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Announcements

• Read Chapter 7

• Homework 5 is due on Oct 28.

• A classic paper in this area is B. Stott, “Power System 

Dynamic Response Calculations,” Proc. IEEE February 

1979, pp. 219-241 

• We’ll cover the equal area criteria in Chapter 9 

• IEEE Spectrum did have a nice biographical article on 

Charlie Concordia in 1999 (when he won the IEEE 

Medal of Honor at age 91)

– He joined GE in 1926; his best contribution (he noted) was, “to 

increase the understanding of the dynamics of power systems”
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Subtransient Models

• The Norton current injection approach is what is 

commonly used with subtransient models in industry

• If subtransient saliency is neglected (as is the case with 

GENROU and GENSAL in which X"d=X"q) then the 

current injection is 

– Subtransient saliency can be handled with this approach, but it 

is more involved (see Arrillaga, Computer Analysis of Power 

Systems, section 6.6.3)

( )q dd q

Nd Nq

s s

jE jE
I jI

R jX R jX

   − + +
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 + +
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Subtransient Models

• Note, the values here are on the dq reference frame

• We can now extend the approach introduced for the 

classical machine model to subtransient models

• Initialization is as before, which gives the d's and other 

state values

• Each time step is as before, except we use the d's for 

each generator to transfer values between the network 

reference frame and each machine's dq reference frame

– The currents provide the coupling
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Two Bus Example with Two GENROU 
Machine Models

• Use the same system as before, except with we'll 

model both generators using GENROUs

– For simplicity we'll make both generators identical except set 

H1=3, H2=6; other values are Xd=2.1, Xq=0.5, X'd=0.2, 

X'q=0.5, X"q=X"d=0.18, Xl=0.15, T'do = 7.0, T'qo=0.75, 

T"do=0.035, T"qo=0.05; no saturation

– With no saturation the value of the d's are determined (as per 

the earlier lectures) by solving

– Hence for generator 1   

( )s qE V R jX Id = + +

( )( )1 1 1.0946 11.59 0.5 1.052 18.2 1.431 30.2E jd =  + −  =  
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GENROU Block Diagram

E'q

E'd 5



Two Bus Example with Two GENROU 
Machine Models

• Using the early approach the initial state vector is 

.

.

.

.

.

( )
.

.

.

.

1

1

q1

1d 1

2q1

d 1

2

2

q2

1d 2

2q2

d 2

0 5273

0 0

E 1 1948

1 1554

0 2446

E 0
0

0 5392

0

E 0 9044

0 8928

0 3594

E 0

d







d







   
   
   

   
   
   
   
   

   
= =   −
   
   
   
   
   
   

−   
      

x

Note that this is a salient 

pole machine with 

X'q=Xq; hence E'd will 

always be zero 

The initial currents in the 

dq reference frame are 

Id1=0.7872, Iq1=0.6988,

Id2=0.2314, Iq2=-1.0269

Initial values of "q1= -0.2236,

and "d1 = 1.179
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PowerWorld GENROU Initial States

7



Solving with Euler's

• We'll again solve with Euler's, except with t set now 

to 0.01 seconds (because now we have a subtransient

model with faster dynamics)

– We'll also clear the fault at t=0.05 seconds

• For the more accurate subtransient models the swing 

equation is written in terms of the torques

( )

, ,with 

i
i s i

i i i i
Mi Ei i i

s s

Ei d i qi q i di

d

dt

2H d 2H d
T T D

dt dt

T i i
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  

 


 

 

= − = 


= = − − 

 = −

Other equations

are solved 

based upon

the block 

diagram
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Norton Equivalent Current Injections

• The initial Norton equivalent current injections on the 

dq base for each machine are 

( ) ( )1 1 1

1 1

1

1 1

2 2

2 2

0.2236 1.179 (1.0)

0.18

6.55 1.242

2.222 6.286

4.999 1.826

1 5.227

q d

Nd Nq
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I jI j

I jI j

I jI j

   − + − +
+ = =


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+ = − −

Recall the dq values 

are on the machine's

reference frame and

the DQ values are on

the system reference

frame
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Moving between DQ and dq

• Recall

• And

sin cos

cos sin

di Di

qi Qi

I I

I I

d d

d d

   − 
=    
    

sin cos

cos sin

Di di

Qi qi

I I

I I

d d

d d

    
=    

−    

The currents provide

the key coupling

between the 

two reference

frames
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Bus Admittance Matrix

• The bus admittance matrix is as from before for the 

classical models, except the diagonal elements are 

augmented using

, ,

i

s i d i

1
Y

R jX
=

+

. ..

