## ECEN 667 Power System Stability

### **Lecture 16: Transient Stability Solutions**

### Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, <u>overbye@tamu.edu</u>



### Announcements

A M

- Read Chapter 7
- Homework 5 is assigned today, due on Oct 31

### **Adding Network Equations**

- Previous slides with the network equations embedded in the differential equations were a special case
- In general with the explicit approach we'll be alternating between solving the differential equations and solving the algebraic equations
- Voltages and currents in the network reference frame can be expressed using either polar or rectangular coordinates
- In rectangular with the book's notation we have

$$\overline{V_i} = V_{Di} + jV_{Qi}, \quad \overline{I_i} = I_{Di} + jI_{Qi}$$

### **Adding Network Equations**

- **I**M
- Network equations will be written as  $\mathbf{Y} \mathbf{V} \mathbf{I}(\mathbf{x}, \mathbf{V}) = \mathbf{0}$ 
  - Here Y is as from the power flow, except augmented to include the impact of the generator's internal impedance
  - Constant impedance loads are also embedded in Y; nonconstant impedance loads are included in I(x,V)
- If **I** is independent of **V** then this can be solved directly:  $\mathbf{V} = \mathbf{Y}^{-1}\mathbf{I}(\mathbf{x})$
- In general an iterative solution is required, which we'll cover shortly, but initially we'll go with just the direct solution

### Two Bus Example, Except with No Infinite Bus

• To introduce the inclusion of the network equations, the previous example is extended by replacing the infinite bus at bus 2 with a classical model with  $X_{d2}$ '=0.2,  $H_2$ =6.0



PowerWorld Case B2\_CLS\_2Gen

### **Bus Admittance Matrix**



• The network admittance matrix is

$$\mathbf{Y}_{N} = \begin{bmatrix} -j4.545 & j4.545 \\ j4.545 & -j4.545 \end{bmatrix}$$

- This is augmented to represent the Norton admittances associated with the generator models (X<sub>d1</sub>'=0.3, X<sub>d2</sub>'=0.2)  $\mathbf{Y} = \mathbf{Y}_{N} + \begin{bmatrix} \frac{1}{j0.3} & 0\\ 0 & \frac{1}{j0.2} \end{bmatrix} = \begin{bmatrix} -j7.879 & j4.545\\ j4.545 & -j9.545 \end{bmatrix}$
- In PowerWorld you can see this matrix by selecting Transient Stability, States/Manual Control, Transient Stability Ybus

### **Current Vector**

• For the classical model the Norton currents are given by

- The initial values of the currents come from the power flow solution
- As the states change ( $\delta_i$  for the classical model), the Norton current injections also change

### **B2\_CLS\_Gen Initial Values**



- The internal voltage for generator 1 is as before  $\bar{I} = 1 - j0.3286$  0.4179 radians $\bar{E}_1 = 1.0 + (j0.22 + j0.3)\bar{I} = 1.1709 + j0.52 = 1.281 \angle 23.95^\circ$
- We likewise solve for the generator 2 internal voltage  $\overline{E}_2 = 1.0 - (j0.2)\overline{I} = 0.9343 - j0.2 = 0.9554 \angle -12.08$
- The Norton current injections are then 0.2108 radians

$$\overline{I}_{N1} = \frac{1.1709 + j0.52}{j0.3} = 1.733 - j3.903$$
  
$$\overline{I}_{N2} = \frac{0.9343 - j0.2}{j0.2} = -1 - j4.6714$$

Keep in mind the Norton current injections are not the current out of the generator

### **B2\_CLS\_Gen Initial Values**



• To check the values, solve for the voltages, with the values matching the power flow values

$$\mathbf{V} = \begin{bmatrix} -j7.879 & j4.545 \\ j4.545 & -j9.545 \end{bmatrix}^{-1} \begin{bmatrix} 1.733 - j3.903 \\ -1 - j4.671 \end{bmatrix}$$
$$= \begin{bmatrix} 1.072 + j0.22 \\ 1.0 \end{bmatrix}$$

## **Swing Equations**

• With the network constraints modeled, the swing equations are modified to represent the electrical power in terms of the generator's state and current values

 $\mathbf{P}_{Ei} = E_{Di} I_{Di} + E_{Qi} I_{Qi}$ 

 $\frac{d\delta_i}{dt} = \Delta\omega_{i.pu}\omega_s$ 

• Then swing equation is then

I<sub>Di</sub>+jI<sub>Qi</sub> is the current being injected into the network by the generator

$$\frac{d\Delta\omega_{i,pu}}{dt} = \frac{1}{2H_i} \left( P_{Mi} - \left( E_{Di}I_{Di} + E_{Qi}I_{Qi} \right) - D_i \left( \Delta\omega_{i,pu} \right) \right)$$

### Two Bus, Two Generator Differential Equations



• The differential equations for the two generators are

$$\frac{d\delta_{I}}{dt} = \Delta \omega_{I.pu} \omega_{s}$$

$$\frac{d\Delta \omega_{I.pu}}{dt} = \frac{1}{2H_{I}} \left( P_{MI} - \left( E_{DI}I_{DI} + E_{QI}I_{QI} \right) \right)$$
In this example
$$\frac{d\delta_{2}}{dt} = \Delta \omega_{2.pu} \omega_{s}$$

$$\frac{d\Delta \omega_{2.pu}}{dt} = \frac{1}{2H_{2}} \left( P_{M2} - \left( E_{D2}I_{D2} + E_{Q2}I_{Q2} \right) \right)$$

