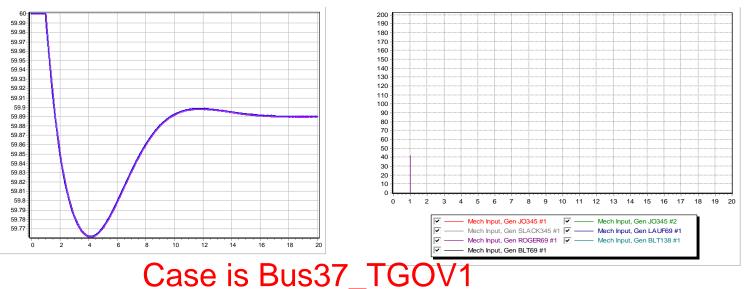
ECEN 667 Power System Stability

Lecture 14: Generator Governors, Deadbands

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, <u>overbye@tamu.edu</u>

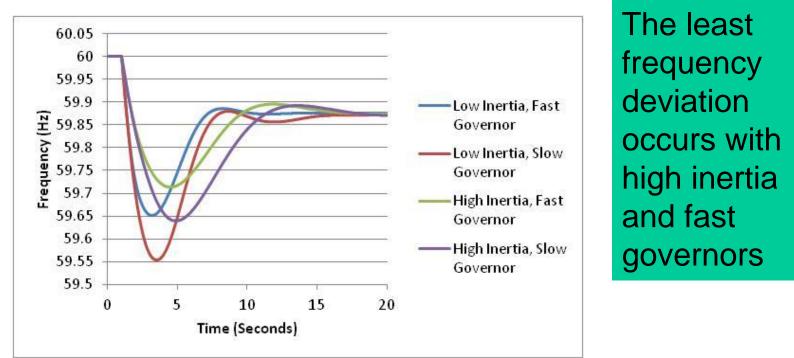
Announcements


A]M

- Read Chapter 7
- Homework 5 is assigned today, due on Oct 26

Larger System Example

• As an example, consider the 37 bus, nine generator example from earlier; assume one generator with 42 MW is opened. The total MVA of the remaining generators is 1132. With R=0.05


 $\Delta f = -\frac{0.05 \times 42}{1132} = -0.00186 \text{ pu} = -0.111 \text{ Hz} \rightarrow 59.889 \text{ Hz}$

3

Impact of Inertia (H)

- Ă,M
- Final frequency is determined by the droop of the responding governors
- How quickly the frequency drops depends upon the generator inertia values

Restoring Frequency to 60 (or 50) Hz

- In an interconnected power system the governors to not automatically restore the frequency to 60 Hz
- Rather done via the ACE (area control error) calculation. Previously we defined ACE as the difference between the actual real power exports from an area and the scheduled exports. But it has an additional term $ACE = P_{actual} - P_{sched} - 10\beta(freq_{act} - freq_{sched})$
- β is the balancing authority frequency bias in MW/0.1 Hz with a negative sign. It is about 0.8% of peak load/generation

ACE response is usually not modeled in transient stability

Turbine Models

AM

Boiler supplies a "steam chest" with the steam then entering the turbine through a valve; often multiple stages

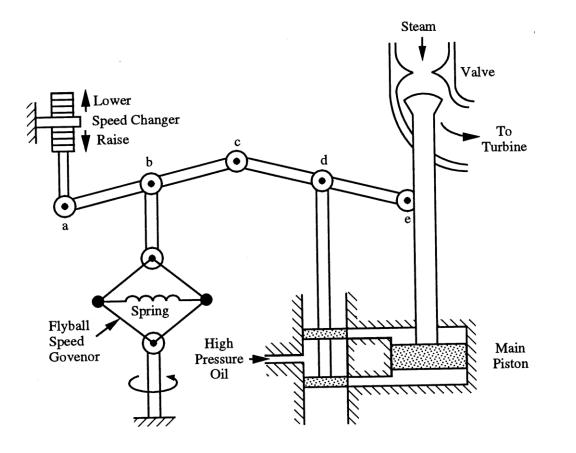
$$T_{CH} \frac{dP_{CH}}{dt} = -P_{CH} + P_{SV}$$

