 16 (CENTURY69     | N                                                                                    | 0              | Speed w              | 0.0000                           | 0.0000000                     | 0.0000000         |               |
| Modal Analysis                            | 9 Gen Synyn. Ma          | GENROU           | 16 (CENTURY69     | N                                                                                    | 0              | Eqp                  | 1.1715                           | 0.0000000                     | 0.0000000         |               |
| Dynamic Simulator Options                 | 10 Gen Syrich. Ma        | GENROU           | 16 (CENTURY69     | N                                                                                    | 0              | PsiDp                | 1.0582                           | 0.0000000                     | 0.0000000         |               |
|                                           | 11 Gen Synch. Ma         | GENROU           | 16 (CENTURY69     | N                                                                                    | 0              | PsiQpp               | 0.2683                           | 0.0000000                     | 0.0000000         |               |
|                                           | 12 Ger Synch. Ma         | GENROU           | 16 (CENTURY69     | N                                                                                    | 0              | Edp                  | 0.0596                           | 0.0000000                     | 0.0000000         |               |
|                                           | 13 G n Synch. Ma         | GENROU           | 20 (FISH69) #2    | N                                                                                    | 0              | Angle                | -0.1704                          | 0.0000000                     | 0.0000000         |               |
|                                           | 14 Sen Synch. Ma         | GENROU           | 20 (FISH69) #2    | N                                                                                    | 0              | Speed w              | 0.0000                           | 0.0000000                     | 0.0000000         |               |
|                                           | 15 Gen Synch. Ma         | GENROU           | 20 (FISH69) #2    | N                                                                                    | 0              | Eqp                  | 1.1651                           | 0.0000000                     | 0.0000000         |               |
|                                           | 6 Gen Synch. Ma          | GENROU           | 20 (FISH69) #2    | N                                                                                    | 0              | PsiDp                | 1.0666                           | 0.0000000                     | 0.0000000         |               |
|                                           | 17 Gen Synch. Ma         | GENROU           | 20 (FISH69) #2    | N                                                                                    | 0              | PsiQpp               | 0.2342                           | 0.0000000                     | 0.0000000         |               |
|                                           | 18 Gen Synch. Ma         | GENROU           | 20 (FISH69) #2    | N                                                                                    | 0              | Edp                  | 0.0520                           | 0.0000000                     | 0.0000000         |               |
|                                           | 19 Gen Synch. Ma         | GENROU           | 28 (AGGIE345) #   | N                                                                                    | 0              | Angle                | 0.2368                           | 0.0000000                     | 0.0000000         |               |
| >                                         | 20 Gen Synch. Ma         | GENROU           | 20 (AGGIE345) #   | N                                                                                    | 0              | Speed w              | 0.0000                           | 0.0000000                     | 0.0000000         |               |
| rocess Contingencies                      | 21 Gen Synch. Ma         | CENROU           | 20 (AGGIE345) #   | N                                                                                    | 0              | Eqp                  | 0.0202                           | 0.0000000                     | 0.0000000         |               |
| One Contingencies                         | 22 Gen Synch. Ma         | GENROU           | 20 (AGGIE345) #   | N                                                                                    | 0              | PsiOpp               | 0.9692                           | 0.0000000                     | 0.0000000         |               |
| Multiple Contingency at a unite           | 23 Gen Synch. Ma         | CENROU           | 20 (AGGIE345) #   | N                                                                                    | 0              | Fsigpp               | 0.3250                           | 0.0000000                     | 0.0000000         | ~             |
| J multiple Contingencies                  | 24) Gen Synch. Ma        | GLINKOU          | 20 (AGGIE545) *   | N                                                                                    | 0              | LUP                  | 0.0722                           | 0.0000000                     | 0.0000000         |               |
| Save All Settings To                      | All Settings From        | how Transient (  | Contour Toolbar   | Auto Incert                                                                          | Critical Cla   | aring Time Calculato | Nr.                              |                               | Help              | Close         |

Transfer results to Power Flow to view using standard PowerWorld displays and one-lines

Run a Specified Number of Timesteps or Run Until a Specified Time, then Pause. See detailed results at the Paused Time

