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Announcements

T

Read Chapter 7
Homework 5 1s due on Oct 28.

A classic paper 1n this area 1s B. Stott, “Power System
Dynamic Response Calculations,” Proc. IEEE February
1979, pp. 219-241

We’ll cover the equal area criteria in Chapter 9

|IEEE Spectrum did have a nice biographical article on
Charlie Concordia in 1999 (when he won the IEEE
Medal of Honor at age 91)

— He joined GE in 1926; his best contribution (he noted) was, “to
increase the understanding of the dynamics of power systems”
1



Subtransient Models

HiY

« The Norton current injection approach is what is
commonly used with subtransient models in industry

 |f subtransient saliency is neglected (as is the case with
GENROU and GENSAL in which X";=X" ) then the
current injection Is

LD

| El+JE! (—wi+ivi)e T
lyg + g = : = q To; (1) 5T

R+jX" R +jX" r ]

— Subtransient saliency can be handled with this approach, but it
IS more involved (see Arrillaga, Computer Analysis of Power
Systems, section 6.6.3)



Subtransient Models

T

* Note, the values here are on the dq reference frame

« We can now extend the approach introduced for the
classical machine model to subtransient models

 [nitialization is as before, which gives the 6's and other
state values

« Each time step is as before, except we use the &'s for
each generator to transfer values between the network
reference frame and each machine's dqg reference frame

— The currents provide the coupling



Two Bus Example with Two GENROU
Machine Models T

* Use the same system as before, except with we'll
model both generators using GENROUs

- For simplicity we'll make both generators identical except set
H,=3, H,=6; other values are X;=2.1, X,=0.5, X';=0.2,
X';=0.5, X" ;=X"4=0.18, X,=0.15, T'y, = 7.0, T';,;=0.75,
T"4,=0.035, T",=0.05; no saturation

— With no saturation the value of the &'s are determined (as per
the earlier lectures) by solving

E|£5=V +(R + jX, )T

~ Hence for generator 1

E,| £ 6, =1.0946./11.59° +( j0.5)(1.052/ ~18.2°) = 1.431./30.2°
4



GENROU Block Diagram
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Two Bus Example with Two GENROU
Machine Models T

« Using the early approach the initial state vector is

5, | [ 05273 ] Note that this is a salient
Aw, 0.0 pole machine with
E!, 1.1948 KBy hence E'; will
Vi, 1.1554 always be zero