### **PowerWorld GENCLS Initial States**

| U T 🙄 🐻 👯 📙 🛛                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Transient Stabili                      | ty Analysis - Case: B2_CLS_2 |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------|
| File Case Informatio                                                   | Draw Onelines Tools Options Add Ons Window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                              |
| Edit Mode<br>Run Mode<br>Run Mode                                      | Primal LP       Image: COPF       OPF Case       OPF Options and Results       Image: Cope Case       OPF Options and Results       PV       QV       Refine Model       Image: Cope Case       Image: Cope Case | Stability<br>Case Info + A             | heduled Topolog<br>Processin |
| Mode Log                                                               | Optimal Power Flow (OPF) PV and QV Curves (PVQV) ATC Transient St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ability (TS) GIC So                    | chedule Topology Proces      |
| Simulation Status Initialized                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                              |
| Run Transient Stability Pa                                             | Abort Restore Reference For Contingency: Find My Transient Contingency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~                                      |                              |
| Select Step                                                            | States/Manual Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                              |
| > Simulation                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                              |
| > · Options                                                            | Reset to Start Time Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ansfer Present State to Power          | Flow Save Case in P          |
| <ul> <li>Result Storage</li> <li>Plots</li> </ul>                      | Run Until Specified Time 0.000000 Run Until Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | estore Reference Power Flow M          | Iodel                        |
| <ul> <li>Results from RAM</li> <li>Transient Limit Monitors</li> </ul> | Do Specified Number of Timestep(s) 1 Number of Timesteps to Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Save Time Snapshot                     |                              |
| ✓ · States/Manual Control                                              | All States State Limit Violations Generators Buses Transient Stability YBus GIC GMatrix T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wo Bus Equivalents Detailed P          | Performance Results          |
| → All States                                                           | 📴 🛅 部本 沈 🕫 🦛 🌺 Records - Set - Columns - 📴 - 🏙 - 🏙 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ኛ ∰ ▼ SORT<br>124<br>ABED f(x) ▼ 🌐   O | ptions 👻                     |
| Generators                                                             | Model Class Model Type Object Name At Limit State Ignored State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Name Value De                          | rivative Delta X K1          |
| ···· Buses                                                             | 1 Gen Synch. Ma TXGENCLS 1 (Bus 1) #1 NO Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.4179                                 | 0.0000000 0.0000000          |
| ···· Transient Stability YBus                                          | 2 Gen Synch. Ma TXGENCLS 1 (Bus 1) #1 NO Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w 0.0000                               | 0.0000000 0.0000000          |
| ···· GIC GMatrix                                                       | 3 Gen Synch. Ma TXGENCLS 2 (Bus 2) #1 NO Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.2109                                | 0.0000000 0.0000000          |
| ···· Two Bus Equivalents                                               | 4 Gen Synch. Ma TXGENCLS 2 (Bus 2) #1 NO Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w 0.0000                               | 0.0000000 0.0000000          |
| Detailed Performance R                                                 | st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                              |
| > Validation                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                              |

----

\*\*\* 🧰 🖂 🥅

ĀМ

### Solution at t=0.02



- Usually a time step begins by solving the differential equations. However, in the case of an event, such as the solid fault at the terminal of bus 1, the network equations need to be first solved
- Solid faults can be simulated by adding a large shunt at the fault location
  - Amount is somewhat arbitrary, it just needs to be large enough to drive the faulted bus voltage to zero
- With Euler's the solution after the first time step is found by first solving the differential equations, then resolving the network equations

### Solution at t=0.02



• Using  $Y_{fault} = -j1000$ , the fault-on conditions become

$$\mathbf{V} = \begin{bmatrix} -j1007.879 & j4.545 \\ j4.545 & -j9.545 \end{bmatrix}^{-1} \begin{bmatrix} 1.733 - j3.903 \\ -1 - j4.671 \end{bmatrix}$$
$$= \begin{bmatrix} -0.006 - j0.001 \\ 0.486 - j0.1053 \end{bmatrix}$$

Solving for the currents into the network

$$I_{1} = \frac{\left(1.1702 + j0.52\right) - V_{1}}{j0.3} = 1.733 - j3.900$$
$$I_{2} = \frac{\left(0.9343 - j0.2\right) - \left(0.486 - j0.1053\right)}{j0.2} = -0.473 - j2.240$$

### Solution at t=0.02



— These impact the calculation of  $P_{Ei}$  with  $P_{E1}=0$ ,  $P_{E2}=0$ 

$$\begin{bmatrix} \delta_{1}(0.02) \\ \Delta \omega_{1}(0.02) \\ \delta_{2}(0.02) \\ \Delta \omega_{1}(0.02) \end{bmatrix} = \begin{bmatrix} 0.418 \\ 0.0 \\ -0.211 \\ 0 \end{bmatrix} + 0.02 \begin{bmatrix} 0 \\ \frac{1}{6}(1-0) \\ 0 \\ \frac{1}{12}(-1-0) \end{bmatrix} = \begin{bmatrix} 0.418 \\ 0.00333 \\ -0.211 \\ -0.00167 \end{bmatrix}$$

 If solving with Euler's this is the final state value; using these state values the network equations are resolved, with the solution the same here since the δ's didn't vary

### **PowerWorld GENCLS** at t=0.02

| 💽 🍡 - 🁺 퉵 🛱 🚊 🚟 🗮 🛞 💥 - = 🛛 Transient Stability Analysis - Case: B2_CLS_2Gen.pwb Status: Running (PF)   Simulator 20 |                                                                                |                                             |                                        |                                |  |  |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|--------------------------------|--|--|
| File Case Information                                                                                                | Draw Onelines Tools Options Add Ons Wi                                         | indow                                       |                                        |                                |  |  |
| Edit Mode Script + SCOPF                                                                                             | LP I Refine Model                                                              | ATC Transient Stabili<br>Stability Case Inf | ty GIC Scheduled<br>Actions            | <u>T</u> opology<br>Processing |  |  |
| Mode Log                                                                                                             | Optimal Power Flow (OPF) PV and QV Curves (PVQV)                               | ATC Transient Stability (T                  | S) GIC Schedule                        | Topology Processing            |  |  |
| Simulation Status Paused at 0.020000                                                                                 | 0                                                                              |                                             |                                        |                                |  |  |
| Run Transient Stability Continue<br>Select Step                                                                      | Abort Restore Reference For Contingency: Find My Tran<br>States/Manual Control | nsient Contingency V                        |                                        |                                |  |  |
| Simulation     Options     Result Storage                                                                            | Reset to Start Time                                                            | Transfer P                                  | resent State to Power Flow             | Save Case in PWX F             |  |  |
| > · Plots                                                                                                            | Run Until Specified Time 0.000000                                              | ntil Time Restore R                         | eference Power Flow Model              |                                |  |  |
| > ·Results from RAM<br>> ·Transient Limit Monitors                                                                   | Do Specified Number of Timestep(s)                                             | Timesteps to Do Si                          | ave Time Snapshot                      |                                |  |  |
| ✓ States/Manual Control                                                                                              | All States State Limit Violations Generators Buses Transient Sta               | ability YBus GIC GMatrix Two Bus B          | quivalents Detailed Performance        | e Results                      |  |  |
| All States<br>> · State Limit Violations                                                                             | 📴 🛅 計卡 🎲 🕫   🆓 🌺 🥀 Records - Set - Colum                                       | nns - 📴 - 🎬 - 👹 - 🎓 🗮 -                     | SORT<br>III<br>ABED f(x) ▼ ⊞ Options ▼ |                                |  |  |
| ···· Generators                                                                                                      | Model Class Model Type Object Name At Limit                                    | t State Ignored State Name                  | Value Derivative                       | Delta X K1                     |  |  |
| Buses                                                                                                                | 1 Gen Synch. Ma TXGENCLS 1 (Bus 1) #1                                          | NO Angle                                    | 0.4179 1.2566370                       | 0.0000000                      |  |  |
| Transient Stability YBus                                                                                             | 2 Gen Synch. Ma TXGENCLS 1 (Bus 1) #1                                          | NO Speed w                                  | 0.0033 0.1666667                       | 0.0033333                      |  |  |
| GIC GMatrix                                                                                                          | 3 Gen Synch. Ma TXGENCLS 2 (Bus 2) #1                                          | NO Angle                                    | -0.2109 -0.6283187                     | 0.0000000                      |  |  |
| Two Bus Equivalents<br>Detailed Performance Resu                                                                     | 4 Gen Synch. Ma IXGENCES 2 (BUS 2) #1                                          | NO Speed w                                  | -0.0017 -0.0833334                     | -0.0016667                     |  |  |

