ECEN 667 Power System Stability

Lecture 20: Oscillations, Small Signal Stability Analysis

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, <u>overbye@tamu.edu</u>

Announcements

A M

- Read Chapter 7
- Homework 6 is due today
- Final is as per TAMU schedule. That is, Friday Dec 8 from 3 to 5pm

Oscillations

- An oscillation is just a repetitive motion that can be either undamped, positively damped (decaying with time) or negatively damped (growing with time)
- If the oscillation can be written as a sinusoid then

 $e^{\alpha t} \left(a \cos(\omega t) + b \sin(\omega t) \right) = e^{\alpha t} C \cos(\omega t + \theta)$ where $C = \sqrt{A^2 + B^2}$ and $\theta = \tan\left(\frac{-b}{a}\right)$

• And the damping ratio is defined as (see Kundur 12.46)

$$\xi = \frac{-\alpha}{\sqrt{\alpha^2 + \omega^2}}$$

The percent damping is just the damping ratio multiplied by 100; goal is sufficiently positive damping

Power System Oscillations

- A M
- Power systems can experience a wide range of oscillations, ranging from highly damped and high frequency switching transients to sustained low frequency (< 2 Hz) inter-area oscillations affecting an entire interconnect
- Types of oscillations include
 - Transients: Usually high frequency and highly damped
 - -Local plant: Usually from 1 to 5 Hz
 - Inter-area oscillations: From 0.15 to 1 Hz
 - Slower dynamics: Such as AGC, less than 0.15 Hz
 - Subsynchronous resonance: 10 to 50 Hz (less than synchronous)

Example Oscillations

• The below graph shows an oscillation that was observed during a 1996 WECC Blackout

Example Oscillations

• The below graph shows oscillations on the Michigan/Ontario Interface on 8/14/03

Fictitious System Oscillation

Forced Oscillations in WECC (from [1])

- Summer 2013 24 hour data: 0.37 Hz oscillations observed for several hours. Confirmed to be forced oscillations at a hydro plant from vortex effect.
- 2014 data: Another 0.5 Hz oscillation also observed. Source points to hydro unit as well. And 0.7 Hz. And 1.12 Hz. And 2 Hz.
- Resonance possible when system mode poorly damped and close. Resonance observed in model simulations.

Forced Oscillations in WECC (from [1])

- Summer 2013 24 hour data: 0.37 Hz oscillations observed for several hours. Confirmed to be forced oscillations at a hydro plant from vortex effect.
- 2014 data: Another 0.5 Hz oscillation also observed. Source points to hydro unit as well. And 0.7 Hz. And 1.12 Hz. And 2 Hz.
- Resonance possible when system mode poorly damped and close. Resonance observed in model simulations.

Observing Modes and Damping

- With the advent of wide-scale PMU deployments, the modes and damping can be observed two ways
 - Event (ringdown) analysis this requires an event
 - Ambient noise analysis always available, but not as distinct

Image Source: M. Venkatasubramanian, "Oscillation Monitoring System", June 2015 http://www.energy.gov/sites/prod/files/2015/07/f24/3.%20Mani%20Oscillation%20Monitoring.pdf

Resonance with Interarea Mode [1]

- Resonance effect high when:
 - Forced oscillation frequency near system mode frequency
 - System mode poorly damped
 - Forced oscillation location near the two distant ends of mode
- Resonance effect medium when
 - Some conditions hold
- Resonance effect small when
 - None of the conditions holds

Medium Resonance on 11/29/2005

- 20 MW 0.26 Hz Forced Oscillation in Alberta Canada
- 200 MW Oscillations on California-Oregon Inter-tie
- System mode 0.27 Hz at 8% damping
- Two out of the three conditions were true.

1. M. Venkatasubramanian, "Oscillation Monitoring System", June 2015 http://www.energy.gov/sites/prod/files/2015/07/f24/3.%20Mani%20Oscillation%20Monitoring.pdf

An On-line Oscillation Detection Tool

Image source: WECC Joint Synchronized Information Subcommittee Report, October 2013

Small Signal Stability Analysis

- Small signal stability is the ability of the power system to maintain synchronism following a small disturbance
 - System is continually subject to small disturbances, such as changes in the load
- The operating equilibrium point (EP) obviously must be stable
- Small system stability analysis (SSA) is studied to get a feel for how close the system is to losing stability and to get additional insight into the system response

