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Announcements

• Read Chapter 7

• Homework 5 is due today

• Homework 6 is assigned today, due on Nov 9  

• Final is as per TAMU schedule.  That is, Friday Dec 8 

from 3 to 5pm  
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Nonlinear Network Equations

• With constant impedance loads the network equations 

can usually be written with I independent of V, then they 

can be solved directly (as we've been doing)

• In general this is not the case, with constant power loads 

one common example

• Hence a nonlinear solution with Newton's method is used

• We'll generalize the dependence on the algebraic 

variables, replacing V by y since they may include other 

values beyond just the bus voltages
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Nonlinear Network Equations

• Just like in the power flow, the complex equations are 

rewritten, here as a real current and a reactive current

YV – I(x,y) = 0

• The values for bus i are

• For each bus we add two new variables and two new 

equations

• If an infinite bus is modeled then its variables and 

equations are omitted since its voltage is fixed
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Nonlinear Network Equations

• The network variables and equations are then 
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Nonlinear Network Equation 

Newton Solution
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Network Equation Jacobian Matrix

• The most computationally intensive part of the 

algorithm is determining and factoring the Jacobian

matrix, J(y)
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Network Jacobian Matrix

• The Jacobian matrix can be stored and computed using 

a 2 by 2 block matrix structure

• The portion of the 2 by 2 entries just from the Ybus are 

• The major source of the current vector voltage 

sensitivity comes from non-constant impedance loads; 

also dc transmission lines 8
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Example: Constant Current and 

Constant Power Load

• As an example, assume the load at bus k is represented 

with a ZIP model

• The constant impedance portion is embedded in the Ybus

• Usually solved in per unit on network MVA base
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Example: Constant Current and 

Constant Power Load

• The current is then

• Multiply the numerator and denominator by VDK+jVQK

to write as the real current and the reactive current
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Example: Constant Current and 

Constant Power Load

• The Jacobian entries are then found by differentiating 

with respect to VDK and VQK

– Only affect the 2 by 2 block diagonal values

• Usually constant current and constant power models are 

replaced by a constant impedance model if the voltage 

goes too low, like during a fault
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Example: 7.4.ZIP Case

• Example 7.4 is modified so the loads are represented by 

a model with 30% constant power, 30% constant current 

and 40% constant impedance

– In PowerWorld load models can be entered in a number of 

different ways; a tedious but simple approach is to specify a 

model for each individual load

• Right click on the load symbol to display the Load Options 

dialog, select Stability, and select WSCC to enter a ZIP 

model, in which p1&q1 are the normalized about of 

constant impedance load, p2&q2 the amount of constant 

current load, and p3&q3 the amount of constant power load
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Example 7.4.ZIP One-line
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slack

Bus1

  72 MW

  27 Mvar

Bus 4

Bus 5

 125 MW

  50 Mvar

Bus 2

 163 MW

   7 Mvar

Bus 7 Bus 8 Bus 9 Bus 3

  85 MW

 -11 Mvar

 100 MW

  35 Mvar

Bus 6

  90 MW

  30 Mvar

1.026 pu1.025 pu

0.996 pu

1.016 pu

1.032 pu 1.025 pu

1.013 pu

1.026 pu

1.040 pu



Example 7.4.ZIP Bus 8 Load Values

• As an example the values for bus 8 are given (per unit, 

100 MVA base)
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Example: 7.4.ZIP Case

• For this case the 2 by 2 block between buses 8 and 7 is

• And between 8 and 9 is

• The 2 by 2 block for the bus 8 diagonal is
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Additional Comments

• When coding Jacobian values, a good way to check that 

the entries are correct is to make sure that for a small 

perturbation about the solution the Newton's method 

has quadratic convergence

• When running the simulation the Jacobian is actually 

seldom rebuilt and refactored 

– If the Jacobian is not too bad it will still converge

• To converge Newton's method needs a good initial 

guess, which is usually the last time step solution

– Convergence can be an issue following large system 

disturbances, such as a fault
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Simultaneous Implicit

• The other major solution approach is the simultaneous 

implicit in which the algebraic and differential 

equations are solved simultaneously

• This method has the advantage of being numerically 

stable 
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Simultaneous Implicit

• Recalling the second lecture, we covered two common 

implicit integration approaches for solving 

– Backward Euler

– Trapezoidal

• We'll just consider trapezoidal, but for nonlinear cases 18
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Nonlinear Trapezoidal  