**A**M

### **Solution Values Using Euler's**



# • The below table gives the results using $\Delta t = 0.02$ for the beginning time steps

| Time (Sec) | Gen 1 Rotor Angle | Gen 1 Speed (Hz) | Gen 2 Rotor Angle | Gen2 Speed (Hz) |
|------------|-------------------|------------------|-------------------|-----------------|
| 0          | 23.9462           | 60               | -12.0829          | 60              |
| 0.02       | 23.9462           | 60.2             | -12.0829          | 59.9            |
| 0.04       | 25.3862           | 60.4             | -12.8029          | 59.8            |
| 0.06       | 28.2662           | 60.6             | -14.2429          | 59.7            |
| 0.08       | 32.5862           | 60.8             | -16.4029          | 59.6            |
| 0.1        | 38.3462           | 61               | -19.2829          | 59.5            |
| 0.1        | 38.3462           | 61               | -19.2829          | 59.5            |
| 0.12       | 45.5462           | 60.9128          | -22.8829          | 59.5436         |
| 0.14       | 52.1185           | 60.7966          | -26.169           | 59.6017         |
| 0.16       | 57.8541           | 60.6637          | -29.0368          | 59.6682         |
| 0.18       | 62.6325           | 60.5241          | -31.426           | 59.7379         |
| 0.2        | 66.4064           | 60.385           | -33.3129          | 59.8075         |
| 0.22       | 69.1782           | 60.2498          | -34.6988          | 59.8751         |
| 0.24       | 70.9771           | 60.1197          | -35.5982          | 59.9401         |
| 0.26       | 71.8392           | 59.9938          | -36.0292          | 60.0031         |
| 0.28       | 71.7949           | 59.8702          | -36.0071          | 60.0649         |

### Solution at t=0.02 with RK2



• With RK2 the first part of the time step is the same as Euler's, that is solving the network equations with

$$\mathbf{x}(t + \Delta t)^{(1)} = \mathbf{x}(t) + \mathbf{k}_1 = \mathbf{x}(t) + \Delta T \mathbf{f}(\mathbf{x}(t))$$

- Then calculate k2 and get a final value for  $\mathbf{x}(t+\Delta t)$   $\mathbf{k}_2 = \Delta t \mathbf{f} (\mathbf{x}(t) + \mathbf{k}_1)$  $\mathbf{x}(t+\Delta t) = \mathbf{x}(t) + \frac{1}{2} (\mathbf{k}_1 + \mathbf{k}_2)$
- Finally solve the network equations using the final value for  $\mathbf{x}(t+\Delta t)$

### Solution at t=0.02 with RK2



• From the first half of the time step

$$x(0.02)^{(1)} = \begin{bmatrix} 0.418 \\ 0.00333 \\ -0.211 \\ -0.00167 \end{bmatrix}$$
  
Then  
$$\mathbf{k}_{2} = \Delta t \ \mathbf{f} \left( \mathbf{x}(t) + \mathbf{k}_{1} \right) = 0.02 \begin{bmatrix} 1.256 \\ \frac{1}{6}(1-0) \\ -0.628 \\ \frac{1}{12}(-1-0) \end{bmatrix} = \begin{bmatrix} 0.0251 \\ 0.00333 \\ -0.0126 \\ -0.00167 \end{bmatrix}$$

### Solution at t=0.02 with RK2



• The new values for the Norton currents are

$$\begin{split} \overline{I}_{N1} &= \frac{1.281 \angle 24.69^{\circ}}{j0.3} = 1.851 - j3.880 \\ \overline{I}_{N2} &= \frac{0.9554 \angle -12.43^{\circ}}{j0.2} = -1.028 - j4.665 \\ \mathbf{V}(0.02) &= \begin{bmatrix} -j1007.879 & j4.545 \\ j4.545 & -j9.545 \end{bmatrix}^{-1} \begin{bmatrix} 1.851 - j3.880 \\ -1.028 - j4.665 \end{bmatrix} \\ &= \begin{bmatrix} -0.006 - j0.001 \\ 0.486 - j0.108 \end{bmatrix} \end{split}$$

### **Solution Values Using RK2**



# • The below table gives the results using $\Delta t = 0.02$ for the beginning time steps

| Time (Sec) | Gen 1 Rotor Angle | Gen 1 Speed (Hz) | Gen 2 Rotor Angle | Gen2 Speed (Hz) |
|------------|-------------------|------------------|-------------------|-----------------|
| 0          | 23.9462           | 60               | -12.0829          | 60              |
| 0.02       | 24.6662           | 60.2             | -12.4429          | 59.9            |
| 0.04       | 26.8262           | 60.4             | -13.5229          | 59.8            |
| 0.06       | 30.4262           | 60.6             | -15.3175          | 59.7008         |
| 0.08       | 35.4662           | 60.8             | -17.8321          | 59.6008         |
| 0.1        | 41.9462           | 61               | -21.0667          | 59.5008         |
| 0.1        | 41.9462           | 61               | -21.0667          | 59.5008         |
| 0.12       | 48.7754           | 60.8852          | -24.4759          | 59.5581         |
| 0.14       | 54.697            | 60.7538          | -27.4312          | 59.6239         |
| 0.16       | 59.6315           | 60.6153          | -29.8931          | 59.6931         |
| 0.18       | 63.558            | 60.4763          | -31.8509          | 59.7626         |
| 0.2        | 66.4888           | 60.3399          | -33.3109          | 59.8308         |
| 0.22       | 68.4501           | 60.2071          | -34.286           | 59.8972         |
| 0.24       | 69.4669           | 60.077           | -34.789           | 59.9623         |
| 0.26       | 69.5548           | 59.9481          | -34.8275          | 60.0267         |
| 0.28       | 68.7151           | 59.8183          | -34.4022          | 60.0916         |