#### Physical Structure Power System Components





P. Sauer and M. Pai, Power System Dynamics and Stability, Stipes Publishing, 2006.

#### Dynamic Models in the Physical Structure





P. Sauer and M. Pai, Power System Dynamics and Stability, Stipes Publishing, 2006.

#### **Generator Models**

- Generators can have several classes of models assigned to them
  - Machine Models
  - Exciter
  - Governors
  - Stabilizers
- Others also available
  - Excitation limiters, voltage compensation, turbine load controllers, and generator relay model



#### **Generator Models**



#### **Machine Models**



# **Synchronous Machine Modeling**



- Electric machines are used to convert mechanical energy into electrical energy (generators) and from electrical energy into mechanical energy (motors)
  - Many devices can operate in either mode, but are usually customized for one or the other
- Vast majority of electricity is generated using synchronous generators and some is consumed using synchronous motors, so we'll start there
- There is much literature on subject, and sometimes it is overly confusing with the use of different conventions and nomenclature

### **Synchronous Machine Modeling**



 $3\phi$  bal. windings (a,b,c) – stator



#### Two Main Types of Synchronous Machines

- Round Rotor
  - Air-gap is constant, used with higher speed machines
- Salient Rotor (often called Salient Pole)
  - Air-gap varies circumferentially
  - Used with many pole, slower machines such as hydro
  - Narrowest part of gap in the d-axis and the widest along the qaxis



# **Dq0 Reference Frame**



- Stator is stationary, rotor is rotating at synchronous speed
- Rotor values need to be transformed to fixed reference frame for analysis
- Done using Park's transformation into what is known as the dq0 reference frame (direct, quadrature, zero)
  - Parks' 1929 paper voted 2<sup>nd</sup> most important power paper of 20<sup>th</sup> century at the 2000 NAPS Meeting (1<sup>st</sup> was Fortescue's sym. components)
- Convention used here is the q-axis leads the d-axis (which is the IEEE standard)

### **Synchronous Machine Stator**



Generator stator showing completed windings for a 757-MVA, 3600-RPM, 60-Hz synchronous generator (Courtesy of General Electric.)

Image Source: Glover/Overbye/Sarma Book, Sixth Edition, Beginning of Chapter 8 Photo

ĀМ

# **Synchronous Machine Rotors**



• Rotors are essentially electromagnets



Image Source: Dr. Gleb Tcheslavski, ee.lamar.edu/gleb/teaching.htm

# **Synchronous Machine Rotor**



#### High pole salient rotor



Part of exciter, which is used to control the field current



Image Source: Dr. Gleb Tcheslavski, ee.lamar.edu/gleb/teaching.htm

#### **Fundamental Laws**

 Kirchhoff's Voltage Law, Ohm's Law, Faraday's Law, Newton's Second Law



Shaft

$$\frac{d\theta_{\text{shaft}}}{dt} = \frac{2}{P}\omega$$
$$J\frac{2}{P}\frac{d\omega}{dt} = T_m - T_e - T_{f\omega}$$

The rotor winds are the field winding and then three damper windings (added to provide damping)



# **Dq0 Transformations**

or  $i, \lambda$ 

$$\begin{bmatrix} v_d \\ v_q \\ v_o \end{bmatrix} \stackrel{\Delta}{=} T_{dqo} \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix}$$

$$\begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} = T_{dqo}^{-1} \begin{bmatrix} v_d \\ v_q \\ v_o \end{bmatrix}$$

In the next few slides we'll quickly go through how these basic equations are transformed into the standard machine models. The point is to show the physical basis for the models.

#### **Dq0 Transformations**

$$T_{dqo} \triangleq \frac{2}{3} \begin{bmatrix} \sin\frac{P}{2}\theta_{shaft} & \sin\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & \sin\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) \end{bmatrix}$$
$$\frac{1}{2} \begin{bmatrix} \cos\frac{P}{2}\theta_{shaft} & \cos\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & \cos\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) \end{bmatrix}$$
$$\frac{1}{2} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

with the inverse,

 $T_{dqo}^{-1} = \begin{bmatrix} \sin\frac{P}{2}\theta_{shaft} & \cos\frac{P}{2}\theta_{shaft} & 1\\ \sin\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & \cos\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & 1\\ \sin\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) & \cos\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) & 1 \end{bmatrix}$ 

Note that the transformation depends on the shaft angle.