- There must be positive damping

Model Based SSA

• Assume the power system is modeled in our standard form as

 $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{y})$ $\mathbf{0} = \mathbf{g}(\mathbf{x}, \mathbf{y})$

• The system can be linearized about an equilibrium point

 $\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{B} \Delta \mathbf{y}$

 $\mathbf{0} = \mathbf{C} \Delta \mathbf{x} + \mathbf{D} \Delta \mathbf{y}$

• Eliminating Δy gives

If there are just classical generator models then **D** is the power flow Jacobian;otherwise it also includes the stator algebraic equations

$$\Delta \dot{\mathbf{x}} = \left(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C}\right)\Delta \mathbf{x} = \mathbf{A}_{sys}\Delta \mathbf{x}$$

Model Based SSA

- The matrix \mathbf{A}_{sys} can be calculated doing a partial factorization, just like what was done with Kron reduction
- SSA is done by looking at the eigenvalues (and other properties) of A_{sys}

• Consider the two bus, two classical generator system from lectures 18 and 20 with $X_{d1}'=0.3$, $H_1=3.0$, $X_{d2}'=0.2$, $H_2=6.0$

• Essentially everything needed to calculate the A, B, C and D matrices was covered in lecture 19

• The A matrix is calculated differentiating f(x,y) with respect to x (where x is δ_1 , $\Delta \omega_1$, δ_2 , $\Delta \omega_2$)

 $d\delta_1$

$$\begin{aligned} \overline{dt} &= \Delta \omega_{I.pu} \omega_s \\ \frac{d\Delta \omega_{I.pu}}{dt} &= \frac{1}{2H_1} \left(P_{M1} - P_{E1} - D_1 \Delta \omega_{I.pu} \right) \\ \frac{d\delta_2}{dt} &= \Delta \omega_{2.pu} \omega_s \\ \frac{d\Delta \omega_{2.pu}}{dt} &= \frac{1}{2H_2} \left(P_{M2} - P_{E2} - D_2 \Delta \omega_{I.pu} \right) \\ P_{Ei} &= \left(E_{Di}^2 - E_{Di} V_{Di} \right) G_i + \left(E_{Qi}^2 - E_{Qi} V_{Qi} \right) G_i + \left(E_{Di} V_{Qi} - E_{Qi} V_{Di} \right) B_i \\ E_{Di} &+ j E_{Qi} = E_i' \left(\cos \delta_i + j \sin \delta_i \right) \end{aligned}$$

	$\int 0$	376.99	0	0]
$\mathbf{A} =$	-0.761	0	0	0
	0	0	0	376.99
	0	0	-0.389	0

• **B**, **C** and **D** are as calculated previously for the implicit integration, except the elements in B are not multiplied by $\Delta t/2$ $\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$

$$\mathbf{B} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ -0.2889 & 0.6505 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0.0833 & 0.3893 \end{bmatrix}$$

• The C and D matrices are

$$\mathbf{C} = \begin{bmatrix} -3.903 & 0 & 0 & 0 \\ -1.733 & 0 & 0 & 0 \\ 0 & 0 & -4.671 & 0 \\ 0 & 0 & 1.0 & 0 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 0 & 7.88 & 0 & -4.54 \\ -7.88 & 0 & 4.54 & 0 \\ 0 & -4.54 & 0 & 9.54 \\ 4.54 & 0 & -9.54 & 0 \end{bmatrix}$$

• Giving

$$\mathbf{A}_{sys} = \mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C} = \begin{bmatrix} 0 & 376.99 & 0 & 0 \\ -0.229 & 0 & 0.229 & 0 \\ 0 & 0 & 0 & 376.99 \\ 0.114 & 0 & -0.114 & 0 \end{bmatrix}$$

AM

SSA Two Generator

- Calculating the eigenvalues gives a complex pair and two zero eigenvalues
- The complex pair, with values of +/- j11.39 corresponds to the generators oscillating against each other at 1.81 Hz
- One of the zero eigenvalues corresponds to the lack of an angle reference
 - Could be rectified by redefining angles to be with respect to a reference angle (see book 226) or we just live with the zero
- Other zero is associated with lack of speed dependence in the generator torques

SSA Two Generator Speeds

• The two generator system response is shown below for a small disturbance

Notice the actual response closely matches the calculated frequency

SSA Three Generator Example

- A M
- The two generator system is extended to three generators with the third generator having H_3 of 8 and X_{d3} '=0.3