## **Angle Reference**

- The initial angles are given by the angles from the power flow, which are based on the slack bus's angle
- As presented the transient stability angles are with respect to a synchronous reference frame
  - Sometimes this is fine, such as for either shorter studies, or ones in which there is little speed variation
  - Oftentimes this is not best since the when the frequencies are not nominal, the angles shift from the reference frame
- Other reference frames can be used, such as with respect to a particular generator's value, which mimics the power flow approach; the selected reference has no impact on the solution



### **Subtransient Models**

- The Norton current injection approach is what is commonly used with subtransient models in industry
- If subtransient saliency is neglected (as is the case with GENROU and GENSAL in which X"<sub>d</sub>=X"<sub>q</sub>) then the current injection is

 Subtransient saliency can be handled with this approach, but it is more involved (see Arrillaga, *Computer Analysis of Power Systems*, section 6.6.3)

### **Subtransient Models**

- Note, the values here are on the dq reference frame
- We can now extend the approach introduced for the classical machine model to subtransient models
- Initialization is as before, which gives the  $\delta$ 's and other state values
- Each time step is as before, except we use the δ's for each generator to transfer values between the network reference frame and each machine's dq reference frame

- The currents provide the coupling

### Two Bus Example with Two GENROU Machine Models

- Use the same system as before, except with we'll model both generators using GENROUs
  - For simplicity we'll make both generators identical except set  $H_1=3, H_2=6$ ; other values are  $X_d=2.1, X_q=0.5, X'_d=0.2, X'_q=0.5, X''_q=X''_d=0.18, X_1=0.15, T'_{do} = 7.0, T'_{qo}=0.75, T''_{do}=0.035, T''_{qo}=0.05$ ; no saturation
  - With no saturation the value of the  $\delta$ 's are determined (as per Lecture 11) by solving

$$|E| \angle \delta = \overline{V} + (R_s + jX_q)\overline{I}$$

- Hence for generator 1

 $|E_1| \angle \delta_1 = 1.0946 \angle 11.59^\circ + (j0.5)(1.052 \angle -18.2^\circ) = 1.431 \angle 30.2^\circ$ 

### **GENROU Block Diagram**



A M

### **Two Bus Example with Two GENROU Machine Models**



• Using the approach from Lecture 11 the initial state

vector is

| ctor 1s           | $\delta_{I}$                    |   | 0.5273  |  |
|-------------------|---------------------------------|---|---------|--|
|                   | $\Delta \omega_l$               |   | 0.0     |  |
|                   | $E_{q1}^{\prime}$               |   | 1.1948  |  |
|                   | $\psi_{_{1d1}}$                 |   | 1.1554  |  |
|                   | $\psi_{2q1}$                    |   | 0.2446  |  |
| $\mathbf{v}(0) -$ | $E'_{d1}$                       |   | 0       |  |
| $\mathbf{X}(0) =$ | $\delta_{_2}$                   | _ | -0.5392 |  |
|                   | $\Delta \omega_2$               |   | 0       |  |
|                   | $E_{q2}^{\prime}$               |   | 0.9044  |  |
|                   | $\psi_{_{1d2}}$                 |   | 0.8928  |  |
|                   | $\psi_{\scriptscriptstyle 2q2}$ |   | -0.3594 |  |
|                   | $E'_{d2}$                       |   | 0       |  |

Note that this is a salient pole machine with  $X'_a = X_a$ ; hence  $E'_d$ will always be zero

The initial currents in the dq reference frame are I<sub>d1</sub>=0.7872, I<sub>a1</sub>=0.6988, I<sub>d2</sub>=0.2314, I<sub>a2</sub>=-1.0269

Initial values of  $\psi''_{a1}$ = -0.2236, and  $\psi''_{d1} = 1.179$ 

### **PowerWorld GENROU Initial States**

📲 - 🎬 🌆 👯 📓 🖩 😣 🚟

### AM

Transient Stability Analysis - Case: B2\_GENROU\_2(

#### File Case Information Add Ons Window Draw Onelines Tools Options ₩r × Abort 췕 Edit Mode Primal LP [ Log Refine Model **OPF Options** OPF Case PV.... QV... ATC .... Transient Stability GIC.... Scheduled Topology Run Mode SCOPF... Script Info \* and Results... Stability... Case Info 1 Actions... Processing Optimal Power Flow (OPF) PV and OV Curves (PVOV) ATC Transient Stability (TS) Mode Loa GIC Schedule Topology Process Simulation Status Initialized Run Transient Stability Pause Abort Restore Reference For Contingency: Find My Transient Contingency $\sim$ Select Step States/Manual Control > · Simulation Reset to Start Time > · Options Transfer Present State to Power Flow Save Case in Pl > · Result Storage 0.000000 🚔 Run Until Time Run Until Specified Time Restore Reference Power Flow Model > · Plots Results from RAM 1 Do Specified Number of Timestep(s) Number of Timesteps to Do Save Time Snapshot > Transient Limit Monitors ✓ · States/Manual Control All States State Limit Violations Generators Buses Transient Stability YBus GIC GMatrix Two Bus Equivalents Detailed Performance Results All States # \*\* \*\*\* \*\*\* #\* #\* Records - Set - Columns - 🔤 -AUXB -AUXB 🚽 ₩ • \$08T 1345 f(x) • ₩ Options - State Limit Violations ς. Generators Model Class Delta X K1 Model Type Object Name At Limit State Ignored State Name Value Derivative Buses Gen Synch. Ma GENROU 1 (Bus 1) #1 NO Angle 0.5272 0.0000000 0.0000000 Transient Stability YBus 2 Gen Synch. Ma GENROU 1 (Bus 1) #1 NO Speed w 0.0000 0.0000000 0.0000000 GIC GMatrix Gen Synch. Ma GENROU 1 (Bus 1) #1 NO Eqp 1.1948 0.0000000 0.0000000 4 Gen Synch. Ma GENROU 1 (Bus 1) #1 NO PsiDp 1.1554 0.0000000 0.0000000 Two Bus Equivalents 5 Gen Synch. Ma GENROU 1 (Bus 1) #1 NO PsiQpp 0.2446 0.0000000 0.0000000 Detailed Performance Resul 6 Gen Synch. Ma GENROU 1 (Bus 1) #1 NO Edp 0.0000 0.0000000 0.0000000 Validation 5 7 Gen Synch. Ma GENROU 2 (Bus 2) #1 NO Angle -0.53920.0000000 0.0000000 SMIB Eigenvalues 8 Gen Synch. Ma GENROU 2 (Bus 2) #1 NO Speed w 0.0000 0.0000000 0.0000000 Modal Analysis > 9 Gen Synch. Ma GENROU 2 (Bus 2) #1 NO Eqp 0.9044 0.0000000 0.0000000 ..... Dynamic Simulator Options 10 Gen Synch. Ma GENROU 2 (Bus 2) #1 NO PsiDp 0.8928 0.0000000 0.0000000 11 Gen Synch. Ma GENROU 2 (Bus 2) #1 NO PsiQpp -0.3594 0.0000000 0.0000000 12 Gen Synch. Ma GENROU 2 (Bus 2) #1 NO 0.0000 0.0000000 0.0000000 Edp