• We can use Newton's method to solve               with

the trapezoidal

• We are solving for x(t+t); x(t) is known

• The Jacobian matrix is 
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Nonlinear Trapezoidal using

Newton's Method

• The full solution would be at each time step

– Set the initial guess for x(t+t) as x(t), and initialize the 

iteration counter k = 0

– Determine the mismatch at each iteration k as

– Determine the Jacobian matrix

– Solve

– Iterate until done 
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Infinite Bus GENCLS Example

• Use the previous two bus system with gen 4 again 

modeled with a classical model with Xd'=0.3, H=3 and 

D=0
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Infinite Bus

slack

GENCLS

X=0.22

Bus 1

Bus 2

  0.00 Deg 11.59 Deg

 1.000 pu 1.095 pu

In this example Xth = (0.22 + 0.3), with the internal voltage
ത𝐸′1 = 1.281∠23.95° giving E'1=1.281 and d1= 23.95°



Infinite Bus GENCLS Implicit Solution

• Assume a solid three phase fault is applied at the bus 1 

generator terminal, reducing PE1 to zero during the 

fault, and then the fault is self-cleared at time Tclear
, 

resulting in the post-fault system being identical to the 

pre-fault system 

– During the fault-on time the equations reduce to 
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Infinite Bus GENCLS Implicit Solution

• The initial conditions are 

• Let t = 0.02 seconds

• During the fault the Jacobian is 

• Set the initial guess for x(0.02) as x(0), and
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Infinite Bus GENCLS Implicit Solution

• Then calculate the initial mismatch

• With x(0.02)(0) = x(0) this becomes 

• Then 
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Infinite Bus GENCLS Implicit Solution

• Repeating for the next iteration

• Hence we have converged with
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Infinite Bus GENCLS Implicit Solution

• Iteration continues until t = Tclear, assumed to be 0.1 

seconds in this example

• At this point, when the fault is self-cleared, the equations 

change, requiring a re-evaluation of f(x(Tclear))
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Infinite Bus GENCLS Implicit Solution

• With the change in f(x) the Jacobian also changes

• Iteration for x(0.12) is as before, except using the new 

function and the new Jacobian
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Computational Considerations

• As presented for a large system most of the 

computation is associated with updating and factoring 

the Jacobian.  But the Jacobian actually changes little 

and hence seldom needs to be rebuilt/factored

• Rather than using x(t) as the initial guess for x(t+t), 

prediction can be used when previous values are 

available
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Two Bus Results

• The below graph shows the generator angle for varying 

values of t; recall the implicit method is numerically 

stable
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Adding the Algebraic Constraints

• Since the classical model can be formulated with all the 

values on the network reference frame, initially we just 

need to add the network equations

• We'll again formulate the network equations using the 

form  

• As before the complex equations will be expressed 

using two real equations, with voltages and currents 

expressed in rectangular coordinates
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Adding the Algebraic Constraints

• The network equations are as before
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Classical Model Coupling 

of x and y

• In the simultaneous implicit method x and y are 

determined simultaneously; hence in the Jacobian we 

need to determine the dependence of the network 

equations on x, and the state equations on y

• With the classical model the Norton current depends on 

x as  
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Classical Model Coupling 

of x and y

• In the state equations the coupling with y is recognized 

by noting   
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Variables and Mismatch Equations

• In solving the Newton algorithm the variables now 

include x and y (recalling that here y is just the vector 

of the real and imaginary bus voltages 

• The mismatch equations now include the state 

integration equations

• And the algebraic equations
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Jacobian Matrix

• Since the h(x,y) and g(x,y) are coupled, the Jacobian is

– With the classical model the coupling is the Norton current at 

bus i depends on di (i.e., x) and the electrical power (PEi) in 

the swing equation depends on VDi and VQi (i.e., y) 

35

 

   

   

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) , ( )

( ) , ( ) ( ) , ( )

( ) , ( ) ( ) , ( )

k k

k k k k

k k k k

J t t t t

t t t t t t t t

t t t t t t t t

   

          
 

  
  

          
   

x y

h x y h x y

x y

g x y g x y

x y



Jacobian Matrix Entries

• The dependence of the Norton current injections on d is

– In the Jacobian the sign is flipped because we defined 
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Jacobian Matrix Entries

• The dependence of the swing equation on the generator 

terminal voltage is 
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Two Bus, Two Gen GENCLS Example

• We'll reconsider the two bus, two generator case from 

Lecture 16; fault at Bus 1, cleared after 0.06 seconds

– Initial conditions and Ybus are as covered in Lecture 16
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Two Bus, Two Gen GENCLS Example

• Initial terminal voltages are
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Two Bus, Two Gen Initial Jacobian
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Results Comparison

• The below graph compares the angle for the generator 

at bus 1 using t=0.02 between RK2 and the Implicit 

Trapezoidal; also Implicit with t=0.06
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Four Bus Comparison
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Four Bus Comparison

43
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Done with Transient Stability 

Solutions: On to Load Modeling

• Load modeling is certainly challenging!