2446 — .
%,ql ° The initial currents in the
= 0
x(0) = = dq reference frame are

O | 7023921 =0.7872, 1,,=0.6988,
Aw, 0 15,=0.2314, 1,,=-1.0269
= 0.9044

q2

Wi, | | 0.8928 Initial values of y*,,=-0.2236,
W, | | —0.3594 | and y"y; =1.179

E. 0
| Fa2 | L il 5




PowerWorld GENROU Initial States

W8 -TRETHEQE--

Case Infarmation

Draw Onelines Tools Options Add Ons

Transient Stability Analysis - Case: B2_GENROWU_2(

Window

() Abort _ ! —
Edit Mode | o0 0 Primal LP Zﬁ ! ~ LA {3 % % | I @
5 og " Refine Model | T -
Run Mode . SCOPF.. OPF Case  OPF Options V... av.. ATC... Transient Stability GIC.. Scheduled Topology
% script - Infa - and Results... Stability.. Case Info = Actions... Processing
Mode Log Optimal Power Flow [OFF) PY and QW Curves [PVOV) ATC Transient Stability [TS) GIC Schedule Topology Proces:
Simulation Status |Iniﬁalized
Run Transient Stability Pause Abort Restore Reference | For Contingency: | Find | My Transient Contingency e
Select Step StatesManual Control
- Simulation
-Options Reset to Start Time Transfer Present State to Power Flow Save Case in P
-Result Storage =
-Flots ’ Run Until Specified Time 0.000000 = Run Until Time Restore Reference Power Flow Model
'RES'-”J_G ﬁ'o'_'“ BAM _ Do Specified Mumber of Timestep(s) |:| = Number of Timesteps to Do Save Time Snapshot
- Transient Limit Manitors
- States/Manual Control Al States  State Limit Violations Generators Buses  Transient Stability YBus  GIC GMatrix  Two Bus Equivalents Detailed Performance Results
. all States — can .o Bl |, A, e B, S i
Stste Limit Violations D == Ak a0 5% Q&n Records = Set~ Columns = ' EBe™ 2= @3 o T HH options -
- Generators Model Class | ModelType | ObjectName |  atLimit |Stateignored | StateName | value | Deriative | Deitaxki
BUSES_ N 1]Gen Synch. Mal GEMROU 1 (Bus 1) #1 N Angle 0.5272 0.0000000 0.0000000
i~ Transient Stability YBus 2|Gen Synch, Ma GENROU 1(Bus 1) #1 NO Speedw 0.0000 0.0000000 0,0000000
GIC GMatrix 3|Gen Synch, Ma GENMROU 1 (Bus 1) #1 MO Eqp 1.15943 0.0000000 0.0000000
i Two Bus Equivalents 4|{Gen Synch, Ma GENMROU 1 (Bus 1) #1 NO PsiDp 1.1554 0.0000000 0.0000000
‘... Detailed Performance Res, 5|Gen Synch. Ma GENROU 1(Bus 1) =1 NO PsiQpp 0.2446  0.0000000  0.0000000
. validation E|Gen Synch, Ma GEMROU 1 (Bus 1) #1 MO Edp 0.0000 0.0000000 0.0000000
. SMIBE | 7|Gen Synch, Ma GEMROU 2 [Bus 2) #1 NO Angle -0.5392 0.0000000 0.0000000
i IQENVEILIES 8|Gen Synch. Ma GENROU 2 (Bus 2) #1 MO Speed w 0.0000 0,0000000 00000000
- Modal Analysis _ 9| Gen Synch. Ma GENROU 2 (Bus 2) #1 NO Eap 09044  0.0000000  0.0000000
- Dynamic Simulator Options 10|Gen Synch, Ma GENROU 2 (Bus 2) #1 MO FsiDp 08928  0.0000000  0.0000000
11|Gen Synch. Ma GENROU 2 [Bus 2) #1 NO PsiCpp -0.3554 0.0000000 0.0000000
12|Gen Synch, Ma GENROU 2 [Bus 2] #1 NO Edp 0.0000 0.0000000 0.0000000

A|M

@



Solving with Euler's

T
« We'll again solve with Euler's, except with At set now
to 0.01 seconds (because now we have a subtransient
model with faster dynamics)

— We'll also clear the fault at t=0.05 seconds

« For the more accurate subtransient models the swing
equation Is written in terms of the torques

do; =0 -0, =A® Other equations
dt are solved
2H do. 2H. dAw. based upon
I - = I -=Ty —Tg— D, (Awi) the block
o, dt o dt di
lagram

with Ty, = l//(;’,ii qi—l//é',ii di



Norton Equivalent Current Injections

Al
« The initial Norton equivalent current injections on the
dq base for each machine are

(~vm+ v )e  (-0.2236+ j1.179)(L.0)

i+ ey = =
nd1 T ) Ng1l jxl,, j0.18
_ =055+ Jl_'242 Recall the dq values
IND1 + JINQl =2.222 - ]6.286 are on the machine's
| il —4.999+ i1.826 reference frame and
e ¥ J w2 =49 _+ J the DQ values are on
lyo2 + Moo =—1—J9.227 the system reference

frame



Moving between DQ and dq
T

 Recall
_Idi_ sind —=cosd _|Di_
;i “lcoss  sing lo The currents provide
o -7 the key coupling
between the
* And two reference
_IDi__ Sin o coS O _Idi— frames
i | [—coss sing || 1y |

10



Bus Admittance Matrix
HiY
 The bus admittance matrix is as from before for the

classical models, except the diagonal elements are
augmented using

1
Yi = R i "
S,i T J d,i
- ; _
J0.18 —J10.101  j4.545
Y=Y+ =| _
1 ]4.545 —j10.101

j0.18 |

11



To check the values solve (in the network reference

Algebraic Solution Verification

frame)

\_|~i10101  j4545 -
| j4545 -j10.101
[1072+j0.22°
| 10

(2222 j6.286"

~1- j5.227

T

12



Results

Al
e The below graph shows the results for four seconds
of simulation, using Euler's with At=0.01 seconds

45 /\ 7\ T -
A A AN SN ~— PowerWorld case is
SN B2 GENROU 2GEN_EULER
i > N PN
AR N N

| [v' —— Rotor Angle_Gen Bus 1 #1 v —— Rotor Angle_Gen Bus 2 #1 I

13
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Results for Longer Time

Simulating out 10 seconds indicates an unstable

T

solution, both using Euler's and RK2 with At=0.005, so

It Is really unstable!