## **Solving with Euler's**



 We'll again solve with Euler's, except with ∆t set now to 0.01 seconds (because now we have a subtransient model with faster dynamics)

- We'll also clear the fault at t=0.05 seconds

• For the more accurate subtransient models the swing equation is written in terms of the torques

$$\frac{d\delta_i}{dt} = \omega_i - \omega_s = \Delta\omega_i$$

$$\frac{2H_i}{\omega_s} \frac{d\omega_i}{dt} = \frac{2H_i}{\omega_s} \frac{d\Delta\omega_i}{dt} = T_{Mi} - T_{Ei} - D_i \left(\Delta\omega_i\right)$$
with  $T_{Ei} = \psi_{d,i}'' i_{qi} - \psi_{q,i}'' i_{di}$ 

Other equations are solved based upon the block diagram

### Norton Equivalent Current Injections

- A]M
- The initial Norton equivalent current injections on the dq base for each machine are

 $I_{Nd1} + jI_{Nq1} = \frac{\left(-\psi_{q1}'' + j\psi_{d1}''\right)\omega_1}{jX_1''} = \frac{\left(-0.2236 + j1.179\right)(1.0)}{j0.18}$ = 6.55 + i1.242Recall the dq values  $I_{ND1} + jI_{NO1} = 2.222 - j6.286$ are on the machine's reference frame and  $I_{Nd2} + jI_{Na2} = 4.999 + j1.826$ the DQ values are on  $I_{ND2} + jI_{NO2} = -1 - j5.227$ the system reference frame

#### 31

### Moving between DQ and dq



$$\begin{bmatrix} I_{di} \\ I_{qi} \end{bmatrix} = \begin{bmatrix} \sin \delta & -\cos \delta \\ \cos \delta & \sin \delta \end{bmatrix} \begin{bmatrix} I_{Di} \\ I_{Qi} \end{bmatrix}$$

#### • And

$$\begin{bmatrix} I_{Di} \\ I_{Qi} \end{bmatrix} = \begin{bmatrix} \sin \delta & \cos \delta \\ -\cos \delta & \sin \delta \end{bmatrix} \begin{bmatrix} I_{di} \\ I_{qi} \end{bmatrix}$$

The currents provide the key coupling between the two reference frames



### **Bus Admittance Matrix**



• The bus admittance matrix is as from before for the classical models, except the diagonal elements are augmented using

$$Y_{i} = \frac{1}{R_{s,i} + jX_{d,i}''}$$
$$Y = Y_{N} + \begin{bmatrix} \frac{1}{j0.18} & 0\\ 0 & \frac{1}{j0.18} \end{bmatrix} = \begin{bmatrix} -j10.101 & j4.545\\ j4.545 & -j10.101 \end{bmatrix}$$

1

### **Algebraic Solution Verification**



• To check the values solve (in the network reference frame)

$$\mathbf{V} = \begin{bmatrix} -j10.101 & j4.545 \\ j4.545 & -j10.101 \end{bmatrix}^{-1} \begin{bmatrix} 2.222 - j6.286 \\ -1 - j5.227 \end{bmatrix}$$
$$= \begin{bmatrix} 1.072 + j0.22 \\ 1.0 \end{bmatrix}$$

### Results

• The below graph shows the results for four seconds of simulation, using Euler's with  $\Delta t$ =0.01 seconds



PowerWorld case is B2\_GENROU\_2GEN\_EULER

### **Results for Longer Time**



 Simulating out 10 seconds indicates an unstable solution, both using Euler's and RK2 with ∆t=0.005, so it is really unstable!



Euler's with  $\Delta t$ =0.01

RK2 with  $\Delta t=0.005$ 

## **Adding More Models**



- In this situation the case is unstable because we have not modeled exciters
- To each generator add an EXST1 with  $T_R=0$ ,  $T_C=T_B=0$ ,  $K_f=0$ ,  $K_A=100$ ,  $T_A=0.1$



- This just adds one differential equation per generator

$$\frac{dE_{FD}}{dt} = \frac{1}{T_A} \left( K_A \left( V_{REF} - |V_t| \right) - E_{FD} \right)$$

