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Announcements

Read Chapter 7
Homework 5 is due today
Homework 6 is assigned today, due on Nov 9

~inal Is as per TAMU schedule. That is, Friday Dec 8
from 3 to 5pm




Nonlinear Network Equations
T
* With constant impedance loads the network equations
can usually be written with | independent of V, then they
can be solved directly (as we've been doing)

V=Y"I(x)

® In general this Is not the case, with constant power loads
one common example
® Hence a nonlinear solution with Newton's method is used

* We'll generalize the dependence on the algebraic
variables, replacing V by y since they may include other

values beyond just the bus voltages
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Nonlinear Network Equations
T
® Just like in the power flow, the complex equations are
rewritten, here as a real current and a reactive current
YV -1I(x,y)=0
®* The values for bus 1 are

gDi (X’ y) — Z(GikVDk — BikVQK )— I NDi — 0
k=1

i (X Y) = Z(GikVQk + By Vi )_ Ingi =0
k=1
®* For each bus we add two new variables and two new

equations

* If an infinite bus is modeled then its variables and
equations are omitted since its voltage is fixed




Nonlinear Network Equations

o

® The network variables and equations are then

n
Z(leVDk — By Vok )_ Inp1 (X Y) =0
k=1
n
2 (GikVQk + By Vpk ) — o (X, y) =0
\V/ k=1
Ql N
Vv G, Vo — BoiVok )= Iypo (X, y) =0
y = I:DZ g(Xy) = é( 2kVDk ~ Bk QK) ND2
VDn n
_VQn i Z (GnkVDk o BnkVQK ) — | NDn (X’y) =0
k=1
n
Z(GnkVQk + B Vpk )_ Inon (X Y) =0
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Nonlinear Network Equation
Newton Solution

The network equations are solved using
a similar procedure to that of the
Netwon-Raphson power flow

Setv = 0; make an initial guess of y, y")

While g(y")| > & Do
y" =y -3y") gy
V = v+1

End While
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Network Equation Jacobian Matrix

* The most computationally intensive part of the
algorithm is determining and factoring the Jacobian
matrix, J(y)

00p (XY) 0O (XY)  9gp(XY)

o1 (X,Y) G (XY) 09q1(X.Y)

aan (X,y) 8an (X’y) 6an (X1y)
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Network Jacobian Matrix

Alw
® The Jacobian matrix can be stored and computed using
a 2 by 2 block matrix structure

® The portion of the 2 by 2 entries just from the Y are

(00pi(X.Y) 09pi(X.y)

Vo, No | [Gy —Bj
00qi(x.y) 09qi(xy)| |B; Gy
i aVDj aVQJ' _

® The major source of the current vector voltage
sensitivity comes from non-constant impedance loads;
also dc transmission lines




Example: Constant Current and
Constant Power Load T

* As an example, assume the load at bus k Is represented |
with a ZIP model

IDLoad,k = I:)BaseLoad,k (Pz,k \7k2‘+ I:)i,k ‘\7k ‘ T I:)p,k)
QLoad,k = QBaseLoad,k (Qz,k \7kz +Qi,k ‘\7k ‘ +Qp,k)

® The constant impedance portion is embedded in the Y.

N

PLoad,k = PBaseLoad,k (Plk Nk ‘ T Pp,k ) = (PBL,i,k ’\7k ‘ T PBL,p,k)
QLoad,k = QBaseLoad,k (Qi,k ‘\7k ‘ T Qp,k ) = (QBL,i,k ’\7k ‘ T QBL,p,k )

® Usually solved in per unit on network MVA base




Example: Constant Current and
Constant Power Load
T

® The current Is then

T ) Ll | Ploadk + 1Q0oad
Load,k = " D,Load,k J Q,Load,k \7
k

(PBL,i,k [§K +VQZK + PBL,p,k)_ j(QBL,i,k D2K +VQZK +QBL,p,k)

VDk _ jVQk

* Multiply the numerator and denominator by Vp, +JV ok
to write as the real current and the reactive current
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Example: Constant Current and
Constant Power Load

| B \ PBL,p,k +VQKQBL,p,k Vi, PBL,i,k +VQKQBL,i,k
D,Load k — V2 1\? + > >
ok T Vok DK +VQK

| _ VQk PBL,p,k _VDKQBL,p,k VQk PBL,i,k _VDKQBL,i,k

= +
Q,Load ,k 2 2 2 2
Vik +VQK oK +VQK

A

® The Jacobian entries are then found by differentiating
with respect to Vp,c and Vo

