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Abstract--This paper provides practice-oriented statistics 

on the scalability and the growth of power system sparse 

matrix computational complexity, with the results based 

on models of real and synthetic electric grids, including 

very large grids with up to 110,195 buses. The statistics 

include how the computational effort of factorizing a 

Jacobian matrix and the factorization path length scale 

with the system size 𝒏, which shows the number of buses. 

The study shows the number of nonzeros in the Jacobian 

matrix after factorization grows as 𝒏𝟏.𝟎𝟕, the time to factor 

the matrix grows as 𝒏𝟏.𝟑𝟖, and Forward (F) /Backward (B) 

substitution time grows as 𝒏𝟏.𝟏𝟕 . In addition, applying 

sparse vector methods, the fast forward/fast backward 

substitution (FF/FB) grows as 𝒏𝟎.𝟒𝟓,  which shows an 

improvement in the computational effort. Taking 

advantage of the statistics mentioned in this paper, the 

trend, scaling, and computation complexity of 

factorization steps can be easily predicted. 

 
Index Terms—Power flow, computation complexity, sparsity, 

factorization path, fills, approximate minimum degree algorithm. 

I.  INTRODUCTION 

As is common in many fields, in electric transmission 

system analysis a key computational challenge is the solution 

of Ax = b where A is an n-dimensional square matrix and b is 

known. For the transmission grid analysis, A is usually 

structurally symmetric and quite sparse, with its sparsity 

dependent upon the transmission system topology. A common 

solution technique for such sparse systems, first introduced in 

[1] and [2], is to factor A into a lower triangular matrix L and 

an upper triangular matrix U with A = LU. Then x is 

determined by defining y = Ux, solving for y in Ly = b with a 

process known as forward substitution (F), and then solving 

for x in y = Ux with a process known as backward substitution 

(B). The matrix factorization and the forward/backward 

substitution (F/B) can take advantage of system sparsity. One 

purpose of this paper is to show how the factorization and the 

F/B scale with the grid size. 

In some power system applications, the computational 

complexity can be significantly improved by taking advantage 

of sparse vector methods, first introduced in [3]. Sparse vector 

methods can be used when b is sparse. With sparse vector 

 
 

methods, there are two common classes of problems, both of 

which require that A first be factored and then selected 

elements of y be calculated using a process known as a fast 

forward substitution (FF). The first class is that if only a few 

elements of x are desired, they can be determined quite 

quickly using a fast backward substitution (FB). A common 

application of the FF/FB is to determine selected diagonal 

elements of the inverse of A. The second class is if all, or 

most, of the elements of x are desired a regular backward 

substitution can be used with the y calculated using the FF. As 

noted in [3], the computational complexity required to the FF 

and FB depend essentially linearly on the length of A’s 

factorization paths. Another purpose of this paper is to show 

how factorization paths scale with the system size.  

Several references in the literature propose factorization 

methods for sparse matrices in general. Work [4] reviews 

various sparse matrices that arise in optimization. Reference 

[5] introduces the construction and properties of a factorized 

sparse approximate inverse preconditioning that is well suited 

for implementation on modern parallel computers. In [6], the 

use of an out-of-core sparse matrix package for the numerical 

solution of partial differential equations involving complex 

geometries arising from aerospace applications is discussed. In 

[7], the authors propose an interpolation between two common 

directions for sparse matrix factorization: a cheap, inefficient 

number of iterations over sparse search directions (e.g., 

coordinate descent), and an expensive number of iterations in 

well-chosen search directions (e.g., conjugate gradients). They 

show how to perform cheap iterations along nonsparse search 

directions, provided that these directions can be extracted from 

a sparse factorization. Authors of [8] design and implement a 

parallel and fully algebraic preconditioner based on an 

approximate sparse factorization using low-rank matrix 

compression for indefinite systems using hierarchical matrices 

and randomized sampling. In [9], a large-scale network 

embedding algorithm of sparse matrix factorization is 

proposed. Reference [10] introduces a domain-specific code 

generator that optimizes sparse matrix computations by 

decoupling the symbolic analysis phase from the numerical 

manipulation stage in sparse codes. 