### **Two Bus, Two Gen With Exciters**



#### Below are the initial values for this case from PowerWorld

| All States | State Limit Vi               | iolations Gen | erators Buses | Transient Stabilit | y YBus GIC GM | latrix Two Bus E  | quivalents                   |
|------------|------------------------------|---------------|---------------|--------------------|---------------|-------------------|------------------------------|
|            | 00. 0.† ∜k [<br>0.€ 00. ∜k [ | ABCD          | Records 👻 Set | t • Columns •      |               | ₩• 💎 🗮•           | SORT<br>124<br>ABED f(x) ▼ ⊞ |
|            | Model Class                  | Model Type    | Object Name   | At Limit           | State Ignored | State Name        | Value [                      |
| 1 G        | en Synch. Mad                | GENROU        | 1 (Bus 1) #1  |                    | NO            | Angle             | 0.5273                       |
| 2 G        | en Synch. Mad                | GENROU        | 1 (Bus 1) #1  |                    | NO            | Speed w           | 0.0000                       |
| 3 G        | en Synch. Mad                | GENROU        | 1 (Bus 1) #1  |                    | NO            | Eqp               | 1.1948                       |
| 4 G        | en Synch. Mad                | GENROU        | 1 (Bus 1) #1  |                    | NO            | PsiDp             | 1.1554                       |
| 5 G        | en Synch. Mad                | GENROU        | 1 (Bus 1) #1  |                    | NO            | PsiQpp            | 0.2446                       |
| 6 G        | en Synch. Mad                | GENROU        | 1 (Bus 1) #1  |                    | NO            | Edp               | 0.0000                       |
| 7 G        | en Exciter                   | EXST1         | 1 (Bus 1) #1  |                    | NO            | EField before lim | 2.6904                       |
| 8 G        | en Exciter                   | EXST1         | 1 (Bus 1) #1  |                    | YES           | Sensed Vt         | 1.0946                       |
| 9 G        | en Exciter                   | EXST1         | 1 (Bus 1) #1  |                    | YES           | VLL               | 0.0269                       |
| 10 G       | en Exciter                   | EXST1         | 1 (Bus 1) #1  |                    | NO            | VF                | 0.0000                       |
| 11 G       | en Synch. Mad                | GENROU        | 2 (Bus 2) #1  |                    | NO            | Angle             | -0.5392                      |
| 12 G       | en Synch. Mad                | GENROU        | 2 (Bus 2) #1  |                    | NO            | Speed w           | 0.0000                       |
| 13 G       | en Synch. Mad                | GENROU        | 2 (Bus 2) #1  |                    | NO            | Eqp               | 0.9044                       |
| 14 G       | en Synch. Mad                | GENROU        | 2 (Bus 2) #1  |                    | NO            | PsiDp             | 0.8928                       |
| 15 G       | en Synch. Mad                | GENROU        | 2 (Bus 2) #1  |                    | NO            | PsiQpp            | -0.3594                      |
| 16 G       | en Synch. Mad                | GENROU        | 2 (Bus 2) #1  |                    | NO            | Edp               | 0.0000                       |
| 17 G       | en Exciter                   | EXST1         | 2 (Bus 2) #1  |                    | NO            | EField before lim | 1.3441                       |
| 18 G       | en Exciter                   | EXST1         | 2 (Bus 2) #1  |                    | YES           | Sensed Vt         | 1.0000                       |
| 19 G       | en Exciter                   | EXST1         | 2 (Bus 2) #1  |                    | YES           | VLL               | 0.0134                       |
| 20 G       | en Exciter                   | EXST1         | 2 (Bus 2) #1  |                    | NO            | VF                | 0.0000                       |

Because of the zero values the other differential equations for the exciters are included but treated as ignored

Case is B2\_GENROU\_2GEN\_EXCITER

### **Viewing the States**

- PowerWorld allows one to single-step through a solution, showing the f(x) and the K<sub>1</sub> values
  - This is mostly used for education or model debugging

| All State | es State Limit V | iolations Gene | rators Buses T  | ransient Stability YBus | GIC GMatrix Two Bus E | quivalents                   |            |            |
|-----------|------------------|----------------|-----------------|-------------------------|-----------------------|------------------------------|------------|------------|
|           | 00. 0.+ ∦k ∰     | 8 🦛 🌺 F        | Records 👻 Set 👻 | Columns 🔻 📴 🕶           | 8080 - 8080 - 🌱 🇮 -   | SORT<br>124<br>ABED f(x) ▼ ⊞ | Options •  |            |
|           | Model Class      | Model Type     | Object Name     | At Limit State          | Ignored State Name    | Value                        | Derivative | Delta X K1 |
| 1         | Gen Synch. Mac   | GENROU         | 1 (Bus 1) #1    | NO                      | Angle                 | 0.5288                       | 0.6283185  | 0.0015708  |
| 2         | Gen Synch. Mac   | GENROU         | 1 (Bus 1) #1    | NO                      | Speed w               | 0.0017                       | 0.1666667  | 0.0016667  |
| 3         | Gen Synch. Mac   | GENROU         | 1 (Bus 1) #1    | NO                      | Eqp                   | 1.1813                       | -1.4246850 | -0.0135115 |
| 4         | Gen Synch. Mac   | GENROU         | 1 (Bus 1) #1    | NO                      | PsiDp                 | 1.0788                       | -6.1374236 | -0.0766226 |
| 5         | Gen Synch. Mac   | GENROU         | 1 (Bus 1) #1    | NO                      | PsiQpp                | 0.1276                       | -7.0939033 | -0.1170377 |
| 6         | Gen Synch. Mac   | GENROU         | 1 (Bus 1) #1    | NO                      | Edp                   | 0.0000                       | 0.0000000  | 0.0000000  |
| 7         | Gen Exciter      | EXST1          | 1 (Bus 1) #1    | NO                      | EField before lim     | 3.4214                       | 65.7861970 | 0.7309577  |
| 8         | Gen Exciter      | EXST1          | 1 (Bus 1) #1    | YES                     | Sensed Vt             | 0.0000                       | 0.0000000  | 0.0000000  |
| 9         | Gen Exciter      | EXST1          | 1 (Bus 1) #1    | YES                     | VLL                   | 0.1000                       | 0.0000000  | 0.0000000  |
| 10        | Gen Exciter      | EXST1          | 1 (Bus 1) #1    | NO                      | VF                    | 0.0000                       | 0.0000000  | 0.0000000  |
| 11        | Gen Synch. Mac   | GENROU         | 2 (Bus 2) #1    | NO                      | Angle                 | -0.5400                      | -0.2896794 | -0.0007854 |
| 12        | Gen Synch. Mac   | GENROU         | 2 (Bus 2) #1    | NO                      | Speed w               | -0.0008                      | -0.0833331 | -0.0007684 |
| 13        | Gen Synch. Mac   | GENROU         | 2 (Bus 2) #1    | NO                      | Eqp                   | 0.9010                       | -0.2497156 | -0.0033918 |
| 14        | Gen Synch. Mac   | GENROU         | 2 (Bus 2) #1    | NO                      | PsiDp                 | 0.8661                       | -2.1684713 | -0.0267221 |
| 15        | Gen Synch. Mac   | GENROU         | 2 (Bus 2) #1    | NO                      | PsiQpp                | -0.2480                      | 8.9252864  | 0.1113928  |
| 16        | Gen Synch. Mac   | GENROU         | 2 (Bus 2) #1    | NO                      | Edp                   | 0.0000                       | 0.0000000  | 0.0000000  |
| 17        | Gen Exciter      | EXST1          | 2 (Bus 2) #1    | NO                      | EField before lim     | 2.2097                       | 77.9031593 | 0.8655907  |
| 18        | Gen Exciter      | EXST1          | 2 (Bus 2) #1    | YES                     | Sensed Vt             | 0.5032                       | 0.0000000  | 0.0000000  |
| 19        | Gen Exciter      | EXST1          | 2 (Bus 2) #1    | YES                     | VLL                   | 0.1000                       | 0.0000000  | 0.0000000  |
| 20        | Gen Exciter      | EXST1          | 2 (Bus 2) #1    | NO                      | VF                    | 0.0000                       | 0.0000000  | 0.0000000  |