. .

.

N

1
0
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0
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Algebraic Solution Verification

• To check the values solve (in the network reference 

frame)

. . . .

. . .

. .

.

1
j10 101 j4 545 2 222 j6 286

j4 545 j10 101 1 j5 227

1 072 j0 22

1 0

−
− −   

=    
− − −   

+ 
=  
 

V
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Results

• The below graph shows the results for four seconds 

of simulation, using Euler's with t=0.01 seconds
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Results for Longer Time

• Simulating out 10 seconds indicates an unstable 

solution, both using Euler's and RK2 with t=0.005, so 

it is really unstable!
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Adding More Models

• In this situation the case is unstable because we have 

not modeled exciters

• To each generator add an EXST1 with TR=0, TC=TB=0, 

Kf=0, KA=100, TA=0.1 

– This just adds one differential equation per generator

( )( )FD
A REF t FD

A

dE 1
K V V E

dt T
= − −

15



Two Bus, Two Gen With Exciters

• Below are the initial values for this case from 

PowerWorld

Case is B2_GENROU_2GEN_EXCITER

Because of the 

zero values the 

other 

differential 

equations for 

the exciters are 

included but 

treated as 

ignored
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Viewing the States

• PowerWorld allows one to single-step through a 

solution, showing the f(x) and the K1 values

– This is mostly used for education or model debugging

Derivatives shown are evaluated at the end of the time step 17



Two Bus Results with Exciters

• Below graph shows the angles with t=0.01 and a 

fault clearing at t=0.05 using Euler's

– With the addition of the exciters case is now stable  
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Load Models Introduced

• The simplest approach for modeling the loads is to treat 

them as constant impedances, embedding them in the 

bus admittance matrix

– Only impact the Ybus diagonals

• The admittances are set based upon their power flow 

values, scaled by the inverse of the square of the power 

flow bus voltage 

( )*

, , , ,

,

, ,

load,i

Note the positive sign  comes from

the sign convention on I

2

load i i load i i load i load i

load i

load i load i 2

i

S V I V G jB

S
G jB

V

= = −

− =

In PowerWorld the 

default load model is

specified on Transient

Stability, Options,

Power System Model 

page
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Example 7.4 Case (WSCC 9 Bus)

• PowerWorld Case Example_7_4 duplicates the 

example 7.4 case from the book, with the exception of 

using different generator models  

( )

, 5

55

Bus 5 Example: Without the load   . - .

. .  and V =0.996

. .
 = . - . . .

0.996

55

load 5

2

Y 2 553 j17 339

S 1 25 j0 5

1 25 j0 5
2 553 j17 579 3 813 j17 843

=

= +

−
+ = −Y
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Nonlinear Network Equations

• With constant impedance loads the network equations 

can usually be written with I independent of V, then they 

can be solved directly (as we've been doing)

• In general this is not the case, with constant power loads 

one common example.  Hence in general a nonlinear 

solution with Newton's method is used

• We'll generalize the dependence on the algebraic 

variables, replacing V by y since they may include other 

values beyond just the bus voltages

( )1−=V Y Ι x
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Nonlinear Network Equations

• Just like in the power flow, the complex equations are 

rewritten, here as a real current and a reactive current

YV – I(x,y) = 0

• The values for bus i are

• For each bus we add two new variables and two new 

equations

• If an infinite bus is modeled then its variables and 

equations are omitted since its voltage is fixed

( )

( )

( )

( )

n

Di ik Dk ik QK NDi

k 1

n

Qi ik Qk ik DK NQi

k 1

g G V B V I 0

g G V B V I 0

=

=

= − − =

= + − =





x,y

x, y

This is a rectangular

formulation; we also

could have written

the equations in

polar form
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Nonlinear Network Equations

• The network variables and equations are then 

( )

( )

( )

( )

( )

1 1 1
1

1 1
1

1

2 2 22
1

1

1

( ) 0

( ) 0

( ) 0
( , )

( ) 0

( ) 0
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k Dk k QK ND
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n