Assume $T_{in} = P_{CH}$ and a rigid shaft with $P_{CH} = T_M$

Then the above equation becomes

$$T_{CH} \frac{dT_M}{dt} = -T_M + P_{SV}$$

And we just have the swing equations from before

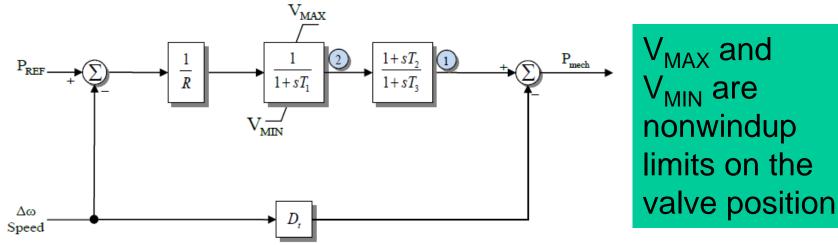

$$\frac{d\delta}{dt} = \omega - \omega_s$$
$$\frac{2H}{\omega_s} \frac{d\omega}{dt} = T_M - T_{ELEC} - T_{FW}$$

We are assuming $\delta = \delta_{HP}$ and $\omega = \omega_{HP}$

Steam Governor Model

Steam Governor Model

$$T_{SV}\frac{dP_{SV}}{dt} = -P_{SV} + P_C - \frac{1}{R}\Delta\omega$$

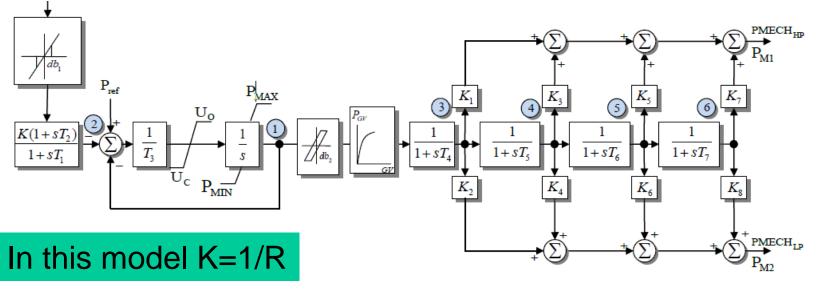

where
$$\Delta \omega = \frac{\omega - \omega_s}{\omega_s}$$

$$0 \le P_{SV} \le P_{SV}^{\max}$$
 Steam value limits

R is commonly about 0.05 (5% droop)

TGOV1 Model

• Standard model that is close to this is TGOV1



Here T_1 corresponds to T_{SV} and T_3 to T_{CH}

About 12% of governors in the 2014 EI model are TGOV1; R = 0.05, T_1 is less than 0.5 (except a few 999's!), T_3 has an average of 7, average T_2/T_3 is 0.34; D_t is used to model turbine damping and is often zero (about 80% of time in EI)

IEEEG1

• A common stream turbine model, is the IEEEG1, originally introduced in the below 1973 paper

 U_o and U_c are rate limits

It can be used to represent cross-compound units, with high and low pressure steam

IEEE Committee Report, "Dynamic Models for Steam and Hydro Turbines in Power System Studies," Transactions in Power Apparatus & Systems, volume 92, No. 6, Nov./Dec. 1973, pp 1904-15

IEEEG1

- Blocks on the right model the various steam stages
- About 12% of WECC and EI governors are currently IEEEG1s
- Below figures show two test comparison with this model