Derivatives shown are evaluated at the end of the time step 3

### **Two Bus Results with Exciters**



- Below graph shows the angles with ∆t=0.01 and a fault clearing at t=0.05 using Euler's
  - With the addition of the exciters case is now stable



### **Constant Impedance Loads**



- The simplest approach for modeling the loads is to treat them as constant impedances, embedding them in the bus admittance matrix
  - Only impact the Ybus diagonals
- The admittances are set based upon their power flow values, scaled by the inverse of the square of the power flow bus voltage

$$\overline{S}_{load,i} = \overline{V}_{i}\overline{I}_{load,i}^{*} = \left|\overline{V}_{i}\right|^{2} \left(G_{load,i} - jB_{load,i}\right)$$
$$G_{load,i} - jB_{load,i} = \frac{\overline{S}_{load,i}}{\left|\overline{V}_{i}\right|^{2}}$$

Note the positive sign comes from the sign convention on  $\overline{I}_{load,i}$ 

In PowerWorld the default load model is specified on Transient Stability, Options, Power System Model

### Example 7.4 Case (WSCC 9 Bus)

 PowerWorld Case Example\_7\_4 duplicates the example 7.4 case from the book, with the exception of using different generator models

| Violations Generators Buses Tr | ansient Stability YBus | GIC GMatrix Tw   | o Bus Equivalents       |                  |                  |                  |                  |                  |                  |
|--------------------------------|------------------------|------------------|-------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 00 🚧 🍓 Records 🔹 Set 🝷         | Columns 🔻 📴 🔻          | ₩X8 + ₩X8 + 💎    | ₩ ▼ SORT<br>ABED f(x) ▼ | Options          |                  |                  |                  |                  |                  |
| Name                           | Bus 1                  | Bus 2            | Bus 3                   | Bus 4            | Bus 5            | Bus 6            | Bus 7            | Bus 8            | Bus 9            |
| 1 Bus1                         | 0.000 - j42.361        |                  |                         | -0.000 + j17.361 |                  |                  |                  |                  |                  |
| 2 Bus 2                        |                        | 0.000 - j27.111  |                         |                  |                  |                  | -0.000 + j16.000 |                  |                  |
| 3 Bus 3                        |                        |                  | 0.000 - j23.732         |                  |                  |                  |                  |                  | -0.000 + j17.065 |
| 4 Bus 4                        | -0.000 + j17.361       |                  |                         | 3.307 - j39.309  | -1.365 + j11.604 | -1.942 + j10.511 |                  |                  |                  |
| 5 Bus 5                        |                        |                  |                         | -1.365 + j11.604 | 3.814 - j17.843  |                  | -1.188 + j5.975  |                  |                  |
| 6 Bus 6                        |                        |                  |                         | -1.942 + j10.511 |                  | 4.102 - j16.133  |                  |                  | -1.282 + j5.588  |
| 7 Bus 7                        |                        | -0.000 + j16.000 |                         |                  | -1.188 + j5.975  |                  | 2.805 - j35.446  | -1.617 + j13.698 |                  |
| 8 Bus 8                        |                        |                  |                         |                  |                  |                  | -1.617 + j13.698 | 3.741 - j23.642  | -1.155 + j9.784  |
| 9 Bus 9                        |                        |                  | -0.000 + j17.065        |                  |                  | -1.282 + j5.588  |                  | -1.155 + j9.784  | 2.437 - j32.154  |

Bus 5 Example: Without the load  $Y_{55} = 2.553 - j17.339$  $\overline{S}_{load,5} = 1.25 + j0.5$  and  $|\overline{V}_5| = 0.996$  $\mathbf{Y}_{55} = 2.553 - j17.579 + \frac{(1.25 - j0.5)}{|0.996|^2} = 3.813 - j17.843$ 

### **Nonlinear Network Equations**

• With constant impedance loads the network equations can usually be written with **I** independent of **V**, then they can be solved directly (as we've been doing)

 $\mathbf{V} = \mathbf{Y}^{-1} \mathbf{I}(\mathbf{x})$ 

- In general this is not the case, with constant power loads one common example
- Hence a nonlinear solution with Newton's method is used
- We'll generalize the dependence on the algebraic variables, replacing V by y since they may include other values beyond just the bus voltages

### **Nonlinear Network Equations**



- Just like in the power flow, the complex equations are rewritten, here as a real current and a reactive current  $\mathbf{YV} - \mathbf{I}(\mathbf{x}, \mathbf{y}) = \mathbf{0}$
- The values for bus i are  $g_{Di}(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{n} (G_{ik}V_{Dk} - B_{ik}V_{QK}) - I_{NDi} = 0$

$$g_{Qi}(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{n} \left( G_{ik} V_{Qk} + B_{ik} V_{DK} \right) - I_{NQi} = 0$$

This is a rectangular formulation; we also could have written the equations in polar form

- For each bus we add two new variables and two new equations
- If an infinite bus is modeled then its variables and equations are omitted since its voltage is fixed