D ik Qk ik DK NQ
k

Q
n

k Dk k QK NDD
k

Dn n

Qn nk Dk nk QK NDn
k

n

nk Qk nk DK NQn
k

G V B V I

V G V B V I

V

G V B V IV

V

V G V B V I

G V B V I

=

=

=

=

=


− − =



+ − = 
 
 
  − − =

= = 
 
 
 

− − =  

+ − =












x,y

x,y

x,y
y g x y

x,y

x,y





 
 
 
 
 
 
 
 
 
 
 
 
 


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Nonlinear Network Equation Newton 
Solution

( )

( )

( 1) ( ) ( ) 1 ( )

The network equations are solved using 

a similar procedure to that of the 

Netwon-Raphson power flow

Set   0; make an initial guess of , 

While ( ) Do

( ) ( )

1

End While

v

v

v v v v

v

v v



+ −

=



= −

= +

y y

g y

y y J y g y
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Network Equation Jacobian Matrix

• The most computationally intensive part of the 

algorithm is determining and factoring the Jacobian 

matrix, J(y)

1 1 1

1 1

1 1 1

1 1

1 1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )

( , ) ( , ) ( , )

D D D

D Q Qn

Q Q Q

D Q Qn

Qn Qn Qn

D Q Qn

g g g

V V V

g g g

V V V

g g g

V V V

   
   
 
   
 

  =  
 
 
   
    

x y x y x y

x y x y x y

J y

x y x y x y
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Network Jacobian Matrix

• The Jacobian matrix can be stored and computed using 

a 2 by 2 block matrix structure

• The portion of the 2 by 2 entries just from the Ybus are 

• The major source of the current vector voltage 

sensitivity comes from non-constant impedance loads; 

also dc transmission lines 

( , ) ( , )ˆ ˆ

( , ) ( , )ˆ ˆ

Di Di

Dj Qj ij ij

Qi Qi ij ij

Dj Qj

g g

V V G B

g g B G

V V

  
   − 
  =  
    
 

  

x y x y

x y x y

The "hat" was

added to the 

g functions to

indicate it is just

the portion from

the Ybus
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Example: Constant Current and 
Constant Power Load

• As an example, assume the load at bus k is represented 

with a ZIP model

• Constant impedance could be in the Ybus

• Usually solved in per unit on network MVA base

( )

( )

, , , , ,

, , , , ,

2

Load k BaseLoad k z k k i k k p k

2

Load k BaseLoad k z k k i k k p k

P P P V P V P

Q Q Q V Q V Q

= + +

= + +

( ) ( )

( ) ( )

, , , , , , , ,

, , , , , , , ,

ˆ

ˆ

Load k BaseLoad k i k k p k BL i k k BL p k

Load k BaseLoad k i k k p k BL i k k BL p k

P P P V P P V P

Q Q Q V Q Q V Q

= + = +

= + = +

The base load

values are

set from the 

power flow 
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Example: Constant Current and 
Constant Power Load

• The current is then

• Multiply the numerator and denominator by VDK+jVQK

to write as the real current and the reactive current

( ) ( )

*

, ,

, , , , ,

, , , , , , , ,

ˆˆ
Load k Load k

Load k D Load k Q Load k

k

2 2 2 2

BL i k DK QK BL p k BL i k DK QK BL p k

Dk Qk

P jQ
I I jI

V

P V V P j Q V V Q

V jV

 +
= + =  

 
 

 + + − + +
 

=
 − 
 
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Example: Constant Current and 
Constant Power Load

• The Jacobian entries are then found by differentiating 

with respect to VDK and VQK

– Only affect the 2 by 2 block diagonal values

• Usually constant current and constant power models are 

replaced by a constant impedance model if the voltage 

goes too low, like during a fault

, , , , , , , ,

, ,

, , , , , , , ,

, ,

Dk BL p k QK BL p k Dk BL i k QK BL i k

D Load k 2 2 2 2
DK QK DK QK

Qk BL p k DK BL p k Qk BL i k DK BL i k

Q Load k 2 2 2 2
DK QK DK QK

V P V Q V P V Q
I

V V V V

V P V Q V P V Q
I

V V V V

+ +
= +

+ +

− −
= +

+ +
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Example: 7.4 ZIP Case

• Example 7.4 is modified so the loads are represented 

by a model with 30% constant power, 30% constant 

current and 40% constant impedance

– In PowerWorld load models can be entered in a number of 

different ways; a tedious but simple approach is to specify a 

model for each individual load

• Right click on the load symbol to display the Load Options dialog, 

select Stability, and select WSCC to enter a ZIP model, in which 

p1&q1 are the normalized about of constant impedance load, p2&q2 

the amount of constant current load, and p3&q3 the amount of 

constant power load

Case is Example_7_4_ZIP
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Example 7.4 ZIP One-line