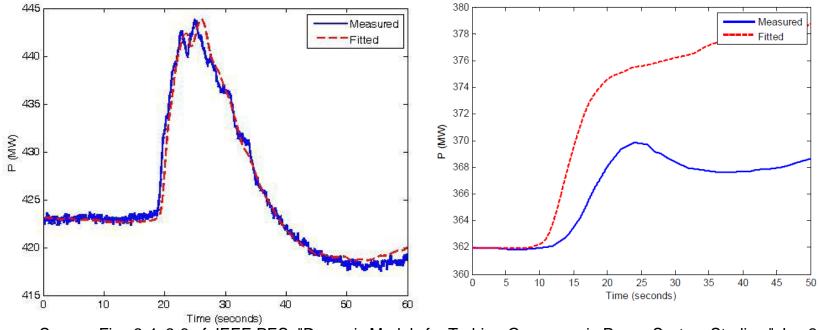
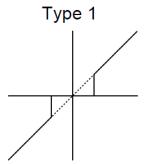
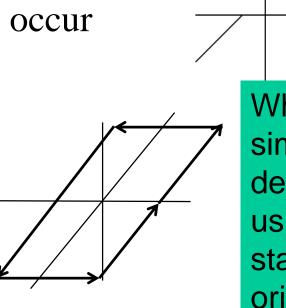



Image Source: Figs 2-4, 2-6 of IEEE PES, "Dynamic Models for Turbine-Governors in Power System Studies," Jan 2013 12


Deadbands

- A M
- Before going further, it is useful to briefly consider deadbands, with two types shown with IEEEG1 and described in the 2013 IEEE PES Governor Report
- The type 1 is an intentional deadband, implemented to prevent excessive response
 - Until the deadband activates there is no response, then normal response after that; this can cause a potentially large jump in the response
 - Also, once activated there is normal response coming back into range
 - Used on input to IEEEG1

Deadbands

- The type 2 is also an intentional deadband, implemented to prevent excessive response
 - Difference is response does not jump, but rather only starts once outside of the range
 Type 2
- Another type of deadband is the unintentional, such as will occur with loose gears
 - Until deadband "engages" there is no response
 - Once engaged there is a hysteresis in the response

When starting simulations deadbands usually start start at their origin

Deadband Example: ERCOT

- Ă,M
- Prior to November 2008, ERCOT required that the governor deadbands be no greater than +/- 0.036 Hz
- After 11/3/08 deadbands were changed to +/- 0.0166 Hz

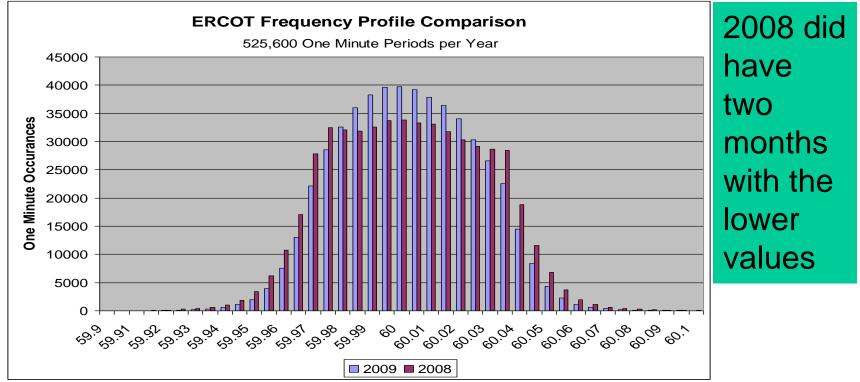
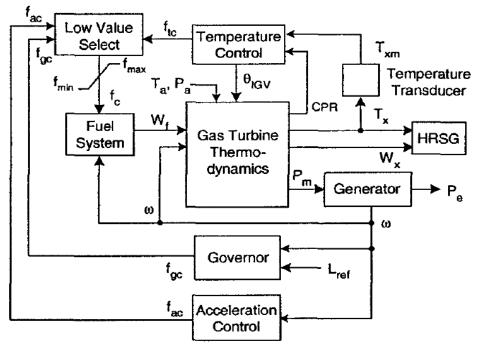
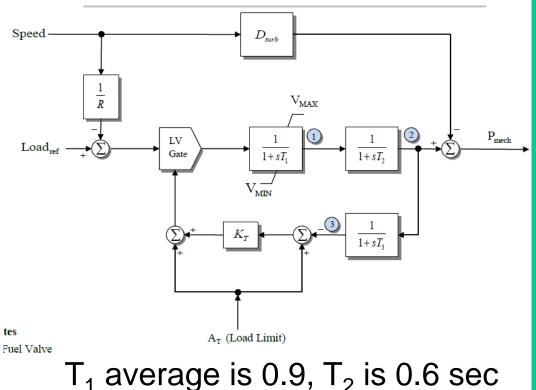