— Only affect the 2 by 2 block diagonal values

® Usually constant current and constant power models are

replaced by a constant impedance model if the voltage

goes too low, like during a fault "




Example: 7.4.ZIP Case
T

* Example 7.4 i1s modified so the loads are represented by
a model with 30% constant power, 30% constant current

and 40% constant impedance

— In PowerWorld load models can be entered in a number of
different ways; a tedious but simple approach is to specify a
model for each individual load

* Right click on the load symbol to display the Load Options
dialog, select Stability, and select WSCC to enter a ZIP
model, in which p1&q1l are the normalized about of
constant impedance load, p2&q2 the amount of constant
current load, and p3&q3 the amount of constant power load

Case is Example 7 4 ZIP
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Example 7.4.ZIP One-line
T

Bus 7 Bus 8 Bus 9 Bus 3

Bus 2

163 MW 1.016 pu

7 Mvar

85 MW

1.025 pu 1.026 pu -11 Mvar

1.032pu 1.025 pu

Bus 5 100MW Bus6 1.013 pu
35 Mvar
125 MW
50 Mvar
Bus 4 1.026 pu 90 MW
30 Mvar
Busl 1.040 pu

2
27 wvar
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Example 7.4.ZIP Bus 8 Load Values

* As an example the values for bus 8 are given (per unit,
100 MVA base)

1.00 = Poqycag o (0-4x1.016° +0.3x1.016 +0.3)
—> Pycotons s = 0.983
0.35 = Qgaeona o (0-4x1.016° +0.3x1.016 +0.3)
—> Qpaseload s = 0-344

*

1+]0.55 ) —0.9887 — j0.332

1.0158 + j0.0129

ID,|_oad,8 + JIQ,Load,S :[

o
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Example: 7.4.ZIP Case
T

® For this case the 2 by 2 block between buses 8 and 7 Is
{—1.155 9.784 }

-9.784 -1.155
®* And between 8 and 9 Is
{ -1.617 13.698}

-13.698 -1.617

® The 2 by 2 block for the bus 8 diagonal is

2876 —23.352
23.632 3.745
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Additional Comments
T
* When coding Jacobian values, a good way to check that
the entries are correct is to make sure that for a small
perturbation about the solution the Newton's method
has quadratic convergence

* When running the simulation the Jacobian is actually
seldom rebuilt and refactored
— If the Jacobian is not too bad it will still converge
® To converge Newton's method needs a good initial
guess, which is usually the last time step solution
— Convergence can be an issue following large system
disturbances, such as a fault
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Simultaneous Implicit

Alw
® The other major solution approach is the simultaneous
implicit in which the algebraic and differential

equations are solved simultaneously

® This method has the advantage of being numerically
stable

17




Simultaneous Implicit

T
* Recalling the second lecture, we covered two common
Implicit integration approaches for solving x = f(x)
— Backward Euler  x(t+ At) = X(t) + Atf (x(t + At))
For a linear system we have

X(t+At) =[1 - AtA] ™ x(t)

— Trapezoidal X(t+At) = x(t) + % [f (x(t)) +f (X(t + At)):l

For a linear system we have

X(t+At) =] —AtA]l[l +%A}x(t)

* We'll just consider trapezoidal, but for nonlinear cases ;4




Nonlinear Trapezoidal

* \We can use Newton's method to solve X =T (x) with

the trapezoidal

—x(t+At)+x(t)+%(f (x(t+At))+F(x(t)))=0

* We are solving for x(t+At); x(t) i1s known
® The Jacobian matrix is

J(x(t+At))= %

o
OX,

of,

OX,

.ax

o, ]

OX

n

of,

n

A

-19




Nonlinear Trapezoidal using
Newton's Method
T

® The full solution would be at each time step

— Set the Initial guess for x(t+At) as x(t), and initialize the
iteration counter k =0

— Determine the mismatch at each iteration k as

h(x(t+A0)™ )2 —x(t+A)® +x(t) + %(f (X(t+AD® )+ (x(1)))

— Determine the Jacobian matrix
— Solve

X(t+ A =x(t+A0" - [I(x(t+ A0 | h(x(t+A0)®)

— |terate until done
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Infinite Bus GENCLS Example

Al
® Use the previous two bus system with gen 4 again
modeled with a classical model with X,=0.3, H=3 and
D=0