slack

Bus1

  72 MW

  27 Mvar

Bus 4

Bus 5

 125 MW

  50 Mvar

Bus 2

 163 MW

   7 Mvar

Bus 7 Bus 8 Bus 9 Bus 3

  85 MW

 -11 Mvar

 100 MW

  35 Mvar

Bus 6

  90 MW

  30 Mvar

1.026 pu1.025 pu

0.996 pu

1.016 pu

1.032 pu 1.025 pu

1.013 pu

1.026 pu

1.040 pu
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Example 7.4 ZIP Bus 8 Load Values

• As an example the values for bus 8 are given (per unit, 

100 MVA base)

( )

( )

,

,

,

,

*

, , , ,

. . . . . .

.

. . . . . .

.

.
. .

. .

2

BaseLoad 8

BaseLoad 8

2

BaseLoad 8

BaseLoad 8

D Load 8 Q Load 8

1 00 P 0 4 1 016 0 3 1 016 0 3

P 0 983

0 35 Q 0 4 1 016 0 3 1 016 0 3

Q 0 344

1 j0 35
I jI 0 9887 j0 332

1 0158 j0 0129

=  +  +

→ =

=  +  +

→ =

 +
+ = = − 

+ 
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Example: 7.4 ZIP Case Jacobian

• For this case the 2 by 2 block between buses 8 and 7 is

• And between 8 and 9 is

• The 2 by 2 block for the bus 8 diagonal is

1.617 13.698

13.698 1.617

− 
 − − 

2.876 23.352

23.632 3.745

− 
 
 

1.155 9.784

9.784 1.155

− 
 − − 

• For this case the 2 by 2 block between buses 8 and 7 is

• And between 8 and 9 is

• The 2 by 2 block for the bus 8 diagonal is

These entries are

easily checked

with the Ybus

The check here is 

left for the student

This is referencing slides 

6 and 9
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Additional Comments

• When coding Jacobian values, a good way to check 

that the entries are correct is to make sure that for a 

small perturbation about the solution the Newton's 

method has quadratic convergence

• When running the simulation the Jacobian is actually 

seldom rebuilt and refactored 

– If the Jacobian is not too bad it will still converge

• To converge Newton's method needs a good initial 

guess, which is usually the last time step solution

– Convergence can be an issue following large system 

disturbances, such as a fault
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Explicit Method Long-Term Solutions

• The explicit method can be used for long-term 

solutions

– For example in PowerWorld DS we’ve done solutions of large 

systems for many hours

• Numerical errors do not tend to build-up because of the 

need to satisfy the algebraic equations

• However, sometimes models have default parameter 

values that cause unexpected behavior when run over 

longer periods of time (such as default trips after 99 

seconds below 0.1 Hz).  

• Some models have slow unstable modes   
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Simultaneous Implicit

• The other major solution approach is the simultaneous 

implicit in which the algebraic and differential 

equations are solved simultaneously

• This method has the advantage of being numerically 

stable 
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Simultaneous Implicit

• Recalling an initial lecture, we covered two common 

implicit integration approaches for solving 

– Backward Euler

– Trapezoidal

• We'll just consider trapezoidal, but for nonlinear cases

( )

 

( ) ( ) ( )

For a linear system we have

( ) ( )
1

t t t t t t

t t I t t
−

+  = +  + 

+  = −

x x f x

x A x

( ) ( )

 

( ) ( ) ( ) ( )

For a linear system we have

( ) ( )
1

t
t t t t t t

2

t
t t I t I t

2

−


+  = + + +   

 
+  = − + 

 

x x f x f x

x A A x

( ) =x f x



Nonlinear Trapezoidal 

• We can use Newton's method to solve               with

the trapezoidal

• We are solving for x(t+t); x(t) is known

• The Jacobian matrix is 

( ) =x f x

( ) ( )( )( ) ( ) ( ) ( )
t

t t t t t t
2


− +  + + +  + =x x f x f x 0

( )( )

1 1

1 n

n 1

1 n

f f

x x
t

t t
2

f f

x x

  
  
 