/\

| |[v = Rotor Angle_Gen Bus 1 #1 [¥v = Rotor Angle_Gen Bus 2 #1

Euler's with At=0.01

000000

000000

000000

000000

000000

000000

| |[v = Rotor Angle_Gen Bus 1 #1 [¥v = Rotor Angle_Gen Bus 2 #1

RK2 with At=0.005
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Adding More Models
T

e In this situation the case Is unstable because we have
not modeled exciters

* To each generator add an EXST1 with Tz=0, T=Tz=0,
K:=0, K,=100, T,=0.1

Vier

K,
1+5T;

— This just adds one differential equation per generator

dE., 1

dt = T, (KA (VREF _|Vt|)_ EFD)

15



Two Bus, Two Gen With Exciters

AP

Below are the initial values for this case from

PowerWorld

All States | State Limit Violations | Generators | Buses

Transient Stability YBus | GIC GMatrix | Two Bus Equivalents

] B Ak %8 5% # | Records + Set~ Columns + [Bs- | gl W F BH- U fix - B
Model Class | Model Type Object Mame At Limit | State Ignored | State Mame | Value

1|Gen Synch, Mac GEMROU 1(Bus 1) #1 ] Angle 0.5273
2|Gen Synch. Mac GEMROL 1 (Bus 1) #1 MO Speed w 0.0000
3|Gen Synch, Mac GEMROU 1(Bus 1) #1 MO Egp 1.1943
4|en Synch. Mac GENROU 1 (Bus 1) #1 NO PsiDp 1.1554
5|Gen Synch, Mac GEMROLU 1(Bus 1) #1 ] PsiQpp 0. 246
6|Gen Synch. Mac GENROU 1Bus#1 [ no Edp 0.0000
7|Gen Exciter EX5T1 1(Bus 1) #1 MO EField befare lim 2.6904
8 |Gen Exdter EX5T1 1(Bus 1) #1 YES Sensed Vt 1.0946
9 |Gen Exdter EXST1 1(Bus 1) #1 YES WLL 0.0269
10 (Gen Exciter EXET1 1(Bus 1) #1 MO VF 0.0000
11|Gen Synch. Mac GEMROU 2 (Bus 2) #1 MO Angle 40,5332
12|Gen Synch. Mac GENROU 2 (Bus 2) #1 ] Speed w 0,0000
13|Gen Synch. Mac GENROU 2 (Bus 2) #1 MO Egp 0.9044
14|5en Synch. Mac GENROU 2 (Bus 2) #1 NO PsiDp 0.8928
15(Gen Synch. Mac GEMROU 2 (Bus 2) #1 MO PsiQpp 40,3594
16 |Gen Synch. Mac GENROU 2 (Bus 2) #1 NO Edp 0.0000
17 [Gen Exciter E¥5T1 2 (Bus 2) #1 MO EField befare lim 1.3441
18 [Gen Excter EX5T1 2 (Bus 2) #1 YES Sensed Vt 1.0000
19 (Gen Excdter EXST1 2 (Bus 2) #1 YES WLL 0.0134
20 (Gen Exciter EXST1 2 (Bus 2) #£1 MO VF 0.0000

Case is B2 GENROU 2GEN EXCITER

Because of the
zero values the
other
differential
equations for
the exciters are
Included but
treated as
ignored

16



Viewing the States

Al
« PowerWorld allows one to single-step through a
solution, showing the f(x) and the K, values

This is mostly used for education or model debugging

All States | State Limit Violations | Generators | Buses | Transient Stability YBus | GIC GMatrix | Two Bus Equivalents

] B Ak tsd 5% # | Records + Set~ Columns v [Be- gi- 8- B~ WV o - B | options -

Model Class | Model Type Object Mame | At Limit State Ignored | State Name | Value | Derivative Delta ¥ K1
1|Gen Synch, Mac GEMR.OU 1{Bus 1) #1 | MO Angle 0.5288 0.56283185 0.0015703
2|Gen Synch. Mac GEMROL 1(Bus 1) #1 MO Speed w 0.0017 0.1666667 0.0016667
3|Gen Synch. Mac GEMROL 1(Bus 1) #1 MO Egp 1.1813 -1.42456850 -0.0135115
4|Gen Synch. Mac GEMR.OU 1 (Bus 1) #1 MO P=iDp 1.0738 -5.1374236 -0.0756226
5|Gen Synch. Mac GENROU 1(Bus 1) #1 NO PsiQpp 0.1276  -7.093%033  -0.1170377
& |Gen Synch. Mac GEMR.OU 1(Bus 1) #1 MO Edp 0.0000 0.0000000 0.0000000
7 |Gen Exciter EX5T1 1(Bus 1) #1 MO EField before lim 3.4214 £55.7861970 0.7309577
8 |Gen Exdter EX5T1 1 (Bus 1) #1 YES Sensed Vi 0.0000 0.0000000 0.0000000
9|Gen Exdter EX5T1 1(Bus 1) #1 YES VLL 0.1000 0.0000000 0.0000000
10 |Gen Exdter EX5T1 1(Bus 1) #1 MO VF 0.0000 0.0000000 0.0000000
11|Gen Synch. Mac GEMROU 2 (Bus Z) #1 MO Angle -0. 5400 -0.2856794 -0.0007354
12|Gen Synch, Mac GEMROU 2 (Bus 2) #£1 MO Speed w -0.0003 -0.0833331 -0.0007684
13|Gen Synch. Mac GEMROU 2 (Bus 2) #1 MO Egp 0.9010 -0.2457156 -0.0033913
14|Gen Synch. Mac GEMROU 2 (Bus 2) #1 MO P=iDp 0.8661 -2,.1684713 -0.0267221
15|Gen Synch. Mac GENROU 2 (Bus 2) #1 NO PsiQpp -0.2480 8.9252864  0.1113928
16 |Gen Synch. Mac GEMROU 2 (Bus 2) #1 MO Edp 0.0000 0.0000000 0.0000000
17| Gen Exdter EX5T1 2 (Bus 2) #£1 MO EField before lim 2.2097 779031593 0.8655907
18 |Gen Exdter EX5T1 2 (Bus 2) #£1 YES Sensed Vi 0.5032 0.0000000 0.0000000
19 |Gen Exdter EX5T1 2 (Bus 2) #1 YES VLL 0.1000 0.0000000 0.0000000