Image Source: Sydney Niemeyer, NRG, 2/9/10 presentation to Texas Regional Entity (part of ERCOT)

Gas Turbines

- A gas turbine (usually using natural gas) has a compressor, a combustion chamber and then a turbine
- The below figure gives an overview of the modeling



HRSG is the heat recovery steam generator (if it is a combined cycle unit)

Figure 3-3: Gas turbine controls [17] (IEEE© 2001).

GAST Model

• Quite detailed gas turbine models exist; we'll just consider the simplest, which is still used some (10% in EI)

It is somewhat similar to the TGOV1. T_1 is for the fuel value, T_2 is for the turbine, and T_3 is for the load limit response based on the ambient temperature (At); T_3 is the delay in measuring the exhaust temperature

Play-in (Playback) Models

• Often time in system simulations there is a desire to test the response of units (or larger parts of the simulation) to particular changes in voltage or frequency

- These values may come from an actual system event

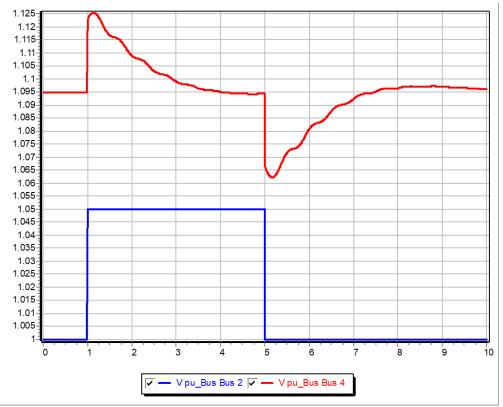
- "Play-in" or playback models can be used to vary an infinite bus voltage magnitude and frequency, with data specified in a file
- PowerWorld allows both the use of files (for say recorded data) or auto-generated data
 - Machine type GENCLS_PLAYBACK can play back a file
 - Machine type InfiniteBusSignalGen can auto-generate a signal

PowerWorld Infinite Bus Signal Generation

• Below dialog shows some options for auto-generation of voltage magnitude and frequency variations

Senerator Information for Current Case										
Bus Number	E Find By Number) Open					
Bus Name	Bus 2	Bus 2 Find By Name			Closed					
ID	1	1 Find			Energized					
Area Name	Home (1) (O'line)									
Labels	no labe	ls		Fue	el Type	Unknown	-			
	Generat	or MVA Base	Uni	t Type	UN (Unknor	wn) 🔻				
Power and Voltage Control Costs OPF Faults Owners, Area, etc. Custom Stability										
Machine Models Exciters Governors Stabilizers Other Models Step-up Transformer Terminal and State										
Insert Delete Gen MVA Base 100.0 Show Block Diagram Create VCurve										
Type Active - InfiniteBusSignalGe V Active (only one may be active) Set to Defaults										
Parameters										
PU values shown/entered using device base of 100.0 MVA 🔻										
D	oRamp	0 🚔	Speed Delta(Hz) 2	0.0000 🌲	Volt	Freq(Hz) 4	0.0000			
Start Tin	ne, Sec	1.0000 🚔	Speed Freq(Hz) 2	0.0000 🌲	Speed [Delta(Hz) 4	0.0000			
Volt Delta	a(PU) 1	0.0500 🌲	Duration (Sec) 2	4.0000 🌲	Speed	Freq(Hz) 4	0.0000			
Volt Free	q (Hz) 1	0.0000 🚔	Volt Delta(PU) 3	0.0000 🌲	Durat	ion (Sec) 4	0.0000			
Speed Delt	a(Hz) 1	0.0000 🚔	Volt Freq(Hz) 3	0.0000 🌲	Volt [Delta(PU) 5	0.0000			
Speed Free	q (Hz) 1	0.0000 🊔	Speed Delta(Hz) 3	0.0000 🌲	Volt	Freq(Hz) 5	0.0000			
Duration	(Sec) 1	4.0000 🚔	Speed Freq(Hz) 3	0.0000 🌲	Speed [Delta(Hz) 5	0.0000 🚔			
Volt Delta	a(PU) 2	-0.0500	Duration (Sec) 3	0.0000 🚔	Speed	Freq(Hz) 5	0.0000 🚔			
Volt Free	q (Hz) 2	0.0000 🚔	Volt Delta(PU) 4	0.0000 🚔	Durat	ion (Sec) 5	0.0000 🚔			
Cancel										