+  = − 
 
  
   

J x I

Right now we

are just 

considering

the differential

equations; 

we'll introduce

the algebraic

equations

shortly 

The –I comes

from differentiating

-x(t+t) 38



Nonlinear Trapezoidal using
Newton's Method

• The full solution would be at each time step

– Set the initial guess for x(t+t) as x(t), and initialize the 

iteration counter k = 0

– Determine the mismatch at each iteration k as

– Determine the Jacobian matrix

– Solve

– Iterate until done 

( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )k k kt
t t t t t t t t

2


+  − +  + + +  +h x x x f x f x

( )( ) ( ) ( ) ( )( ) ( ) ( ( ) ( )
1

k 1 k k kt t t t t t t t
−

+  +  = +  − +  +  x x J x h x
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Infinite Bus GENCLS Example

• Use the previous two bus system with gen 4 again 

modeled with a classical model with Xd'=0.3, H=3 and 

D=0

Infinite Bus

slack

GENCLS

X=0.22

Bus 1

Bus 2

  0.00 Deg 11.59 Deg

 1.000 pu 1.095 pu

In this example Xth = (0.22 + 0.3), with the internal voltage
ത𝐸′1 = 1.281∠23.95° giving E'1=1.281 and d1= 23.95°
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Infinite Bus GENCLS Implicit Solution

• Assume a solid three phase fault is applied at the bus 1 

generator terminal, reducing PE1 to zero during the 

fault, and then the fault is self-cleared at time Tclear
, 

resulting in the post-fault system being identical to the 

pre-fault system 

– During the fault-on time the equations reduce to 

( )

,

,

1
1 pu s

1 pu

d

dt

d 1
1 0

dt 2 3

d
 



= 


= −



That is, with a solid fault 

on the terminal of the 

generator, during

the fault PE1 = 0
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Infinite Bus GENCLS Implicit Solution

• The initial conditions are 

• Let t = 0.02 seconds

• During the fault the Jacobian is 

• Set the initial guess for x(0.02) as x(0), and

( ) .
( )

( )pu

0 0 418
0

0 0

d



   
= =   

  
x

( )
..

( )
s0 1 3 770 02

t t
0 0 0 12

 −   
+  = − =   

−   
J x I

( )( )
.

0
0

0 1667

 
=  
 

f x
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• Then calculate the initial mismatch

• With x(0.02)(0) = x(0) this becomes 

• Then

( ) ( ) ( )( )( ) ( ) ( ).
( . ) ( . ) ( ) ( . ) ( )0 0 00 02
0 02 0 02 0 0 02 0

2
− + + +h x x x f x f x

( )( )
. . .

( . )
. . .

0
0 418 0 418 0 0 00 02

0 02
0 0 0 167 0 167 0 003342

          
= − + + + =          

          
h x

( )
. . .

( . )
. .

1

1
0 418 1 3 77 0 0 4306

0 02
0 0 1 0 00334 0 00334

−
−       

= − =       
−       

x

Infinite Bus GENCLS Implicit Solution
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• Repeating for the next iteration

• Hence we have converged with

Infinite Bus GENCLS Implicit Solution

( )( )( ) .
.

.

1 1 259
0 02

0 1667

 
=  
 

f x

( )( )
. . ..

( . )
. . .

.

.

1
0 4306 0 418 1 259 00 02

0 02
0 00334 0 0 167 0 1672

0 0

0 0

        
= − + + +        

        

 
=  
 

h x

.
( . )

.

0 4306
0 02

0 00334

 
=  
 

x
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• Iteration continues until t = Tclear, assumed to be 0.1 

seconds in this example

• At this point, when the fault is self-cleared, the equations 

change, requiring a re-evaluation of f(x(Tclear))

Infinite Bus GENCLS Implicit Solution

.
( . )

.

0 7321
0 10

0 0167

 
=  
 

x

.
sin

.

pu s

pu

d

dt

d 1 1 281
1

dt 6 0 52

d
 


d

= 

  
= − 

 

( )( )
.

.
.

6 30
0 1

0 1078

+  
=  

− 
f x
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• With the change in f(x) the Jacobian also changes

• Iteration for x(0.12) is as before, except using the 

new function and the new Jacobian

Infinite Bus GENCLS Implicit Solution

( )( )
..