20| Gen Exdter EX5T1 2 (Bus 2) #£1 MO VF 0.0000 0.0000000 0.0000000

Derivatives shown are evaluated at the end of the time step 17



Two Bus Results with Exciters

T
Below graph shows the angles with At=0.01 and a

fault clearing at t=0.05 using Euler's

— With the addition of the exciters case 1s now stable
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Load Models Introduced

Al
* The simplest approach for modeling the loads is to treat
them as constant impedances, embedding them in the

bus admittance matrix
— Only impact the Y diagonals

« The admittances are set based upon their power flow
values, scaled by the inverse of the square of the power

ﬂOW bus voltage In PowerWorld the
Sioesi =Vilw, —y\/\ (Groagi = Biosasi ) default load model is
S ous. specified on Transient
Gioedi = 1Bioasi =72 Stability, Options,
’V‘ Power System Model
Note the positive sign comes from page

the sign convention on 1., 19



Example 7.4 Case (WSCC 9 Bus)

AP

« PowerWorld Case Example 7 4 duplicates the
example 7.4 case from the book, with the exception of

using different generator models

Violations | Generators | Buses

Transient Stability YBus | GIC GMatrix | Two Bus Eguivalents

?S@n Records » Set » Columns - * “.E' ﬂ%}iﬁ' 4 %' m; fix) = BH | Options -
MName | Bus 1 | Bus 2 | Bus 3 | Bus 4 Bus 35 Bus & Bus 7 Bus & Bus 9

1|Busi 0.000 -j42.361 [0.000 +{17.361
2|Bus 2 0,000 -j27.111 -0.000 + j16.000
3|Bus 3 0.000 -j23.732 -0.000 +j17.065
4|Bus 4 -0.000 +j17.381 3.307 -j39.309 -1,365 +j11.604  -1.942 +j10.511
5|Bus 5 -1,365 +j11.604 3.814-j17.843 -1,188 +j5.975
6|Bus & -1.942 +j10.511 4,102 -j16.133 -1.282 +j5.588
7|Bus 7 -0.000 +3j16.000 -1,188 +j5.975 2.805 -j35.446 -1.617 +j13.698
8|Bus & -1.617 +j13.698  3.741-j23.642 -1.155 +j9.734
9|Bus 9 -0.000 +3j17.065 -1,282 +j5.588 -1.155 +39.784 2.437 -j32.154

Bus 5 Example: Without the load Y., = 2.553- j17.339
Siaas =1.25+ j0.5 and |V;|=0.996

Y., = 2.553- j17.579+(

1.25— 0.5
i05) _ 3813 j17.843

0.996|
20



Nonlinear Network Equations
HiY
« With constant impedance loads the network equations

can usually be written with | independent of V, then they
can be solved directly (as we've been doing)

V=Y"1(x)

* In general this Is not the case, with constant power loads
one common example. Hence in general a nonlinear
solution with Newton's method is used

« We'll generalize the dependence on the algebraic
variables, replacing V by y since they may include other
values beyond just the bus voltages

21



Nonlinear Network Equations

HiY
Just like in the power flow, the complex equations are
rewritten, here as a real current and a reactive current

YV -I(xy) =0 _ This is a rectangular
The values for bus 1 are formulation; we also

051 (% ¥) =X (Gy Vo —BVoi )~ Iy =0 could have written
k=1 the equations in
polar form