### **Nonlinear Network Equations**



• The network variables and equations are then

$$\mathbf{y} = \begin{bmatrix} V_{D1} \\ V_{Q1} \\ V_{D2} \\ \vdots \\ V_{Dn} \\ V_{Qn} \end{bmatrix} \quad \mathbf{g}(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} \sum_{k=1}^{n} (G_{1k}V_{Dk} - B_{1k}V_{QK}) - I_{ND1}(\mathbf{x}, \mathbf{y}) = 0 \\ \sum_{k=1}^{n} (G_{ik}V_{Qk} + B_{ik}V_{DK}) - I_{NQ1}(\mathbf{x}, \mathbf{y}) = 0 \\ \vdots \\ \sum_{k=1}^{n} (G_{2k}V_{Dk} - B_{2k}V_{QK}) - I_{ND2}(\mathbf{x}, \mathbf{y}) = 0 \\ \vdots \\ \sum_{k=1}^{n} (G_{nk}V_{Dk} - B_{nk}V_{QK}) - I_{NDn}(\mathbf{x}, \mathbf{y}) = 0 \\ \sum_{k=1}^{n} (G_{nk}V_{Dk} - B_{nk}V_{QK}) - I_{NDn}(\mathbf{x}, \mathbf{y}) = 0 \end{bmatrix}$$

### Nonlinear Network Equation Newton Solution



The network equations are solved using

a similar procedure to that of the

Netwon-Raphson power flow

Set v = 0; make an initial guess of  $\mathbf{y}$ ,  $\mathbf{y}^{(v)}$ While  $\|\mathbf{g}(\mathbf{y}^{(v)})\| > \varepsilon$  Do  $\mathbf{y}^{(v+1)} = \mathbf{y}^{(v)} - \mathbf{J}(\mathbf{y}^{(v)})^{-1}\mathbf{g}(\mathbf{y}^{(v)})$ v = v+1

End While

### **Network Equation Jacobian Matrix**

• The most computationally intensive part of the algorithm is determining and factoring the Jacobian matrix, **J**(**y**)

$$\mathbf{J}(\mathbf{y}) = \begin{bmatrix} \frac{\partial g_{D1}(\mathbf{x}, \mathbf{y})}{\partial V_{D1}} & \frac{\partial g_{D1}(\mathbf{x}, \mathbf{y})}{\partial V_{Q1}} & \cdots & \frac{\partial g_{D1}(\mathbf{x}, \mathbf{y})}{\partial V_{Qn}} \\ \frac{\partial g_{Q1}(\mathbf{x}, \mathbf{y})}{\partial V_{D1}} & \frac{\partial g_{Q1}(\mathbf{x}, \mathbf{y})}{\partial V_{Q1}} & \cdots & \frac{\partial g_{Q1}(\mathbf{x}, \mathbf{y})}{\partial V_{Qn}} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{\partial g_{Qn}(\mathbf{x}, \mathbf{y})}{\partial V_{D1}} & \frac{\partial g_{Qn}(\mathbf{x}, \mathbf{y})}{\partial V_{Q1}} & \cdots & \frac{\partial g_{Qn}(\mathbf{x}, \mathbf{y})}{\partial V_{Qn}} \end{bmatrix}$$

### **Network Jacobian Matrix**



- The Jacobian matrix can be stored and computed using a 2 by 2 block matrix structure
- The portion of the 2 by 2 entries just from the  $\mathbf{Y}_{bus}$  are

| $\begin{bmatrix} \frac{\partial \hat{g}_{Di}(\mathbf{x}, \mathbf{y})}{\partial V_{Dj}} \\ \frac{\partial \hat{g}_{Di}(\mathbf{x}, \mathbf{y})}{\partial \hat{g}_{Di}(\mathbf{x}, \mathbf{y})} \end{bmatrix}$ | $\frac{\partial \hat{g}_{Di}(\mathbf{x},\mathbf{y})}{\partial V_{Qj}}$ | $=\begin{bmatrix}G_{ij}\\B_{ij}\end{bmatrix}$ | $-B_{ij}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|-----------|
| $\frac{\partial g_{Qi}(\mathbf{x}, \mathbf{y})}{\partial V_{Dj}}$                                                                                                                                            | $\frac{\partial g_{Qi}(\mathbf{x},\mathbf{y})}{\partial V_{Qj}}$       | $\lfloor B_{ij} \rfloor$                      | $G_{ij}$  |

The "hat" was added to the g functions to indicate it is just the portion from the **Y**<sub>bus</sub>

• The major source of the current vector voltage sensitivity comes from non-constant impedance loads; also dc transmission lines

### Example: Constant Current and Constant Power Load

- As an example, assume the load at bus k is represented with a ZIP model
  - $P_{Load,k} = P_{BaseLoad,k} \left( P_{z,k} \left| \overline{V}_{k}^{2} \right| + P_{i,k} \left| \overline{V}_{k} \right| + P_{p,k} \right)$  $Q_{Load,k} = Q_{BaseLoad,k} \left( Q_{z,k} \left| \overline{V}_{k}^{2} \right| + Q_{i,k} \left| \overline{V}_{k} \right| + Q_{p,k} \right)$

The base load values are set from the power flow

- The constant impedance portion is embedded in the  $\mathbf{Y}_{\text{bus}}$   $\hat{P}_{Load,k} = P_{BaseLoad,k} \left( P_{i,k} \left| \overline{V}_k \right| + P_{p,k} \right) = \left( P_{BL,i,k} \left| \overline{V}_k \right| + P_{BL,p,k} \right)$  $\hat{Q}_{Load,k} = Q_{BaseLoad,k} \left( Q_{i,k} \left| \overline{V}_k \right| + Q_{p,k} \right) = \left( Q_{BL,i,k} \left| \overline{V}_k \right| + Q_{BL,p,k} \right)$
- Usually solved in per unit on network MVA base

### Example: Constant Current and Constant Power Load

• The current is then

$$\begin{split} \overline{I}_{Load,k} &= I_{D,Load,k} + jI_{Q,Load,k} = \left(\frac{\hat{P}_{Load,k} + j\hat{Q}_{Load,k}}{\overline{V}_{k}}\right)^{*} \\ &= \left(\frac{\left(P_{BL,i,k}\sqrt{V_{DK}^{2} + V_{QK}^{2}} + P_{BL,p,k}\right) - j\left(Q_{BL,i,k}\sqrt{V_{DK}^{2} + V_{QK}^{2}} + Q_{BL,p,k}\right)}{V_{Dk} - jV_{Qk}}\right) \end{split}$$

• Multiply the numerator and denominator by  $V_{DK}+jV_{QK}$  to write as the real current and the reactive current

### Example: Constant Current and Constant Power Load



• The Jacobian entries are then found by differentiating with respect to  $V_{DK}$  and  $V_{QK}$ 

- Only affect the 2 by 2 block diagonal values

• Usually constant current and constant power models are replaced by a constant impedance model if the voltage goes too low, like during a fault