Bus 2
Bus 1
GENCLS bBu Infinite Bus
X=0.22
11.59 Deg 0.00 Deg
1.095 pu 1.000 pu
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Infinite Bus GENCLS Implicit Solution
T
* Assume a solid three phase fault is applied at the bus 1
generator terminal, reducing P, to zero during the
fault, and then the fault is self-cleared at time Telea
resulting in the post-fault system being identical to the
pre-fault system

— During the fault-on time the equations reduce to

do,
s =Aw, 0
dAw, 1

= 1-0
dt 2><3( )
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Infinite Bus GENCLS Implicit Solution

X(0) = {

The Initial conditions are

[0.418
w,,0)| | 0 }

Let At = 0.02 seconds
During the fault the Jacobian is

J(x(t+At))=¥B ﬂ_u

Set the Initial guess for x(0.02) as x(0), and

((+(0)) |

0
0.1667

-1 3.77

o
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Infinite Bus GENCLS Implicit Solution
T

®* Then calculate the initial mismatch

N ; 0.02 )
h(x(0.02)®) 2 —x(0.02) +x(0)+7(f (x(0.02)®) +f (x(O)))

* With x(0.02)© = x(0) this becomes

h(x(002)<°>)—— O.418+O.418 L 002 0 . o N[ O
| N 0 0 2 110.167 | |0.167 |) |0.00334

® Then
o [0418] [-1 3777 0 0.4306
x(0.02)" = - =
0 0 -1 | |0.00334] |0.00334
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Infinite Bus GENCLS Implicit Solution
T

® Repeating for the next iteration

@\ | 1.259
f(x(o.oz) )_{0.1667}
(x(0.02)®) :{ 0.4306 }{0.418}+ 0.02 Hmﬂ{ 0 D
0.00334 0 2 ([0.167 ] |0.167
(0.0
0.0

® Hence we have converged with  x(0.02) :{

0.4306
0.00334
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Infinite Bus GENCLS Implicit Solution
T

* |teration continues until t = Tclea agssumed to be 0.1

seconds In this example
0.7321
X(0.10) =
10.0167

* At this point, when the fault is self-cleared, the equations
change, requiring a re-evaluation of f(x(Tclea))

do =Aw,, 0,

dt + 6.30
dAw, 1( , 1281 j f(x(01)) :{—0.1078}
dt 6

26




Infinite Bus GENCLS Implicit Solution
T

* With the change in f(x) the Jacobian also changes

J(x(012‘°)))——0'02 Sl A T
| 2 1-0305 0 ~0.00305 -1

* Iteration for x(0.12) is as before, except using the new
function and the new Jacobian

0 A ; 0.02 ; .
h(x(0.12)®) 2 —x(0.12) +x(0.01) +T(f (x(0.12)®) +f (x(0.10 )))

0.7321 ~1 3.777'T 0.1257 0.848
0.0167 | |-0.00305 -1 | |-0.00216| |0.0142

‘This also converges quickly, with one or two iterations .




Computational Considerations

T
* As presented for a large system most of the

computation is associated with updating and factoring

the Jacobian. But the Jacobian actually changes little

and hence seldom needs to be rebuilt/factored

* Rather than using x(t) as the initial guess for x(t+At),
prediction can be used when previous values are
available

X(t+At)® = x(t) + (x(t) — x(t — At))

28




Two Bus Results
T
® The below graph shows the generator angle for varying
values of At; recall the implicit method Is numerically
stable

Simulation Time (Seconds)
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Adding the Algebraic Constraints
T
® Since the classical model can be formulated with all the
values on the network reference frame, initially we just
need to add the network equations

* We'll again formulate the network equations using the

form
Ix,y) =YV or YV-I(x,y)=0

* As before the complex equations will be expressed
using two real equations, with voltages and currents
expressed In rectangular coordinates

30




Adding the Algebraic Constraints

® The network equations are as before

ag(x,y) =

n

Z(leVDk — By Vok )_ Inp1 (X Y) =0
k=1

n

2 (GikVQk + By Vi ) — o (X, y) =0

1
(GZKVDk — BakViok ) —I\p2(Xy) =0

M= 7

7\_
I
-

n
2 (GnkVDk — BrVok ) — Iypn(X,y) =0

7\—
Il
[

NE

(GnkVQk + BniVbk )_ Inon (X Y) =0

=~
I
|

o
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Classical Model Coupling
of x and T