• For large system models an aggregate load can consist 

of many thousands of individual devices

• The load is constantly changing, with key diurnal and 

temperature variations

– For example, a higher percentage of lighting load at night, 

more air conditioner load on hot days 

• Load model behavior can be quite complex during the 

low voltages that may occur in transient stability

• Testing aggregate load models for extreme conditions is 

not feasible – we need to wait for disturbances!
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Load Modeling

• Traditionally load models have been divided into two 

groups

– Static: load is a algebraic function of bus voltage and 

sometimes frequency

– Dynamic: load is represented with a dynamic model, with 

induction motor models the most common

• The simplest load model is a static constant impedance

– Has been widely used

– Allowed the Ybus to be reduced, eliminating essentially all 

non-generator buses

– Presents no issues as voltage falls to zero

– Is rapidly falling out of favor
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Load Modeling References

• Many papers and reports are available!

• A classic reference on load modeling is by the IEEE 

Task Force on Load Representation for Dynamic 

Performance, "Load Representation for Dynamic 

Performance Analysis," IEEE Trans. on Power 

Systems, May 1993, pp. 472-482

• A more recent report that provides a good overview is 

"Final Project Report Loading Modeling Transmission 

Research" from Lawrence Berkeley National Lab, 

March 2010
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ZIP Load Model

• Another common static load model is the ZIP, in which 

the load is represented as

• Some models allow more general voltage dependence
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ZIP Model Coefficients

• An interesting paper on the experimental determination of the 

ZIP parameters is A. Bokhari, et. al., "Experimental 

Determination of the ZIP Coefficients for Modern Residential 

and Commercial Loads, and Industrial Loads," IEEE Trans. 

Power Delivery, 2014

– Presents test results for loads as voltage is varied; also 

highlights that load behavior changes with newer technologies

• Below figure (part of fig 4 of paper), compares real and 

reactive behavior of light ballast 
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ZIP Model Coefficients

49A portion of Table VII from Bokhari 2014 paper 
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Discharge Lighting Models

• Discharge lighting (such as fluorescent lamps) is a 

major portion of the load (10-15%)

• Discharge lighting has been modeled for sufficiently 

high voltage with a real power as constant current and 

reactive power with a high voltage dependence

– Linear reduction for voltage between 0.65 and 0.75 pu

– Extinguished (i.e., no load) for voltages below 
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Static Load Model 

Frequency Dependence

• Frequency dependence is sometimes included, to 

recognize that the load could change with the frequency

• Here fk is the per unit bus frequency, which is 

calculated as

• Typical values for Pf and Qf are 1 and -1 respectively 
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Aside: Voltage Stability

• Next few slides are an aside on static voltage stability

• Voltage Stability:  The ability to maintain system voltage 

so that both power and voltage are controllable.  System 

voltage responds as expected (i.e., an increase in load 

causes proportional decrease in voltage).  

• Voltage Instability:  Inability to maintain system voltage.  

System voltage and/or power become uncontrollable.  

System voltage does not respond as expected.  

• Voltage Collapse:  Process by which voltage instability 

leads to unacceptably low voltages in a significant portion 

of the system.  Typically results in loss of system load.  
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Voltage Stability

• Two good references are 

– P. Kundur, et. al., “Definitions and Classification of Power 

System Stability,” IEEE Trans. on Power Systems, pp. 1387-

1401, August 2004.  

– T. Van Cutsem, “Voltage Instability: Phenomena, 

Countermeasures, and Analysis Methods,” Proc. IEEE, 

February 2000, pp. 208-227.

• Classified by either size of disturbance or duration

– Small or large disturbance: small disturbance is just 

perturbations about an equilibrium point (power flow)

– Short-term (several seconds) or long-term (many seconds to 

minutes)
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