#### **Transformed System**



#### Stator

Rotor

 $v_{d} = r_{s}i_{d} - \omega\lambda_{q} + \frac{d\lambda_{d}}{dt} \qquad v_{fd}$   $v_{q} = r_{s}i_{q} + \omega\lambda_{d} + \frac{d\lambda_{q}}{dt} \qquad v_{1d}$   $v_{o} = r_{s}i_{o} + \frac{d\lambda_{o}}{dt} \qquad v_{1q}$ 

$$v_{fd} = r_{fd}i_{fd} + \frac{d\lambda_{fd}}{dt}$$
$$v_{1d} = r_{1d}i_{1d} + \frac{d\lambda_{1d}}{dt}$$
$$v_{1q} = r_{1q}i_{1q} + \frac{d\lambda_{1q}}{dt}$$
$$v_{2q} = r_{2q}i_{2q} + \frac{d\lambda_{2q}}{dt}$$

Shaft

$$\frac{d\theta_{shaft}}{dt} = \frac{2}{P}\omega$$
$$J\frac{2}{P}\frac{d\omega}{dt} = T_m - T_e - T_{f\omega}$$

We are now in the dq0 space

### **Electrical & Mechanical Relationships**

Electrical system: 
$$v = iR + \frac{d\lambda}{dt}$$
 (voltage)  
 $vi = i^2R + i\frac{d\lambda}{dt}$  (power) P is the number of poles (e.g., 2,4,6); Tfw is the friction and windage torque  $J\left(\frac{2}{P}\right)\frac{d\omega}{dt} = T_m - T_e - T_{fw}$  (torque)  $J\left(\frac{2}{P}\right)^2 \omega \frac{d\omega}{dt} = \frac{2}{P}\omega T_m - \frac{2}{P}\omega T_e - \frac{2}{P}\omega T_{fw}$  (power)

ĀM

# **Torque Derivation**



- Torque is derived by looking at the overall energy balance in the system
- Three systems: electrical, mechanical and the coupling magnetic field
  - Electrical system losses are in the form of resistance
  - Mechanical system losses are in the form of friction
- Coupling field is assumed to be lossless, hence we can track how energy moves between the electrical and mechanical systems

### **Energy Conversion**



The coupling field stores and discharges energy but has no losses

Look at the instantaneous power:  

$$v_a i_a + v_b i_b + v_c i_c = \frac{3}{2} v_d i_d + \frac{3}{2} v_q i_q + 3 v_o i_o$$

#### **Change to Conservation of Power**



$$P_{in} = v_a i_a + v_b i_b + v_c i_c + v_{fd} i_{fd} + v_{1d} i_{1d} + v_{1q} i_{1q}$$
  
elect

$$+ v_{2q}i_{2q}$$

$$P_{lost} = r_s \left( i_a^2 + i_b^2 + i_c^2 \right) + r_{fd}i_{fd}^2 + r_{1d}i_{1d}^2 + r_{1q}i_{1q}^2 + r_{2q}i_{2q}^2$$

$$elect$$

$$P_{trans} = i_a \frac{d\lambda_a}{dt} + i_b \frac{d\lambda_b}{dt} + i_c \frac{d\lambda_c}{dt} + i_{fd} \frac{d\lambda_{fd}}{dt} + i_{1d} \frac{d\lambda_{1d}}{dt}$$

$$+ i_{1q} \frac{d\lambda_{1q}}{dt} + i_{2q} \frac{d\lambda_{2q}}{dt} \qquad \text{We are using} \\ \mathbf{v} = d\lambda/dt$$

#### With the Transformed Variables



$$P_{in}_{elect} = \frac{3}{2} v_d i_d + \frac{3}{2} v_q i_q + 3 v_o i_o + v_{fd} i_{fd} + v_{1d} i_{1d}$$

 $+v_{1q}i_{1q}+v_{2q}i_{2q}$ 

$$P_{lost}_{elect} = \frac{3}{2}r_s i_d^2 + \frac{3}{2}r_s i_q^2 + 3r_s i_o^2 + r_{fd} i_{fd}^2 + r_{1d} i_{1d}^2$$

$$+r_{1q}i_{1q}^2+r_{2q}i_{2q}^2$$

#### With the Transformed Variables



40

ЯM

# **Change in Coupling Field Energy**

$$\frac{dW_f}{dt} = \left| \begin{array}{c} T_e \frac{2}{P} \end{array} \right| \frac{d\theta}{dt} + \left[ i_a \right] \frac{d\lambda_a}{dt} + \left[ i_b \right] \frac{d\lambda_b}{dt} \\ + \left[ i_c \right] \frac{d\lambda_c}{dt} + \left[ i_{fd} \right] \frac{d\lambda_{fd}}{dt} + \left[ i_{1d} \right] \frac{d\lambda_{1d}}{dt} \\ + \left[ i_{1q} \right] \frac{d\lambda_{1q}}{dt} + \left[ i_{2q} \right] \frac{d\lambda_{2q}}{dt} \\ \end{array}$$