® |In the simultaneous implicit method x and y are
determined simultaneously; hence in the Jacobian we
need to determine the dependence of the network
equations on X, and the state equations on y
* With the classical model the Norton current depends on
xas 1 __FEZ9 G+iB——
! R + X4, - | R + 1Xg,

lni = loni + Jloni = E/(cosa, + jsing, ) (G, + jB;)
Eoi + jEq = E/ (0SS, + jsing;)

IDNi : EDiGi ' EQI Bi _
IQNi — EDi Bi + EQiGi
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Classical Model Coupling
of x and T

* |n the state equations the coupling with y Is recognized |
by noting

Pes = Egyloi +Eqi g

i + 1l :((EDi Vo )+ §(Eq _Voi))(Gi +JB))

Iy =(Epi -V ')Gi_(EQi _VQi)Bi

lo =(Egi —Voi ) B +(Eq —Vei |G,

Eoi ((Eoi ~Voi)Gi ~(Eq Vo ) B )+ Eqi ((Eoi ~Vor ) B +(Eqi Vs )G )
Pe; = (E5 —EVor )G +(E& — EqVgi )Gy +(EoVg —EqVi ) B

P

33




Variables and Mismatch Equations

T
* In solving the Newton algorithm the variables now
Include x and y (recalling that here y Is just the vector
of the real and imaginary bus voltages

® The mismatch equations now include the state
Integration equations
h(x(t+An)® ) =

x(t+ AD)® X (1) + %(f (x(t+AD®,y(t+A0)® )+ (x(t), y(1)))

* And the algebraic equations

g (x(t + A y(t + ALY )
34




Jacobian Matrix

o

* Since the h(x,y) and g(x,y) are coupled, the Jacobian is

3 (x(t+At"Y, y(t+Aat)®)

OX

oy

og(Xx(t+AD)®,y(t+At)®)  og(x(t+At)®Y,y(t+At)")

OX

oy

oh(x(t+At®,y(t+AD©)  oh(x(t+AD)®,y(t+At)®©)

— With the classical model the coupling is the Norton current at

bus | depends on §; (i.e., X) and the electrical power (Pg;) In
the swing equation depends on Vp; and Vy; (i.e., Y)
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Jacobian Matrix Entries
Al
® The dependence of the Norton current injections on o IS
| i = E Cc0so.G —E'sind.B
loni = E{€0s0,B; + E/sin 5,G

Noni _ —E/sin5,G, — E;cos,B,

alQNi

=—E/sin§,B. + E/cos 5.G,

— In the Jacobian the sign is flipped because we defined

gx,y) =YV-IXYy)

36




Jacobian Matrix Entries

Alw
® The dependence of the swing equation on the generator
terminal voltage Is

o =Ao

I.pu—"s

Ad)i,pu — ziHi(PMi o PEi o Di (Awi,pu ))

PEi — (Etz)i o EDiVDi )Gi + ( Eéi o EQiVQi )Gi + ( EDiVQi o EQiVDi ) Bi
OAw 1

8VIID,ilfJu _ 2Hi (EDiGi + EQi Bi)
8Aa')i’ o1 ~
aVQip _ o (EQiGi E.. Bi)

37




Two Bus, Two Gen GENCLS Example
T

* We'll reconsider the two bus, two generator case from
Lecture 16; fault at Bus 1, cleared after 0.06 seconds

— Initial conditions and Y are as covered in Lecture 16

GENCLS Bus 1 GENCLS
. X=0.22 .
> -
11.59 Deg 0.00 Deg
1.095 pu 1.000 pu

PowerWorld Case B2 CLS 2Gen
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Two Bus, Two Gen GENCLS Example
T
* Initial terminal voltages are
Vo, + Vo, =1.0726 + J0.22, V,, + JV,y, =1.0

E, =1.281,23.95°, E,=0.955/—-12.08
- _ 11709+ j0.52

~ 1,733 3.903
N1 i0.3 J
Ty, = 2802y 46714
J0.2

1 0
j0.333 {— j7.879  j4.545 }

Y=Y+ =| . _
0 1 J4.545 —]9.545
J0.2
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Two Bus, Two Gen Initial Jacobian

| 5, Ao, 6, Ao, Vg, Vo, Vo, Vy,
5, -1 3.77 0 0 0 0 0 0
Ao, -0.0076 -1 0 0 -0.0029 0.0065 0 0
5, 0 0 -1 3.77 0 0 0 0
A, 0 0 -0.0039 -1 0 0  0.0008 0.0039
I, -390 O 0 0 0 7.879 0  -4545
l, -173 0 0 0 -7.879 0 4.545 0
., 0 0 467 0 0 —4545 0 9.545
o, 0 0 1.00 0 4545 0 -9545 0

o
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Results Comparison
T
® The below graph compares the angle for the generator
at bus 1 using At=0.02 between RK2 and the Implicit
Trapezoidal; also Implicit with At=0.06