( . )
. .

s0
0 1 3 770 02

0 12
0 305 0 0 00305 12

 −   
= − =   

− − −   
J x I

( ) ( ) ( )( )( ) ( ) ( ).
( . ) ( . ) ( . ) ( . ) ( . )0 0 00 02
0 12 0 12 0 01 0 12 0 10

2

+− + + +h x x x f x f x

( )
. . . .

( . )
. . . .

1

1
0 7321 1 3 77 0 1257 0 848

0 12
0 0167 0 00305 1 0 00216 0 0142

−
−       

= − =       
− − −       

x

This also converges quickly, with one or two iterations 46



Computational Considerations

• As presented for a large system most of the 

computation is associated with updating and factoring 

the Jacobian.  But the Jacobian actually changes little 

and hence seldom needs to be rebuilt/factored

• Rather than using x(t) as the initial guess for x(t+t), 

prediction can be used when previous values are 

available

( )( )( ) ( ) ( ) ( )0t t t t t t+  = + − −x x x x
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Two Bus System Results

• The below graph shows the generator angle for varying 

values of t; recall the implicit method is numerically 

stable
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Adding the Algebraic Constraints

• Since the classical model can be formulated with all the 

values on the network reference frame, initially we just 

need to add the network equations

• We'll again formulate the network equations using the 

form  

• As before the complex equations will be expressed 

using two real equations, with voltages and currents 

expressed in rectangular coordinates

( , )     or  ( , )= − =Ι x y YV YV Ι x y 0
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Adding the Algebraic Constraints

• The network equations are as before

( )

( )

( )

( )

( )

1 1 1
1

1 1
1

1

2 2 22
1

1

1

( ) 0

( ) 0

( ) 0
( , )

( ) 0

( ) 0

n

k Dk k QK ND
k

n

D ik Qk ik DK NQ
k

Q
n

k Dk k QK NDD
k

Dn n

Qn nk Dk nk QK NDn
k

n

nk Qk nk DK NQn
k

G V B V I

V G V B V I

V

G V B V IV

V

V G V B V I

G V B V I

=

=

=

=

=


− − =



+ − = 
 
 
  − − =

= = 
 
 
 

− − =  

+ − =












x,y

x,y

x,y
y g x y

x,y

x,y





 
 
 
 
 
 
 
 
 
 
 
 
 


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• In the simultaneous implicit method x and y are 

determined simultaneously; hence in the Jacobian we 

need to determine the dependence of the network 

equations on x, and the state equations on y

• With the classical model the Norton current depends on 

x as  

Coupling of x and y with the Classical 
Model 

( )( )

( )

, , , ,

,

cos sin

cos sin

i i
Ni i i

s i d i s i d i

Ni DNi QNi i i i i i

Di Qi i i i

DNi Di i Qi i

QNi Di i Qi i

E 1
I G jB

R jX R jX

I I jI E j G jB

E jE E j

I E G E B

I E B E G

d

d d

d d


= + =

 + +

= + = + +

+ = +

= −

= +

Recall with the classical

model Ei’ is constant
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• In the state equations the coupling with y is recognized 

by noting   

Coupling of x and y with the 
Classical Model 

( ) ( )( )( )

( ) ( )

( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )

P

P

P

Ei Di Di Qi Qi

Di Qi Di Di Qi Qi i i

Di Di Di i Qi Qi i

Qi Di Di i Qi Qi i

Ei Di Di Di i Qi Qi i Qi Di Di i Qi Qi i

2 2

Ei Di Di Di i Qi Qi Qi i Di Qi Qi Di i

E I E I

I jI E V j E V G jB

I E V G E V B

I E V B E V G

E E V G E V B E E V B E V G

E E V G E E V G E V E V B

= +

+ = − + − +

= − − −

= − + −

= − − − + − + −

= − + − + −

Hence we have PEi written in terms of the voltages (y)

These are the algebraic

equations
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Variables and Mismatch Equations

• In solving the Newton algorithm the variables now 

include x and y (recalling that here y is just the vector 

of the real and imaginary bus voltages 

• The mismatch equations now include the state 

integration equations

• And the algebraic equations

( )

( ) ( )( )

( )

( ) ( ) ( )

( )