First term on right is what is going on mechanically, other terms are what is going on electrically

This requires the lossless coupling field assumption

# **Change in Coupling Field Energy**



For independent states 
$$\theta$$
,  $\lambda_a$ ,  $\lambda_b$ ,  $\lambda_c$ ,  $\lambda_{fd}$ ,  $\lambda_{ld}$ ,  $\lambda_{lq}$ ,  $\lambda_{2q}$   

$$\frac{dW_f}{dt} = \frac{\partial W_f}{\partial \theta} \frac{d\theta}{dt} + \frac{\partial W_f}{\partial \lambda_a} \frac{d\lambda_a}{dt} + \frac{\partial W_f}{\partial \lambda_b} \frac{d\lambda_b}{dt}$$

$$+ \frac{\partial W_f}{\partial \lambda_c} \frac{d\lambda_c}{dt} + \frac{\partial W_f}{\partial \lambda_{fd}} \frac{d\lambda_{fd}}{dt} + \frac{\partial W_f}{\partial \lambda_{1d}} \frac{d\lambda_{1d}}{dt}$$

$$+ \frac{\partial W_f}{\partial \lambda_{1q}} \frac{d\lambda_{1q}}{dt} + \frac{\partial W_f}{\partial \lambda_{2q}} \frac{d\lambda_{2q}}{dt}$$

#### **Equate the Coefficients**

$$T_e \frac{2}{P} = \frac{\partial W_f}{\partial \theta}$$
  $i_a = \frac{\partial W_f}{\partial \lambda_a}$  etc.

# There are eight such "reciprocity conditions for this model.

These are key conditions - i.e. the first one gives an expression for the torque in terms of the coupling field energy.

#### **Equate the Coefficients**



$$\frac{\partial W_f}{\partial \theta_{shaft}} = \frac{3}{2} \frac{P}{2} \left( \lambda_d i_q - \lambda_q i_d \right) + T_e$$



$$\frac{\partial W_f}{\partial \lambda_{fd}} = i_{fd} , \quad \frac{\partial W_f}{\partial \lambda_{1d}} = i_{1d} , \quad \frac{\partial W_f}{\partial \lambda_{1q}} = i_{1q} , \quad \frac{\partial W_f}{\partial \lambda_{2q}} = i_{2q}$$

These are key conditions - i.e. the first one gives an expression for the torque in terms of the coupling field energy.

# **Coupling Field Energy**



- The coupling field energy is calculated using a path independent integration
  - For integral to be path independent, the partial derivatives of all integrands with respect to the other states must be equal

For example, 
$$\frac{3}{2} \frac{\partial i_d}{\partial \lambda_{fd}} = \frac{\partial i_{fd}}{\partial \lambda_d}$$

- Since integration is path independent, choose a convenient path
  - Start with a de-energized system so variables are zero
  - Integrate shaft position while other variables are zero
  - Integrate sources in sequence with shaft at final value

#### **Define Unscaled Variables**

J

$$\delta \underline{\underline{\Delta}} \frac{P}{2} \theta_{shaft} - \omega_s t$$

 $\omega_s$  is the rated synchronous speed  $\delta$  plays an important role!

$$\frac{d\lambda_d}{dt} = -r_s i_d + \omega \lambda_q + v_d$$
$$\frac{d\lambda_q}{dt} = -r_s i_q - \omega \lambda_d + v_q$$
$$\frac{d\lambda_o}{dt} = -r_s i_o + v_o$$

$$\frac{d\lambda_{fd}}{dt} = -r_{fd}i_{fd} + v_{fd}$$
$$\frac{d\lambda_{1d}}{dt} = -r_{1d}i_{1d} + v_{1d}$$

$$\frac{d\lambda_{1q}}{dt} = -r_{1q}i_{1q} + v_{1q}$$
$$\frac{d\lambda_{2q}}{dt} = -r_{2q}i_{2q} + v_{2q}$$

$$\frac{d\delta}{dt} = \omega - \omega_s$$

$$\frac{2}{p}\frac{d\omega}{dt} = T_m + \left(\frac{3}{2}\right)\left(\frac{P}{2}\right)\left(\lambda_d i_q - \lambda_q i_d\right) - T_{f\omega}$$