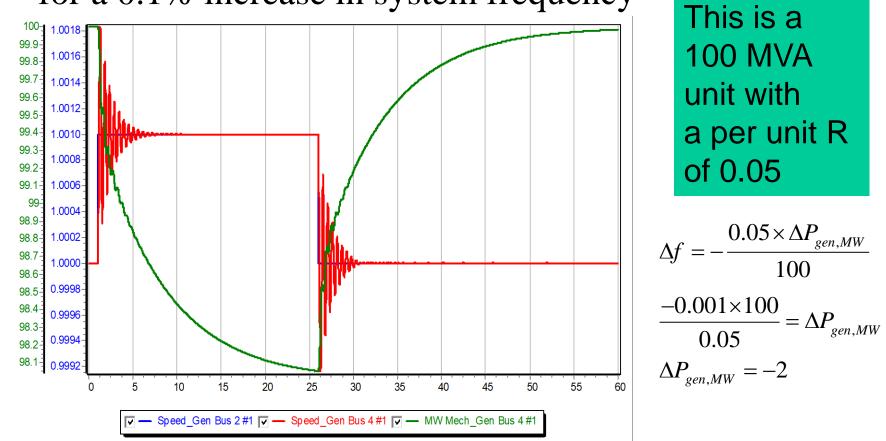
Start Time tells when to start; values are then defined for up to five separate time periods


Volt Delta is the magnitude of the pu voltage deviation; **Volt Freq** is the frequency of the voltage deviation in Hz (zero for dc)

Speed Delta is the magnitude of the frequency deviation in Hz; **Speed Freq** is the frequency of the frequency deviation

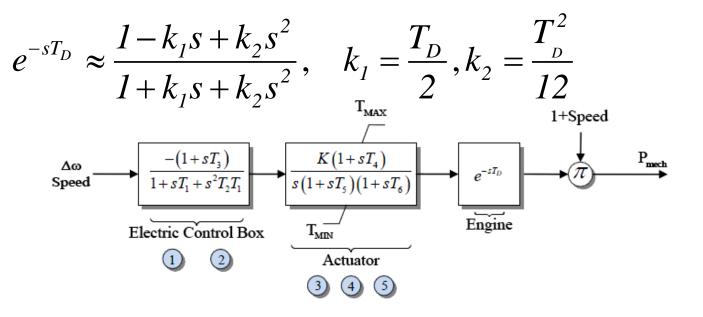
Duration is the time in seconds for the time period

Example: Step Change in Voltage Magnitude


- A]M
- Below graph shows the voltage response for the four bus system for a change in the infinite bus voltage

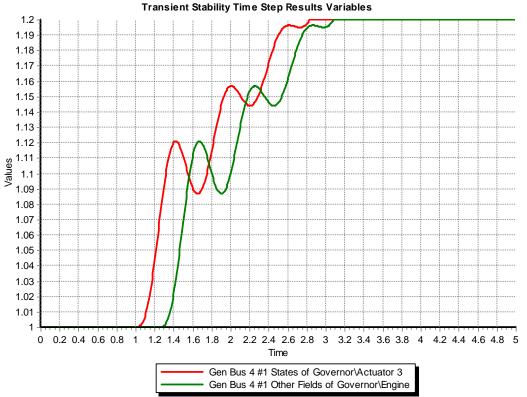
Case name: B4_SignalGen_Voltage

Example: Step Change Frequency Response

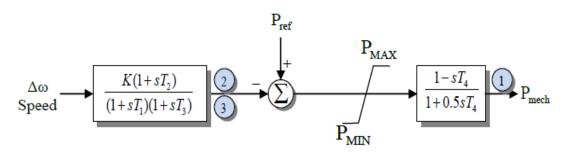

• Graph shows response in generator 4 output and speed for a 0.1% increase in system frequency