Joi (X, Y) = Z(GikVQk + B Vo )_ lyoi =0
k=1

For each bus we add two new variables and two new

equations

If an infinite bus 1s modeled then its variables and

equations are omitted since its voltage Is fixed -



Nonlinear Network Equations

The network variables and equations are then

g(x,y) =

n

2 (leVDk — By Vok ) — b1 (X y) =0
k=1

NE

(GikVQk + BiVpk )— o1 (X% Y) =0
1

(GZKVDk — BakViok ) —Inp2(Xy) =0

M= 7

;\_
Il
|

n
Z(GnkVDk — BV ) —Inpn (X Y) =0
1

?\_
Il

NgE

(GnkVQk + BrkVpk ) —Inon (%, y) =0

x
Il
| =

T

23



Nonlinear Network Equation Newton
Solution

AP

The network equations are solved using
a similar procedure to that of the
Netwon-Raphson power flow

Setv = 0; make an initial guess of y, y*)

While g(y<v))\>g Do
y =y -3y Fa(y™)
Y = v+1

End While

24



Network Equation Jacobian Matrix
HiY
« The most computationally intensive part of the
algorithm is determining and factoring the Jacobian
matrix, J(y)

00 (XY) 0O (XY)  9gpi(XY)

N, Ny Nop
G (XY)  09q1(X,Y) 0901(%,Y)

on(X,Y)  9Gon(X,Y) on (X,Y)

25



Network Jacobian Matrix

AP

« The Jacobian matrix can be stored and computed using
a 2 by 2 block matrix structure

ny 2 entries just from the Y, are

* The portion of the 2

00pi(X,Y)  09pi(XY) |
No, Vg

i (X,Y)  Gqi(XY)

Np, N

G.

J

B..

J

_B..~

J

G..

J

The "hat" was
added to the

g functions to
Indicate it Is just
the portion from
the Y

« The major source of the current vector voltage
sensitivity comes from non-constant impedance loads;

also dc transmission

lines

26



Example: Constant Current and
Constant Power Load

Al
« As an example, assume the load at bus Kk is represented
with a ZIP model The base load

_ values are
I:)Loadk I:)BaseLoadk( |V ‘—I_F)IK’V ‘+P )

set from the
QLoad,k = QBaseLoad,k (Qz,k sz ‘ + Qi,k ‘Vk ‘ + Qp,k ) power flow
+ Constant impedance could be in the Y

PLoad k PBaseLoad k ( ik ‘V ‘+ P ) (PBL ik ’Vk ‘ T PBL,p,k)
QLoad,k = QBaseLoad,k (Qi,k ’Vk ‘ T Qp,k ) = (QBL,i,k ’\7k ‘ T QBL,p,k )

« Usually solved in per unit on network MV A base

27



Example: Constant Current and
Constant Power Load

AP

 The current iIs then

I_ — | 4 | . I:)Load,k T JQLoad,k
Load,k = "D,Load,k J Q,Load ,k \7
k

(PBL,i,k [fK +V(§K + PBL,p,k)_ j(QBL,i,k I32K +VQZK +QBL,p,k)

VDk o jVQk

* Multiply the numerator and denominator by Vp, +]V i
to write as the real current and the reactive current

28



Example: Constant Current and
Constant Power Load

9 PBL,p,k +VQKQBL,p,k \ PBL,i,k +VQKQBL,i,k
D,Load k — V2 L\2 + 2 2
ok T Vok oK +VQK

VQk PBL,p,k _VDKQBL,p,k VQk PBL,i,k _VDKQBL,i,k
IQ,Load,k — V2 V2 + 5 5
ok T Vok oK +VQK

AP

« The Jacobian entries are then found by differentiating
with respect to Vi, and Vo

— Only affect the 2 by 2 block diagonal values

« Usually constant current and constant power models are
replaced by a constant impedance model if the voltage

goes too low, like during a fault 29



Example: 7.4 ZIP Case
T

Example 7.4 i1s modified so the loads are represented
by a model with 30% constant power, 30% constant
current and 40% constant impedance

— In PowerWorld load models can be entered in a number of
different ways; a tedious but simple approach is to specify a
model for each individual load

Right click on the load symbol to display the Load Options dialog,
select Stability, and select WSCC to enter a ZIP model, in which
pl1&ql are the normalized about of constant impedance load, p2&q?2
the amount of constant current load, and p3&q3 the amount of

constant power load

Case Is Example 7 4 ZIP

30



Example 7.4 ZIP One-line
T

Bus 7 Bus 8 Bus 9 Bus 3

Bus 2

163 MW 1.016 pu

7 Mvar

85 MW

1.025 pu 1.026 pu -11 Mvar

1.032pu 1.025 pu

Bus 5 100MW Bus6 1.013 pu
35 Mvar
125 MW
50 Mvar
Bus 4 1.026 pu 90 MW
30 Mvar
Busl 1.040 pu