SSA Three Generator Example

The oscillation is started with a short, self-clearing fault

Shortly we'll discuss modal analysis to determine the contribution of each mode to each signal

PowerWorld case B2_CLS_3Gen_SSA

Visualizing the Oscillations with PowerWorld

- Visualization of results can be key to understanding and explaining power system dynamics
- The PowerWorld transient stability contour toolbar allows for the rapid creation of a time-sequenced oneline contours of transient stability results
- These displays can then be made into a movie by either
 - Capturing the screen as the contours are creating using screen recording software such as Camtasia
 - Or having Simulator automatically store the contour images as jpegs and then creating a movie using software such as Microsoft Movie Maker

Contour Toolbar

- The contour toolbar uses stored transient stability results, and hence it is used only after the transient stability solution has finished
 - It can be used with either RAM or hard drive results
- It requires having a oneline with objects associated with the desired results (buses, generators, substations, etc)
- The contour toolbar is shown by either
 - Selecting Add-ons, Stability Case Info, Show Transient Contour Toolbar
 - On the Transient Stability Analysis Form select the Show
 Transient Contour Toolbar button at the bottom of the form

Contour Toolbar Buttons and Fields

- Several buttons and fields control the creation of the contour images
- The **Options** menu is used to specify three options
 - Contour Options is used to display the Contour Options dialog; it must be used to specify the contouring options, including the maximum/nominal/minimum values
 - When the Contour Options dialog is shown the Contour Type and Value fields are disabled since these values are specified on the toolbar
 - Other options can be set to customize the contour

Contour Toolbar Contour Options

These fields are disabled

ontour Type	Contour Type Options	Custom	Color Map		
Contour Type	:		Color Map		
Bus	Generator		Discrete 21 Re	d/Blue	~
C Line/Tran	sformer O Substation		Reverse Col	or Map Colors	
◯ Interface	Zone		Br	ightness	
🔵 Area	Injection Gr	oup			
Do not ind visible due	ude objects not present to Layers or Display Det	y tail	Darker	Normal L	ighter
Transient Stal	bility Contour		Values		
ilter Ohiert V	aluaa Fi	nd		Ignore Above Ma	ax
filler Object v	De	fine	Maximum	60.07000	
Pixel Options			Break High	5000.00000	
Data Points p	er Line	15 📮	Nominal	60.00000	
Specific Colo	r V		Break Low	-5000.00000	
	Color Map %	50 🔹	Minimum	59.93000	
Color Key	r Kev		Calculate Values	Ignore Below Mir	ı
Title	,		Ignore Zero	Values	
Entry Labels	Dec.Pts. Scal	ar	Interpretation	Fixed values	\sim
	5 🗧 1.0	000 🌲			
Use Equal	Spacing				
			Save to AXD	Load from	AXD
		_			

The Maximum, Nominal and Minimum values need to be set. These should be set taking into account how the values vary throughout the transient stability run.

Contour Toolbar Export Option

- A M
- **Export** is used to display the TS Contour Export Options dialog, which provides the option of saving the contours as jpeg format files
 - On the dialog
 select Save Images
 as JPEGs to save
 the files
 - Each jpeg file will
 have a base file
 name with the
 associated time
 in seconds appended

Save Images As	s JPEGs	
JPEG Base File Nan	ne Options	
Case Name		
Contingency Na	me Custom	
Base File Name	Freq_Contours	
Export Directory	C:\aPW_Cases\WECC_Sept2015\PW_case_origin	l
Diaco in Subdiro	story with Name Equal to Page Eile Name	
Each contour jpeg	will have the simulation time appended to make a uni	que name.
Each contour jpeg	will have the simulation time appended to make a uni	que name.
Each contour jpeg	will have the simulation time appended to make a uni ality	que name.
Each contour jpeg Compression/Qua Max Compressio	will have the simulation time appended to make a uni ality	que name.