Case name: B4_SignalGen_Freq

Simple Diesel Model: DEGOV

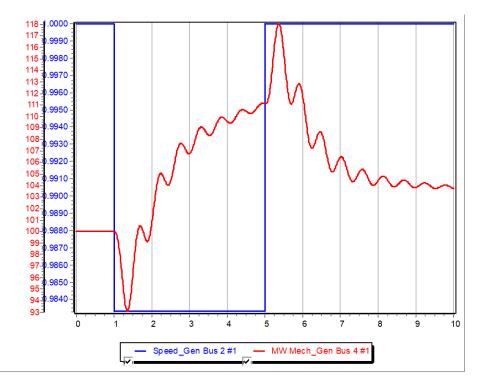

- A]M
- Sometimes models implement time delays (DEGOV)
 Often delay values are set to zero
- Delays can be implemented either by saving the input value or by using a Pade approximation, with a 2nd order given below; a 4th order is also common

DEGOV Delay Approximation



• With T_D set to 0.5 seconds (which is longer than the normal of about 0.05 seconds in order to illustrate the delay)

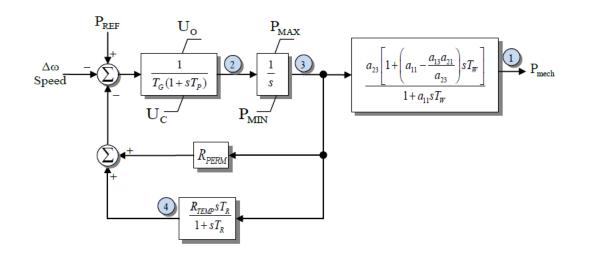
Hydro Units


- Hydro units tend to respond slower than steam and gas units; since early transient stability studies focused on just a few seconds (first or second swing instability), detailed hydro units were not used
 - The original IEEEG2 and IEEEG3 models just gave the linear response; now considered obsolete
- Below is the IEEEG2; left side is the governor, right side is the turbine and water column

For sudden changes there is actually an inverse change in the output power

Four Bus with an IEEEG2

• Graph below shows the mechanical power output of gen 2 for a unit step decrease in the infinite bus frequency; note the power initially goes down!



This is caused by a transient decrease in the water pressure when the valve is opened to increase the water flow; flows does not change instantaneously because of the water's inertia.

Case name: B4_SignalGen_IEEEG2

IEEEG3

- This model has a more detailed governor model, but the same linearized turbine/water column model
- Because of the initial inverse power change, for fast deviations the droop value is transiently set to a larger value (resulting in less of a power change)

WECC had about 10% of their governors modeled with IEEEG3s

Washout Filters

• A washout filter is a high pass filter that removes the steady-state response (i.e., it "washes it out") while passing the high frequency response

$$\frac{sT_w}{1+sT_w}$$

• They are commonly used with hydro governors and (as we shall see) with power system stabilizers