Given the importance of understanding how computations 

scale with system size, there is surprisingly little information 

in the power system literature about the computational 

complexity of power systems’ sparse matrix calculations with 

the sole exception of [11]. Using electric grids with up to 320 
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buses, work [11] showed that the computation complexity of 

matrix factorization is 𝑛1.4 and that of F/B is 𝑛1.2. No similar 

statistics exist for sparse vector methods in the literature, 

which are introduced in [3] and [12]. The efficiency of sparse 

vector methods and average factorization path lengths are 

compared between systems with up to a few thousand buses in 

[3]. The authors of [12] improve parallel computations of 

sparse vector methods by incorporating bus ordering methods 

with matrix partitioning schemes to preserve the sparsity in the 

inverse of L and U and decrease the length of the factorization 

paths. When factorizing a sparse matrix, some originally zero 

values can become nonzero; these values are called “fills” 

(fill-ins). It is desired to order matrix A prior to the 

factorization in a way that the number of fills is minimized to 

preserve the sparsity as much as possible; since the 

computation complexity to factor a sparse matrix depends on 

the number of nonzeros and the way of ordering has a 

significant impact on the number of fills [2]. 

Factorization and sparse vector methods are widely used in 

power system problems. In steady-state analysis, A can be the 

Jacobian matrix used to solve an AC power flow (ACPF), the 

susceptance matrix to solve a DC power flow (DCPF), or the 

matrix used in a time-domain simulation solution. Reference 

[13] presents statistics of computational time required to build 

the admittance matrix of test systems ranging from 200 to 

70,000 nodes using a sparse matrix approach and parallel 

computing. Reference [14] studies the impact of partitioning 

the network on the reduction of computational burden on 

larger systems such as the Eastern Interconnection (EI) model 

with 5838 buses. Factorization is also used in sensitivity 

analysis as an efficient way to quickly assess the potential 

problematic power flow solutions [15]. Another recent 

application of the sparsity technique includes transient 

stability simulations using ordering and a multipath sparse 

vector method [16]. 

In this paper, statistics are provided for a number of 

different actual and electric grid models ranging in size from a 

small island up to covering much of North America. Also, 

each of the studied grids is an original full-scale transmission 

system model, as opposed to being an equivalence portion of a 

larger grid. Equivalencing a grid is when a part of a larger 

system with a fewer number of buses is selected for study and 

represents the connections with the separated parts. The 

drawback of equivalencing is that as the grid is equivalenced, 

some original characteristics are lost [17]. For example, 

interconnection flows between the equivalenced area and 

external areas of the system may significantly change.  

II.  NUMERICAL RESULTS 

This section provides statistics to show how the 

factorization of Jacobian matrices and the factorization paths 

grow along with the increase of the system size. The size of 

studied real grids varies from 109 buses up to 110,195 buses. 

For Jacobian matrix, a single matrix element can be real, 

complex, or blocks. In the studied Jacobian matrix for ACPF, 

elements are stored using two by two matrix blocks. The 

presented statistics in this paper refer to the number of these 

blocks. Therefore, the actual size of A is two times larger than 

the presented values and the number of actual elements is four 

times larger. The other main assumptions include A is a 

nonsingular matrix and the diagonals have nonzero values 

originally or by ordering which is common in similar studies.  

The growth of different statistics such as the number of 

nonzeros after factorization, average and longest lengths of 

factorization paths, F/B substitution time and factorization 

time versus network size are calculated. The trend of each 

pattern is estimated considering a metric to measure the 

accuracy of fit for regression models. This metric is called the 

coefficient of determination (𝑅2) and is calculated as follows.  

          𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
                               (1)  

         𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1                          (2)   

            𝑆𝑆𝑟𝑒𝑠 = ∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

                          (3) 

where 𝑆𝑆𝑟𝑒𝑠is the sum of squares of residuals, 𝑆𝑆𝑡𝑜𝑡 is the total 

sum of squares, 𝑦𝑖  is the 𝑖th actual data point, �̅� is the mean of 

the actual data, �̂�𝑖  is the 𝑖th  predicted data point. 𝑅2  is a 

number between 0 and 1. In general, 𝑅2  values close to 1 

(𝑆𝑆𝑟𝑒𝑠 ≅ 0) indicate that the model perfectly fits the data. On 

the other hand, 𝑅2 values close to 0 represent a weak fitting on 

the data [18].  

Simulations are carried out using PowerWorld [19], Python 

and MATLAB on a computer with an Intel(R) Core(TM) i7-

9750H 2.59 GHz CPU and 32GB of RAM. The Approximate 

Minimum Degree Algorithm (AMD) [20], which is much 

faster than other ordering methods that compute an exact 

degree [21], is applied for ordering and KLU [22] is used for 

symbolic factorization [22-24]. 

In order to validate the results with the most widely used 

ordering methods, Minimum Degree (MD) algorithm [1, 2], 

AMD [20], Nested Dissection (ND) [25], and Multilevel 

Nested Dissection (MND) [26] are implemented and similar 

trends are achieved. The comparison of the number of fills 

with these methods is shown in Fig. 1. 

 
Fig. 1. The number of fills vs. the number of buses.  
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As it can be observed, using different methods does not 

change the growth pattern of the number of fills. This is 

mainly because the size of studied grids are very large, and 

small variations in the number of fills are negligible compared 

to the growth in the number of buses. Please note that 

interconnectedness is also important defining the size of the 

grids based on radial/mesh in the sub grids and it can be 

further studied in future work. In this paper, it is assumed that 

interconnectedness increases as the number of buses increase. 

The actual grids are studied for F/B substitution time and 

the time to perform factorization as well as the average 

factorization path, its standard deviation (STD) and the longest 

length of factorization paths. Table I shows the statistics on 

the results based on the factorization on the actual grids.  

TABLE I.      THE F/B SUBSTITUTION TIME, THE FACTORIZATION TIME, THE 

AVERAGE FACTORIZATION PATH, THE STD OF AVERAGE FACTORIZATION 

PATH, AND THE LONGEST LENGTH OF FACTORIZATION PATHS ON ACTUAL 

GRIDS 

n 

Time (ms) Factorization path 

F/B Factorization 
Ave 

length 

STD of ave 

length 

Longest 

length 

109 0.02 0.02 7.96 2.89 13 

482 0.03 0.09 22.15 4.73 33 

961 0.07 0.02 28.93 5.30 37 

2,294 0.28 0.7 33.07 9.36 55 

2,522 0.24 0.4 25.34 5.89 43 

7,098 1.58 6.2 94.73 29.94 146 

20,131 1.94 5.4 78.26 16.57 118 

22,338 1.81 7.1 74.49 12.88 106 

23,128 2.9 7.5 75.16 14.39 112 

62,605 18.41 52.4 172.54 28.55 253 

86,691 19.87 88.3 205.24 41.27 302 

87,081 47.74 101 194.82 38.92 280 

110,195 32.82 142 218.74 48.83 323 

Estimating the growth trend from Table I, the trend of 

factorization time, the expected time for factorization grows as 

𝑛1.38 , where n is the number of buses. In addition, F/B time 

grows as 𝑛1.17.  However, using sparse vector methods, the 

trend of the average factorization path is 1.08𝑛0.45  and the 

longest length of factorization path increases as 1.77𝑛0.44 . 

According to these trends, the expected computation 

complexity for the average factorization path is 𝑛0.45 and for 

the longest factorization path is 𝑛0.44.  This shows an 

improvement in the computation complexity, using sparse 

vector methods. 

For further comparison, synthetic grids [27, 28], ranging in 

size from 40 buses to 82,000 buses [29] are also studied and 

the patterns are compared with actual grids, which are 

considered as the benchmark. Details on creating these 

synthetic grids are found in [27] and the grids are validated 

based on actual grids in [28]. Table II shows the statistics on 

factorization including the approximate F/B substitution time, 

the approximate factorization time, the average factorization 

path, the STD of average factorization path, and the longest 

length of factorization paths, for the synthetic grids and Figure 

2 shows the trend of factorization time and F/B substitution 

time. 