50

- —RK2, 0.02

| =——Implicit, 0.02

Implicit, 0.06
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Four Bus Comparison

AlM
Bus 1 Bus 2
GENCLS Bus4 PO DD DD DD IR .
X=0.1
Cpmpar
Bus 3
/.72 Deg
1.0551pu |

1.005 pu
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Four Bus Comparison

Generator 1 Angle

800

700

3

B
S

3

I I I I I 1
0 0.5 Simulation Tie (Secundg) 2.5 3

o
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Done with Transient Stability
Solutions: On to Load Modelin T

Load modeling is certainly challenging!

For large system models an aggregate load can consist
of many thousands of individual devices

The load Is constantly changing, with key diurnal and
temperature variations
— For example, a higher percentage of lighting load at night,
more air conditioner load on hot days
Load model behavior can be quite complex during the
low voltages that may occur In transient stability

Testing aggregate load models for extreme conditions Is

not feasible — we need to wait for disturbances!
44




Load Modeling
T
* Traditionally load models have been divided into two
groups
— Static: load is a algebraic function of bus voltage and
sometimes frequency
— Dynamic: load is represented with a dynamic model, with
Induction motor models the most common
® The simplest load model is a static constant impedance
— Has been widely used

— Allowed the Y, to be reduced, eliminating essentially all
non-generator buses

— Presents no issues as voltage falls to zero

— Is rapidly falling out of favor
45




Load Modeling References

* Many papers and reports are available!

* A classic reference on load modeling is by the IEEE
Task Force on Load Representation for Dynamic
Performance, "Load Representation for Dynamic
Performance Analysis," IEEE Trans. on Power
Systems, May 1993, pp. 4/2-482

* A more recent report that provides a good overview is
"Final Project Report Loading Modeling Transmission

Research" from Lawrence Berkeley National Lab,
March 2010

o
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ZIP Load Model
T

Another common static load model is the ZIP, in which
the load Is represented as

P V.[ R, V| + Py

Load k ~— I:)BaseLoad k ( z,k

—_ 2 —_
QLoad,k = QBaseLoad,k (Qz,k Vk‘ +Qi,k ’Vk ‘ +Qp,k)
Some models allow more general voltage dependence
— — n3
PLoad,k = PBaseLoad,k (al,k ‘Vk T Vi )
QLoad,k = QBaseLoad,k ( 4.k ‘ k + a6 k )

nl — N2

T a‘2,k K

n4

5k
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ZIP Model Coefficients
T

* An interesting paper on the experimental determination of the
ZIP parameters is A. Bokhari, et. al., "Experimental
Determination of the ZIP Coefficients for Modern Residential
and Commercial Loads, and Industrial Loads," IEEE Trans.
Power Delivery, 2014

— Presents test results for loads as voltage is varied; also
highlights that load behavior changes with newer technologies

* Below figure (part of fig 4 of paper), compares real and
reactive behavior of light ballast

Electronic Ballast Electronic Ballast

1.2 < : .
1 =+2012 Test| £ =+2012 Test
==1999 Test| = 1999 Test

(o]

.
\.

‘e,
-

S
o

Active Power (pu)
Reactive Power (pu)

Voltage (pu)
0.6 0.8 I I 0.6 0.8 L L

(]

e Voltage (pu)

(=]
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ZIP Model Coefficients

TABLE VII
ACTIVE AND REACTIVE ZIP MODEL. FIRST HALF OF THE ZIPS
WITH 100-V CUTOFF VOILTAGE. SECOND HALF REPORTS THE ZIPS WITH ACTUAL CUTOFF VOLTAGE

No.

uipment/ component
Equip mp tested

Vear Vo Po Qu Zp [p Pp Zq [q Pq

g

120 1109.01 487.08) 0.71 046 -0.17| -1.33 404 -1.71
174 208 1168.54 844711 024 -023 099 | 479 -T.6l 382