( ) ( ) ( ) , ( ) ( ), ( )

k

k k k

t t

t
t t t t t t t t t

2

+  =


− +  + + +  +  +

h x

x x f x y f x y

( )( ) ( )( ) , ( )k kt t t t+ +g x y



Jacobian Matrix

• Since the h(x,y) and g(x,y) are coupled, the Jacobian is

– With the classical model the coupling is the Norton current at 

bus i depends on di (i.e., x) and the electrical power (PEi) in the 

swing equation depends on VDi and VQi (i.e., y) 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) , ( )

( ) , ( ) ( ) , ( )

( ) , ( ) ( ) , ( )

k k

k k k k

k k k k

J t t t t

t t t t t t t t

t t t t t t t t

+  + 

  +  +   +  + 
 

  
=  

 +  +   +  +  
   

x y

h x y h x y

x y

g x y g x y

x y
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Jacobian Matrix Entries

• The dependence of the Norton current injections on d is

– In the Jacobian the sign is flipped because we defined 

cos sin

cos sin

sin cos

sin cos

DNi i i i i i i

QNi i i i i i i

DNi
i i i i i i

i

QNi

i i i i i i

i

I E G E B

I E B E G

I
E G E B

I
E B E G

d d

d d

d d
d

d d
d

 = −

 = +


 = − −




 = − +



ሻ𝐠 𝐱, 𝐲 = 𝐘 𝐕 − 𝚰(𝐱, 𝐲
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Jacobian Matrix Entries

• The dependence of the swing equation on the generator 

terminal voltage is 

( )( )

( ) ( ) ( )

( )

( )

.

, ,

,

,

P

i i pu s

i pu Mi Ei i i pu

i

2 2

Ei Di Di Di i Qi Qi Qi i Di Qi Qi Di i

i pu

Di i Qi i

Di i

i pu

Qi i Di i

Qi i

1
P P D

2H

E E V G E E V G E V E V B

1
E G E B

V 2H

1
E G E B

V 2H

d  

 





= 

 = − − 

= − + − + −


= +




= −


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Two Bus, Two Gen GENCLS Example

• We'll reconsider the two bus, two generator case from 

the previous lecture ; fault at Bus 1, cleared after 0.06 

seconds

– Initial conditions and Ybus are as covered in Lecture 16

GENCLS

slack

GENCLS

X=0.22

Bus 1

Bus 2

  0.00 Deg 11.59 Deg

 1.000 pu 1.095 pu

PowerWorld Case B2_CLS_2Gen 
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• Initial terminal voltages are

Two Bus, Two Gen GENCLS Example

. . , .

. . , . .

. .
. .

.

. .
.

.

D1 Q1 D2 Q2

1 2

N 1

N 2

V jV 1 0726 j0 22 V jV 1 0

E 1 281 23 95 E 0 955 12 08

1 1709 j0 52
I 1 733 j3 903

j0 3

0 9343 j0 2
I 1 j4 6714

j0 2

+ = + + =

=   = −

+
= = −

−
= = − −

. ..

. .

.

N

1
0

j7 879 j4 545j0 333

1 j4 545 j9 545
0

j0 2

 
  − 
 = + =  

−   
 
 

Y Y
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Two Bus, Two Gen Initial Jacobian

.

. . .

.

. . .

. . .

. . .

. . .

. .

1 1 2 2 D1 Q1 D2 Q2

1

1

2

2

D1

Q1

D2

Q2

V V V V

1 3 77 0 0 0 0 0 0

0 0076 1 0 0 0 0029 0 0065 0 0

0 0 1 3 77 0 0 0 0

0 0 0 0039 1 0 0 0 0008 0 0039

I 3 90 0 0 0 0 7 879 0 4 545

I 1 73 0 0 0 7 879 0 4 545 0

I 0 0 4 67 0 0 4 545 0 9 545

I 0 0 1 00 0 4 545 0

d  d 

d



d



 

−

 − − −

−

 − −

− −

− −

− −

− .9 545 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
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Results Comparison

• The below graph compares the angle for the generator 

at bus 1 using t=0.02 between RK2 and the Implicit 

Trapezoidal; also Implicit with t=0.06
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Four Bus Comparison

GENCLS

slack

GENCLS

X=0.1

X=0.1 X=0.2

Bus 1 Bus 2

Bus 3

  0.00 Deg  2.31 Deg

Bus 4

  7.72 Deg

 -2.40 Deg

 1.000 pu 0.966 pu 1.005 pu

1.0551 pu

 100 MW

  50 Mvar
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Four Bus Comparison

Fault at Bus 3 for 0.12 seconds; self-cleared
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