#### Synchronous Machine Equations in Per Unit

$$\frac{1}{\omega_{s}} \frac{d\psi_{d}}{dt} = R_{s}I_{d} + \frac{\omega}{\omega_{s}}\psi_{q} + V_{d} \qquad \frac{1}{\omega_{s}} \frac{d\psi_{fd}}{dt} = -R_{fd}I_{fd} + V_{fd}$$

$$\frac{1}{\omega_{s}} \frac{d\psi_{q}}{dt} = R_{s}I_{q} - \frac{\omega}{\omega_{s}}\psi_{d} + V_{q} \qquad \frac{1}{\omega_{s}} \frac{d\psi_{1d}}{dt} = -R_{1d}I_{1d} + V_{1d}$$

$$\frac{1}{\omega_{s}} \frac{d\psi_{o}}{dt} = R_{s}I_{o} + V_{o} \qquad \frac{1}{\omega_{s}} \frac{d\psi_{1q}}{dt} = -R_{1q}I_{1q} + V_{1q}$$

$$\frac{1}{\omega_{s}} \frac{d\psi_{2q}}{dt} = -R_{2q}I_{2} + V_{2q}$$

$$\frac{d\delta}{dt} = \omega - \omega_{s}$$

$$\frac{2H}{\omega_{s}} \frac{d\omega}{dt} = T_{M} - (\psi_{d}I_{q} - \psi_{q}I_{d}) - T_{FW}$$
Units of H are seconds

The  $\psi$  variables are in the  $\lambda$  variables in per unit (see book 3.50 to 3.52)



#### **Sinusoidal Steady-State**

$$V_{a} = \sqrt{2}V_{s}\cos(\omega_{s}t + \theta_{vs})$$

$$V_{b} = \sqrt{2}V_{s}\cos\left(\omega_{s}t + \theta_{vs} - \frac{2\pi}{3}\right)$$

$$V_{c} = \sqrt{2}V_{s}\cos\left(\omega_{s}t + \theta_{vs} + \frac{2\pi}{3}\right)$$

$$I_{a} = \sqrt{2}I_{s}\cos(\omega_{s}t + \theta_{is})$$

$$I_{b} = \sqrt{2}I_{s}\cos\left(\omega_{s}t + \theta_{is} - \frac{2\pi}{3}\right)$$

$$I_{c} = \sqrt{2}I_{s}\cos\left(\omega_{s}t + \theta_{is} + \frac{2\pi}{3}\right)$$

Here we consider the application to balanced, sinusoidal conditions



# Simplifying Using $\delta$

• Define 
$$\delta \triangleq \frac{P}{2} \theta_{shaft} - \omega_s t$$

• Hence 
$$V_d = V_s \sin(\delta - \theta_{vs})$$
  
 $V_q = V_s \cos(\delta - \theta_{vs})$   
 $I_d = I_s \sin(\delta - \theta_{is})$   
 $I_q = I_s \cos(\delta - \theta_{is})$ 

The conclusion is if we know  $\delta$ , then we can easily relate the phase to the dq values!

 These algebraic equations can be written as complex equations

$$\begin{pmatrix} V_d + jV_q \end{pmatrix} e^{j(\delta - \pi/2)} = V_s e^{j\theta_{VS}}$$
$$\begin{pmatrix} I_d + jI_q \end{pmatrix} e^{j(\delta - \pi/2)} = I_s e^{j\theta_{iS}}$$



# Summary So Far



- The model as developed so far has been derived using the following assumptions
  - The stator has three coils in a balanced configuration, spaced 120 electrical degrees apart
  - Rotor has four coils in a balanced configuration located 90 electrical degrees apart
  - Relationship between the flux linkages and currents must reflect a conservative coupling field
  - The relationships between the flux linkages and currents must be independent of  $\theta_{shaft}$  when expressed in the dq0 coordinate system