2
27 wvar

31



Example 7.4 ZIP Bus 8 Load Values

Al
« As an example the values for bus 8 are given (per unit,
100 MVA base)

1.00 = Paoqicag o (0-4x1.016° +0.3x1.016 +0.3)
— Py oo s =0.983
0.35 = Qgagorona s (0-4x1.016% +0.3x1.016 +0.3)
—> Qpaseloag s = 0-344

*

1+]0.55 j —0.9887 — j0.332

1.0158 + j0.0129

ID,Load,8 + JIQ,Load,8 :(

32



Example: 7.4 ZIP Case Jacobian

Al
* For this case the 2 by 2 block between buses 8 and 7 is
_1155 09.784 This is referencing slides
—9.784 -1.155 O Elie <

 And between 8 and 9 Is
- —1.617 13.698}

_13.698 -1.617

These entries are
easily checked
with the Y,

* The 2 by 2 block for the bus 8 diagonal is
{ 2.876 —23.352}

The check here Is

23.632  3.745 left for the student

33



Additional Comments

HiY

* When coding Jacobian values, a good way to check
that the entries are correct is to make sure that for a
small perturbation about the solution the Newton's
method has quadratic convergence

* When running the simulation the Jacobian is actually
seldom rebuilt and refactored
— If the Jacobian is not too bad it will still converge

* To converge Newton's method needs a good initial
guess, which iIs usually the last time step solution

— Convergence can be an issue following large system
disturbances, such as a fault

34



Explicit Method Long-Term Solutions
HiY
* The explicit method can be used for long-term

solutions

— For example in PowerWorld DS we’ve done solutions of large
systems for many hours

* Numerical errors do not tend to build-up because of the
need to satisfy the algebraic equations

* However, sometimes models have default parameter
values that cause unexpected behavior when run over
longer periods of time (such as default trips after 99
seconds below 0.1 Hz).

« Some models have slow unstable modes
35



Simultaneous Implicit

Al
« The other major solution approach is the simultaneous
Implicit in which the algebraic and differential

equations are solved simultaneously

« This method has the advantage of being numerically
stable

36



Simultaneous Implicit

T
* Recalling an initial lecture, we covered two common
Implicit integration approaches for solving x =f(x)
~ Backward Euler X(t + At) = x(t) + Atf (x(t + At))
For a linear system we have

x(t+At) =[1 - AtA] ™ x(t)

_ Trapezoidal x(t+At):x(t)+%[f(x(t))+f(x(t+At))}

For a linear system we have

X(t+At) =] —AtA]l[l +%A}x(t)

« We'll just consider trapezoidal, but for nonlinear cases



Nonlinear Trapezoidal

AP

We can use Newton's method to solve X =f(X) with
the trapezoidal

Right now we

—x(t+At)+x(t)+%(f(x(t+At))+f(x(t)))=O are just

considering
the differential

We are solving for x(t+At); X(t) i1s known equations;

The Jacobian matrix Is

J(x(t+At)) = %

of,
OX,

of,

OX,

of, |

OX

of,

OX

n

we'll introduce
the algebraic
equations
shortly

The —I comes
from differentiating



Nonlinear Trapezoidal using
Newton's Method

« The full solution would be at each time step

— Set the initial guess for x(t+At) as x(t), and initialize the
Iteration counter k =0

— Determine the mismatch at each iteration k as

T

h(X(t+A)® ) 0 =x(t+A)® + () + %(f (x(t+A0®)+f (x(1)))

— Determine the Jacobian matrix
— Solve

X(t+ADED = x(t+AD® ~[ I(x(t+A0)® T h(x(t+AH®)
— lterate until done
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Infinite Bus GENCLS Example

HiY

« Use the previous two bus system with gen 4 again
modeled with a classical model with X,=0.3, H=3 and
D=0

Bus 2
Bus 1
GENCLS bu Infinite Bus
X=0.22 .
SR>3 > > > > > > DG
11.59 Deg 0.00 Deg
1.095 pu 1.000 pu

In this example X, = (0.22 + 0.3), with the internal voltage
E'; = 1.281£23.95° giving E';=1.281 and §,= 23.95°

40



Infinite Bus GENCLS Implicit Solution
T

« Assume a solid three phase fault is applied at the bus 1
generator terminal, reducing Pg, to zero during the
fault, and then the fault is self-cleared at time Tclear
resulting in the post-fault system being identical to the
pre-fault system

— During the fault-on time the equations reduce to

9 _ ro, 0, That is, with a solid fault
dt on the terminal of the
dAw, 1 (1-0) generator, during
dt 2 % 3 the fault PEl =0