Fig. 3 shows the trends of average and the longest 

factorization path versus the number of buses in both real and 

synthetic grids. Table III shows a summary of computation 

complexities on the studied parameters and their accuracy 

metric 𝑅2. It is observed that the statistics of synthetic grids 

are very close to the statistics from actual grids. The slight 

difference is mainly because the initial ordering has an impact 

on the number of fills and factorization paths. Also, as it is 

expected, the number of nonzeros of A in each block before 

factorization (BF) grows linearly with an increase in the 

system size. After factorization (AF), because of the added 

fills, the growth factor of synthetic grids is 𝑛1.05 , which is 

close to 𝑛1.07 for the real grids as it is shown in Fig. 4. 

TABLE II.      THE F/B SUBSTITUTION TIME, THE FACTORIZATION TIME, THE 

AVERAGE FACTORIZATION PATH, THE STD OF AVERAGE FACTORIZATION 

PATH, AND THE LONGEST LENGTH OF FACTORIZATION PATHS ON SYNTHETIC 

GRIDS 

n 

Time (ms) Factorization path 

F/B Factorization 
Ave 

length 

STD of 

ave 

length 

Longest 

length 

40 0.004 0.008 7.83 2.52 12 

42 0.01 0.014 10.88 3.68 16 

150 0.01 0.027 15.45 7.74 34 

200 0.01 0.036 14.42 3.50 21 

500 0.03 0.06 17 4.25 28 

500 0.04 0.09 22.78 6.77 40 

2000 0.34 1.589 49.26 14.44 90 

10000 1.31 6.528 101.91 27.76 154 

10000 1.29 6.371 105.94 25.91 163 

25000 5.34 37.972 182.4 62.21 296 

30000 8.27 49.753 158.34 26.61 208 

70000 24.26 150.655 312.23 117.27 624 

82000 30.09 156.245 281.01 132.43 624 

 
Fig. 2. The Factorization time and F/B time vs. the number of buses.  
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Fig. 3. The average and the longest factorization path vs. the number of buses.  

 
Fig. 4.  The number of nonzeros B/A factorization vs. the number of buses.  

 
TABLE III.      THE GROWTH AND ACCURACY OF NONZEROS AFTER 

FACTORIZATION, F/B SUBSTITUTION TIME, THE FACTORIZATION TIME, THE 

AVERAGE FACTORIZATION PATH, AND THE LONGEST LENGTH  

n 
Nonzeros 

AF 

Time (ms) Factorization path 

F/B  Factorization  
Ave 

length 

Max 

length 

Real grids 𝑛1.07 𝑛1.17 𝑛1.38 𝑛0.45 𝑛0.44 
Real grids 

𝑅² 
1 0.83 0.98 0.95 0.95 

Synthetic 
grids  

𝑛1.05 𝑛1.17 𝑛1.37 𝑛0.47 𝑛0.48 

Synthetic 

grids 𝑅² 
1 1 0.82 0.98 0.93 

III.  CONCLUSION AND FUTURE WORK 

The sparse matrix statistics of large power systems with a 

wide variety of sizes are presented. The computational effort 

of factorizing the Jacobian matrix, the average/longest length 

of factorization paths, and the time to perform factorization 

are studied for the power system models with up to a hundred 

thousand buses. The paper shows how factorization time and 

the F/B substitution time scale with the grid size. The 

estimated growth of factorization time is  𝑛1.38  and the 

expected growth of F/B substitution time is 𝑛1.17. In addition, 

the paper shows how factorization paths scale with system 

size. The average factorization path is expected to grow as 

𝑛0.45.  This shows how applying sparse vector methods 

improves the computation complexity since FF/FB 

substitution time is proportional to the length of factorization 

path.  

In the future, we are interested in focusing on graph 

partitioning, and the analysis of sub-graph complexity as 

introduced in [30, 31] and the application of graph partitioning 

on the complexity of  power systems ‘sparse matrices. 
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