- In IEEE G3 at high frequencies R_{TEMP} dominates

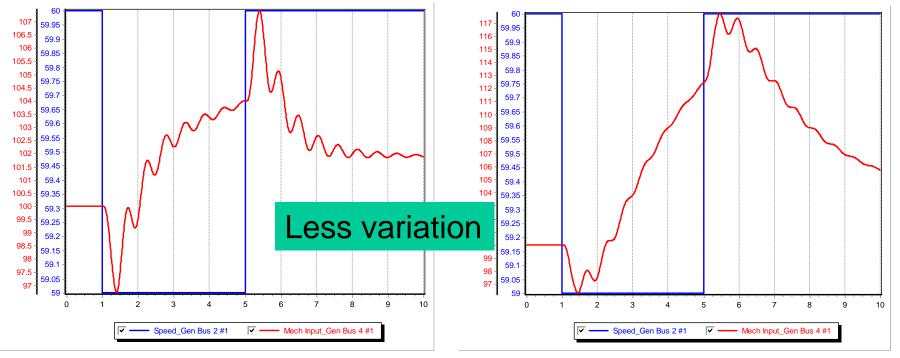
• With hydro turbines ballpark values for T_w are around one or two seconds

Tuning Hydro Transient Droop

 As given in equations 9.41 and 9.42 from Kundar (1994) the transient droop should be tuned so

$$R_{TEMP} = (2.3 - (T_W - 1) \times 0.15) \frac{T_W}{T_M}$$

$$T_R = (5.0 - (T_W - 1) \times 0.5) T_W$$


where $T_M = 2H$ (called the mechanical starting time)

In comparing an average H is about 4 seconds, so T_M is 8 seconds, an average T_W is about 1.3, giving an calculated average R_{TEMP} of 0.37 and T_R of 6.3; the actual averages in a WECC case are 0.46 and 6.15. So on average this is pretty good! R_{perm} is 0.05

Source: 9.2, Kundur, Power System Stability and Control, 1994

IEEEG3 Four Bus Frequency Change

• The two graphs compare the case response for the frequency change with different R_{temp} values

Rtemp = 0.5, Rperm = 0.05

Rtemp = 0.05, Rperm = 0.05

Case name: B4_SignalGen_IEEEG3

A M

- Basic hydro system is shown below
 - Hydro turbines work be converting the kinetic energy in the water into mechanical energy
 - assumes the water is incompressible
- At the gate assume a velocity of U, a cross-sectional penstock area of A; then the volume flow is A*U=Q;

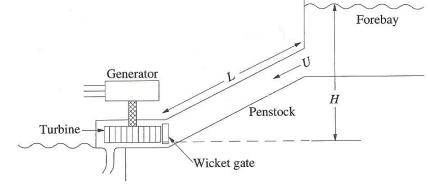


Figure 9.2 Schematic of a hydroelectric plant

• From Newton's law the change in the flow volume Q

$$\rho L \frac{dQ}{dt} = F_{net} = A \rho g \left(H - H_{gate} - H_{loss} \right)$$

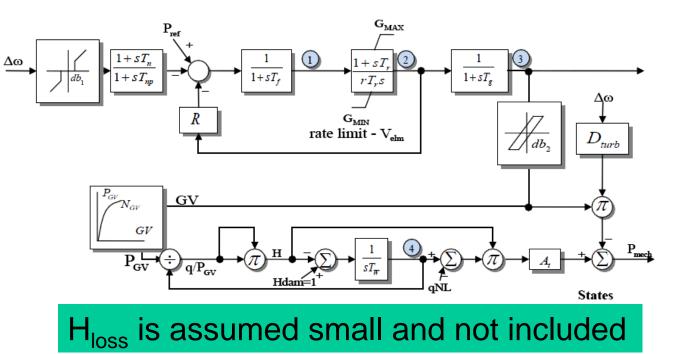
where ρ is the water density, g is the gravitational constant, H is the static head (at the drop of the reservoir) and H_{gate} is the head at the gate (which will change as the gate position is changed) and H_{loss} is the head loss due to friction in the penstock