41



Infinite Bus GENCLS Implicit Solution
T

 The Initial conditions are

0) 0(0) ~ 0.418
00,0 { o }

« Let At =0.02 seconds
* During the fault the Jacobian is

0 -1 3.77
stoa 220 #1227

 Set the initial guess for x(0.02) as x(0), and

F(x(0))= {0.1(:367}

42



Infinite Bus GENCLS Implicit Solution
T

Then calculate the initial mismatch

O ; 0.02 )
h(x(0.02)®) 0 -x(0.02)® +x(O)+T(f (x(0.02)® )+ (x(0)))

With x(0.02)© = x(0) this becomes

ny_ |0418| 10418 | 0.02(| O 0 0
(x(002)")= { 0 }{ 0 } 2 [{0.167}{0.167})_{0.00334}

Then

041871 -1 37711 0O 0.4306
x(0.02)® = _ —
0 0 -1 | |0.00334| |0.00334
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Infinite Bus GENCLS Implicit Solution
T

Repeating for the next iteration

w\ | 1.259
f(x(o.oz) )_{0.1667}
n(x(0.02)%) :{ 0.4306 }{0.418}+ 0.02 Hl.zsg}{ 0 D
0.00334 0 2 (|0.167 | |0.167
[0.0
{o.o}

* Hence we have converged with x(0.02) :{

0.4306
0.00334
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Infinite Bus GENCLS Implicit Solution
T

 [teration continues until t = Tclear assumed to be 0.1
seconds in this example
0.7321}

x(0.10)= {o 0167

At this point, when the fault is self-cleared, the equations
change, requiring a re-evaluation of f(x(Tclea))

Cil—f:Aa)pua)s
6.30
f(x(0.17)) =
dAwpu:££1_1.28lsin§j ( 1) {—0.1078}
dt 6\ 052
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Infinite Bus GENCLS Implicit Solution

Al
« With the change in f(x) the Jacobian also changes
J(X(O.lZ(O))):%{ 0 @, N :{ -1 3.77}
2 |-0.305 O | -0.00305 -1

 Iteration for x(0.12) is as before, except using the
new function and the new Jacobian

. . 0.02 ) .
h(x(0.12)?) 0 -x(0.12)® +x(o.01)+7(f (x(0.12)® )+ (x(0.10 )))

0.7321 1 3.77T°[ 0.1257 0.848
0.0167 | |-0.00305 -1 | |-0.00216 | |0.0142

This also converges quickly, with one or two Iiterations 46



Computational Considerations

HiY
« As presented for a large system most of the
computation is associated with updating and factoring
the Jacobian. But the Jacobian actually changes little
and hence seldom needs to be rebuilt/factored

« Rather than using X(t) as the initial guess for x(t+At),
prediction can be used when previous values are
available

X(t+ At)® = x(t) + (x(t) — x(t — At))

47



Two Bus System Results

T

* The below graph shows the generator angle for varying

values of At; recall the implicit method Is numerically
stable

Simulation Time (Seconds)
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Adding the Algebraic Constraints
HiY
e Since the classical model can be formulated with all the

values on the network reference frame, initially we just
need to add the network equations

« We'll again formulate the network equations using the

form
Ix,y) =YV or YV-I(x,y)=0

* As before the complex equations will be expressed
using two real equations, with voltages and currents
expressed In rectangular coordinates

49



Adding the Algebraic Constraints

The network equations are as before

ag(x,y) =

n

Z(leVDk — By Vok )_ Inp1 (X Y) =0

k=1
n
Z(GikVQk + By Vi ) — o (X, y) =0
k=1
n
Z(GZKVDK — BakVik ) —Inp2(Xy) =0
k=1

n
> (GukVok — BrVok ) — Inpn (%,Y) =0

7\_
Il
[ =

NE

(GnkVQk + BnVbk ) —Inon(Xy) =0

=~
I
|

T

50



Coupling of x and y with the Classical
Model
T

* In the simultaneous implicit method x and y are
determined simultaneously; hence in the Jacobian we
need to determine the dependence of the network
equations on X, and the state equations ony

« With the classical model the Norton current depends on
X as Iy = Eiz-é‘i . G+ B = 1-

R + X4, R; + X4,

i = lons + ilgu = E/(c0S 3, + jsin,)(G, + jB,)
Epi + jEo = E/(c0s &, + jsind;)

loni = EniGy —Eo B Recall with the classical

loni = Epi B + EiG, model E;” Is constant o



Coupling of x and y with the
Classical Model

Al
 |In the state equations the coupling with y Is recognized
by noting

PEi = EDiIDi T EQi IQi

I + jIQi :((EDi _VDi)+ j(EQi _VQi))(Gi T jBi)