Contour Toolbar Value Meaning Option

- The Value Meaning option is used to indicate which values will actually be contoured
 - Actual Value: Good for things like frequency
 - Percent of Initial: Contours the percent of the initial value; useful for values with widely different initial values, like generator MW outputs
 - Deviation from Initial: Contours the deviation from the initial; good for voltages
 - Percent Deviation: Percentage deviation
- Contour limits should be set appropriately

Creating a Contour Sequence

- A typical way to use the contour tool bar is to
 - Solved the desired transient stability contingency, making sure to save the associated contour fields
 - Display the toolbar
 - Set the options
 - Select the play button which will automatically create the sequence of contours
 - Contours can be saved with either screen recording software or as a series of jpegs
- Images can be combined as a movie using a tool such as Microsoft Movie Maker

Three Bus Example (With H₁ set to 6.0 and H₃ to 4.0)

A low resolution copy of the movie is on the website

32

Comtrade Format (IEEE Std. C37.111)

- Comtrade is a standard for exchanging power system time-varying data
 - Originally developed for power system transient results such as from digital fault recorders (DFRs), but it can be used for any data
- Comtrade is now being used for the exchange of PMU data and transient stability results
- Three variations on the standard (1991, 1999 and 2013 format)
- PowerWorld now allows transient stability results to be quickly saved in all three Comtrade Formats

Three Bus Example Comtrade Results

1,0,

1,0,

0.999988,0,

0,999998

0,999998

0,999998

```
PowerWorld,Transient Stability,1991

3, 3A, 0D

1,Gen Bus 1 #1_Speed,,, ,1.0054131589E-9,

2,Gen Bus 2 #1_Speed,,, ,1.09404544294E-9,

3,Gen 3 #1_Speed,,, ,9.01581660036E-10,

60

0

0,503

04/11/16,00:00:00.000000

04/11/16,00:00:00.000000

ASCII
```

1,	0,	0,	11169,	0,
2,	0,	0,	11169,	0,
з,	10000,828	3905,	0,8	79676,
4,	10000,828	3905,	0,8	79676,
5,	20000,825	5941,	5448,8	75444,
6,	30000,820	0131,	16181,8	67114 ,
7,	40000,811	1594,	32198,8	54686,
8,	50000,800	0330,	53337,8	38422,
9,	60000,786	5339,	79270,8	18589,
10,	70000,769	9859 , :	109779,7	95318,
11,	80000,751	1125,:	144320,7	69138,
12,	90000,730	0138,:	182784,7	40181,
13,	100000,707	7255,2	224625,7	09109,
14,	110000,682	2474,2	269299,6	76185,

The 1991 format is just ascii using four files; the 1999 format extends to allow data to be stored in binary format; the 2013 format extends to allow a single file format

Large System Studies

- The challenge with large systems, which could have more than 100,000 states, is the shear size
 - Most eigenvalues are associated with the local plants
 - Computing all the eigenvalues is computationally challenging, order n^3
- Specialized approaches can be used to calculate particular eigenvalues of large matrices
 - See Kundur, Section 12.8 and associated references

Single Machine Infinite Bus

- A quite useful analysis technique is to consider the small signal stability associated with a single generator connected to the rest of the system through an equivalent transmission line
- Driving point impedance looking into the system is used to calculate the equivalent line's impedance
 - The Z_{ii} value can be calculated quite quickly using sparse vector methods
- Rest of the system is assumed to be an infinite bus with its voltage set to match the generator's real and reactive power injection and voltage

Small SMIB Example

• As a small example, consider the 4 bus system shown below, in which bus 2 really is an infinite bus

• To get the SMIB for bus 4, first calculate Z_{44}

$$Y_{bus} = j \begin{bmatrix} -25 & 0 & 10 & 10 \\ 0 & 1 & 0 & 0 \\ 10 & 0 & -15 & 0 \\ 10 & 0 & 0 & -13.33 \end{bmatrix} \rightarrow Z_{44} = j0.1269$$

 Z_{44} is Z_{th} in parallel with jX'_{d,4} (which is j0.3) so Z_{th} is j0.22

Small SMIB Example

• The infinite bus voltage is then calculated so as to match the bus i terminal voltage and current

$$\overline{V}_{inf} = \overline{V}_i - Z_i \overline{I}_i$$

where $\left(\frac{P_i + jQ_i}{\overline{V}_i}\right)^* = \overline{I}_i$

• In the example we have

While this was demonstrated on an extremely small system for clarity, the approach works the same for any size system

$$\left(\frac{P_4 + jQ_4}{\bar{V}_4}\right)^* = \left(\frac{1 + j0.572}{1.072 + j0.220}\right)^* = 1 - j0.328$$