• As per [a] paper, this equation is normalized to

$$\frac{dq}{dt} = \frac{\left(1 - h_{gate} - h_{loss}\right)}{T_{W}}$$

 T_W is called the water time constant, or water starting time

- With h_{base} the static head, q_{base} the flow when the gate is fully open, an interpretation of T_w is the time (in seconds) taken for the flow to go from stand-still to full flow if the total head is h_{base}
- If included, the head losses, h_{loss}, vary with the square of the flow
- The flow is assumed to vary as linearly with the gate position (denoted by c)


$$q = c\sqrt{h} \text{ or } h = \left(\frac{q}{c}\right)^2$$

- Power developed is proportional to flow rate times the head, with a term q_{nl} added to model the fixed turbine (no load) losses
 - The term At is used to change the per unit scaling to that of the electric generator

$$P_m = A_t h (q - q_{nl})$$

Model HYGOV

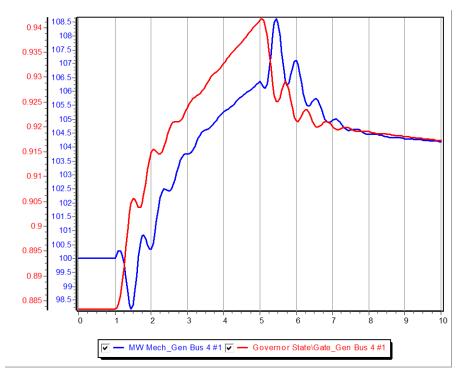
• This simple model, combined with a governor, is implemented in HYGOV

About 10% of WECC governors use this model; average T_W is 2 seconds

The gate position (gv) to gate power (pgv) is sometimes represented with a nonlinear curve

Linearized Model Derivation

 The previously mentioned linearized model can now be derived as


$$\frac{dq}{dt} = \frac{\left(1 - h(c)_{gate}\right)}{T_W}$$

$$\frac{d\Delta q}{dt} = -\frac{\Delta h(c)_{gate}}{T_W} \to \Delta q = \frac{\partial q}{\partial c} \Delta c + \frac{\partial q}{\partial h} \Delta h$$
And for the linearized power
$$\Delta P_m = \frac{\partial P_m}{\partial t} \Delta h + \frac{\partial P_m}{\partial t} \Delta q$$

$$\Delta P_{m} = \frac{\partial P_{m}}{\partial h} \Delta h + \frac{\partial P_{m}}{\partial q} \Delta q$$

Then $\frac{\Delta P_{m}}{\Delta c} = \frac{\left[\frac{\partial q}{\partial c} \frac{\partial P_{m}}{\partial q} - sT_{w} \frac{\partial P_{m}}{\partial h} \frac{\partial q}{\partial c}\right]}{1 + sT_{w} \frac{\partial q}{\partial h}}$

Four Bus Case with HYGOV

- A M
- The below graph plots the gate position and the power output for the bus 2 signal generator decreasing the speed then increasing it

Note that just like in the linearized model, opening the gate initially decreases the power output

Case name: B4_SignalGen_HYGOV

PID Controllers

- Governors and exciters often use proportional-integralderivative (PID) controllers
 - Developed in 1890's for automatic ship steering by observing the behavior of experienced helmsman
- PIDs combine
 - Proportional gain, which produces an output value that is proportional to the current error
 - Integral gain, which produces an output value that varies with the integral of the error, eventually driving the error to zero
 - Derivative gain, which acts to predict the system behavior.
 This can enhance system stability, but it can be quite susceptible to noise

PID Controller Characteristics

Four key characteristics of control response are
1) rise time, 2) overshoot,
3) settling time and
4) steady-state errors

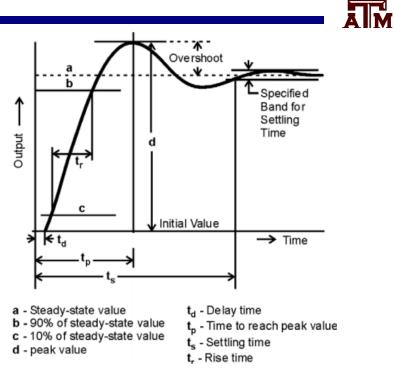


Figure F.1—Typical dynamic response of a turbine governing system to a step change

Increasing Gain	Rise Time	Overshoot	Setting Time	Steady-State Error
K _p	Decreases	Increases	Little impact	Decreases
K _I	Decreases	Increases	Increases	Zero
K _D	Little impact	Decreases	Decreases	Little Impact