Lo :(EDi Vo )Gi _(EQi Vo ) B, These are the algebraic

(Epi —Voi)B +(EQi -V, )G. equations

Lo
PEi EDi (( EDi _VDi )Gi _(EQi _VQi ) Bi )"‘ EQi ((EDi _VDi ) Bi "‘(EQi _VQi )Gi)
PEi = ( Eéi - EDiVDi )Gi T ( Eéi - EQiVQi )Gi "‘(EDiVQi - EQiVDi ) Bi

Hence we have Pg; written In terms of the voltages (y) -



Variables and Mismatch Equations

HiY
* In solving the Newton algorithm the variables now
Include x and y (recalling that here y Is just the vector
of the real and imaginary bus voltages

* The mismatch equations now include the state
Integration equations

h(x(t+At)®) =
—X(t+ A +x(t) + %(f (X(t+AD®, y(t+At)® ) +f (x(t).y(1)))

* And the algebraic equations
g(x(t+ADY, y(t+Aan)®)



Jacobian Matrix

AP

 Since the h(x,y) and g(x,y) are coupled, the Jacobian is

3 (x(t+ AN, y(t+Aat)"“)

OX

oy

og (x(t+A)Y,y(t+At)®)  ag(x(t+AD)®,y(t+At)")

OX

oy

oh(x(t+ADM, y(t+A)®)  ah(x(t+AD)®@,y(t+ DY)

— With the classical model the coupling is the Norton current at
bus 1 depends on ¢; (i.e., X) and the electrical power (Pg;) in the

swing equation depends on V; and Vy; (1.e., y)

o4



Jacobian Matrix Entries
Al
« The dependence of the Norton current injections on o Is
|, = E Ccoso.G —E'sing.B
loni = B/ €0S0,B; + E/sin 5,G

Nowi _ —E/sin5,G, — E;cos,B,

alQNi

=—E/sin6.B; + E; c0s 5.G,

— In the Jacobian the sign is flipped because we defined
g(x,y) =YV-I(xy)

55



Jacobian Matrix Entries

Al
« The dependence of the swing equation on the generator
terminal voltage is

5i:Aw @

I.pu—"s

Aa}i,pu — ZiHi(PMi B PEi B Di (Aa)i,pu ))

PEi — (Eéi o EDiVDi )Gi + ( Eéi o EQiVQi )Gi + ( EDiVQi o EQiVDi ) Bi
OAw. 1

av;pu _ 2Hi (EDiGi + EQi BI)
a1 .
@VQip = 2H. (EQiGi Ep Bi)

o6



Two Bus, Two Gen GENCLS Example
T

« We'll reconsider the two bus, two generator case from

the previous lecture ; fault at Bus 1, cleared after 0.06
seconds

— Initial conditions and Y are as covered in Lecture 16
GENCLS Busl GENCLS

X=0,22

11.59 Deg 0.00 Deg
1.095 pu 1.000 pu

PowerWorld Case B2 CLS 2Gen

S



Two Bus, Two Gen GENCLS Example

Initial terminal voltages are

VDl + jVQl

E, =1.281.,23.95°,

=1.0726 + j0.22, Vp, + jVo,

E, =0.955/—12.08

N1

- _ 11709+ j0.52

J0.3

~0.9343-j0.2

IN2

j0.2
T 1
j0.333

0

1
j0.2

=-1- j4.6714

[-j7.879
| j4.545

~1.733- j3.903

j4.545
—j9.545

=1.0

|

T

o8



Two Bus, Two Gen Initial Jacobian

T

| 0, A, 0, Aw, Voi Vou Vo, Voo ]
o, -1 3.77 0 0 0 0 0 0
Ao, -0.0076 -1 0 0 -0.0029 0.0065 0 0
5, 0 0 -1 3.77 0 0 0 0
A, 0 0 -0.0039 -1 0 0  0.0008 0.0039
., -390 0 0 0 0 7.879 0  —4.545
l, -173 0 0 0 —7.879 0 4.545 0
., 0 0 467 0 0 4545 0 9.545
los 0 0 1.00 0 4545 0 -9545 0

59



Results Comparison

The below graph compares the angle for the generator

at bus 1 using At=0.02 between RK2 and the Implicit
Trapezoidal; also Implicit with At=0.06

—
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|  =——Implicit, 0.02
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Four Bus Comparison

AlM
Bus 1 Bus 2
GENCLS Bus4 PP DD DD DD IR .
X=0.1
Cpmpar
Bus 3
/.72 Deg
1.0551pu |

1.005 pu
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Four Bus Comparison

Fault at Bus 3 for 0.12 seconds: self-cleared

Generator 1 Angle

800
700
——dT=0.01
600 ——dT=0.03 B
500 dT=0.06
400
300 -
200 _/
100 : /
]/_

L

I I I
0 0.5 Simulation TiRe (Secundg) 2.5