$$\bar{V}_{inf} = (1.072 + j0.220) - (j0.22)(1 - j0.328)$$

$$\bar{V}_{inf} = 1.0$$

Calculating the A Matrix

- The SMIB model A matrix can then be calculated either analytically or numerically
 - The equivalent line's impedance can be embedded in the generator model so the infinite bus looks like the "terminal"
- This matrix is calculated in PowerWorld by selecting Transient Stability, SMIB Eigenvalues
 - Select Run SMIB to perform an SMIB analysis for all the generators in a case
 - Right click on a generator on the SMIB form and select Show SMIB to see the Generator SMIB Eigenvalue Dialog
 - These two bus equivalent networks can also be saved, which can be quite useful for understanding the behavior of individual generators 39

Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the General Information tab shows information about the two bus equivalent

C Generator	r SMIB Eigenvalue Info	rmation							23	
Bus Number	a Bun 4	-	Find By Number	Status Open	Olosed					
ID	1	•	Find By Name	Area Name H	ome (1)					
Generator Information (on Generator MVA Base) General Info A Matrix Eigenvalues										
Generator M	IVA Base 100.000									
Infinite Bus	Voltage Magnitude (pu)	1.0000	Infinite Bus Ang	gle (deg)	-0.0000					
Terminal Cur	rrent Magnitude (pu)	1.0526	Terminal Currer	nt Angle (deg)	-18.193					
Terminal Volt	tage Magnitude (pu)	1.0946	Terminal Voltag	je Angle (deg)	11.5942					
Network In	mpedance on Generator	MVA Base	Network Impeda	ance on System	MVA Base					
Network R	(Gen Base) 0.000	00	Network R (Sys	tem Base)	0.00000					
Network X	(Gen Base) 0.220	00	Network X (Sys	tem Base)	0.22000					
✓ OK Save X Cancel ? Help Print										

PowerWorld case B4_SMIB

Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the A Matrix tab shows the A_{sys} matrix for the SMIB generator

C Generator	r SMIB Eigenvalue Infor	mation					-	▣	23
Bus Number	4	• 📑 🛛 🖪	ind By Number	Status					
Bus Name	Bus 4	-	Find By Name	Open 🔘	Olosed				
ID	1		Find	Area Name H	lome (1)				
Generator Information (on Generator MVA Base) General Info A Matrix Eigenvalues									
1 🖽 🖽 🕯	* •00 •00 ₩ ₩ ABCD	Records • Se	t • Columns •		🛯 🖉 🕈 🏲 🗮 ד	SORT 124 f(x) ABED) - 🌐		-
	Row Name	Machine Angle	Machine Speed w						
1 Mach	ine Angle	0.0000	376.9911						
2 Mach	iine Speed w	-0.3753	0.0000						

• In this example A_{21} is showing

$$\frac{\partial \Delta \omega_{4,pu}}{\partial \delta_4} = \frac{1}{2H_4} \left(\frac{-\partial P_{E,4}}{\partial \delta_4} \right) = -\left(\frac{1}{6} \right) \left(\left(\frac{-1}{0.3 + 0.22} \right) \left(-1.2812 \cos\left(23.94^\circ \right) \right) \right)$$
$$= -0.3753$$

Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the Eigenvalues tab shows the A_{sys} matrix eigenvalues and participation factors (which we'll cover shortly)

	Generator SMIB Eigenvalue Information											
	Bus Numb	er 4 ne Bus 4	•	Find By Nu	imber Status	ien 🍥 Clos	ed					
		ID 1	C	Find .	Area Na	ame Home (1)						
	Generato General I	info A Matrix	Generator MVA Bas Eigenvalues	se)								
: 땀 해 *.88 ;-98 혜 鷸 Options ▼ Eet ▼ Columns ▼ 國 ▼ 👹 ▼ 👹 ▼ 👹 ▼ 🗱 f(x) ▼ 田 Options ▼												
		Real Part	Imag Part	Magnitude	Damping Ratio	Damped Freq (Hz)	Damped Period (Sec)	Undamped Freq (Hz)	Machine Angle	Machine Speed w		
	1	0.0000 0.0000	11.8945 -11.8945	11.8945 11.8945	0.0000	1.8931 -1.8931	0.5282 -0.5282	1.8931 1.8931	0.7071	0.7071 0.7071		

• Saving the two bus SMIB equivalent, and putting a short, self-cleared fault at the terminal shows the 1.89 Hz, undamped response