Air compressor 1 Ph

Air compressor 3 Ph

Air conditioner 100 120 496.33 125941 1.17 -1.83 1.66 | 15.68 -27.15 1247
CFL bulb 100 120 25.65 37.52 1 081 -1.03 122 | 086 -0.82 096
Coffeemaker 100 120 1413.04 1332 ] 013 1.62 -075| 3.89 -6 3.11
Copier 100 120 64423 8457 | 0.87 -0.21 034 | 214 -3.67 253
Flectronic ballast 100 120  59.02 5.06 022 05 1.28 | 9.64 -21.59 1295
Elevator 174 208 1381.17 10083] 04 -072 132 376 -574 298
Fan 100 120 163.25 83.28 | -047 171 -024) 234 -3.12 1.78

Game consol 100 120 60.65 67.61 | -063 123 04 076  -093 1.17
100 120 97.36 084 | 046 064 -0.1 426  -6.62 336
120 276.09 5265 | 009 07 021 16,6 -28.77 13.17
100 120  87.16 0.85 047 063 0.1 0.55 0.38 0.07

100 120 445 4.8 296 -6.04 4.08 148 -1.29 081

Halogen

High pressure sodium HID
Incandescent light
Induction light

Laptop charger 100 120 3594 71.64 | -028 0.5 0.78 | -0.37 1.24 0.13
LCD Television 100 120 208.03 20581 0.11 -0.17 1.06 1.58  -L.72 1.14
LED light 100 120 3.38 5.85 058 113 -0.71 1.78 -0.8 0.02

Magnetic ballast 100 120  81.23 8.2 -1.58 3779 -1.21) 36.18 -67.78 326
100 120 26827 77.66 | 052 102 -054| -1.33 2.4 -0.07
100 120 113.7 2637 1 -2.02 0 2.02 8.8 -18.64 10.84

100 120 450 102941 086 -0.66 08 | 32.54 -59.83 28.29

Mercury vapor HID light
Metal halide HID electronic ballast
Metal halide HID magnetic ballast

= = MM = = == = R WL W W = = R —

Microwave 100 120 136553 451.02] 139 -1.96 1.57 | 50.07 -93.55 4448
Minibar 100 120 9065 12694 25 4.1 26 256 -2.76 1.2
PC (Monitor & CPU) 100 120 1189 172.79] 02 -03 1.1 0 0.6 0.4

A portion of Table VII from Bokhari 2014 paper 49




Discharge Lighting Models
T
* Discharge lighting (such as fluorescent lamps) is a
major portion of the load (10-15%)

* Discharge lighting has been modeled for sufficiently
high voltage with a real power as constant current and
reactive power with a high voltage dependence

— Linear reduction for voltage between 0.65 and 0.75 pu
— Extinguished (i.e., no load) for voltages below

- P

Base(\7kD

(1= 145
QDischar ighting — Q V
geLighting Base \ k

P

DischargeLighting




Static Load Model
Frequency Dependence
T

* Frequency dependence iIs sometimes included, to
recognize that the load could change with the frequency

I:)Load,k — I:)BaseLoad,k (Pz,k \7k2‘+ I:)i,k \7k ‘ T I:)p,k )(1+ I:)f,k ( fk _1))
QLoad,k = QBaseLoad,k (Qz,k \7I<2‘+Qi,k ‘\7k ‘ +Q|O,k )(1+Qf K ( 1:k _1))

® Here f, is the per unit bus frequency, which is
calculated as

S
1+sT

6, > — f,

* Typical values for P; and Q; are 1 and -1 respectively

o1




Aside: Voltage Stability
T

Next few slides are an aside on static voltage stability
Voltage Stability: The ability to maintain system voltage
so that both power and voltage are controllable. System
voltage responds as expected (i.e., an increase in load
causes proportional decrease in voltage).

Voltage Instability: Inability to maintain system voltage.
System voltage and/or power become uncontrollable.
System voltage does not respond as expected.

Voltage Collapse: Process by which voltage instability
leads to unacceptably low voltages in a significant portion
of the system. Typically results in loss of system load.
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Voltage Stability
T
® Two good references are

— P. Kundur, et. al., “Definitions and Classification of Power
System Stability,” IEEE Trans. on Power Systems, pp. 1387-
1401, August 2004.

— T. Van Cutsem, “Voltage Instability: Phenomena,
Countermeasures, and Analysis Methods,” Proc. IEEE,
February 2000, pp. 208-227.

* Classified by either size of disturbance or duration

— Small or large disturbance: small disturbance is just
perturbations about an equilibrium point (power flow)

— Short-term (several seconds) or long-term (many seconds to
minutes)
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