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Announcements

• Read Chapter 8 

• Homework 7 is posted; due on Tuesday Nov 28

• Final is as per TAMU schedule.  That is, Friday Dec 8 

from 3 to 5pm

• We’ll be doing power system stabilizers today, and will 

pickup with modal analysis next time  
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Overview of a Power System 

Stabilizer (PSS)

• A PSS adds a signal to the excitation system to improve 

the rotor damping

– A common signal is proportional to speed deviation; other 

inputs, such as like power, voltage or acceleration, can be used

– Signal is usually generated locally (e.g. from the shaft)

• Both local mode and inter-area mode can be damped. 

When oscillation is observed on a system or a planning 

study reveals poorly damped oscillations, use of 

participation factors helps in identifying the machine(s) 

where PSS has to be located

• Tuning of PSS regularly is important
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Block Diagram of System with a PSS
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Power System Stabilizer Basics

• Stabilizers can be motivated by considering a classical 

model supplying an infinite bus

• Assume internal voltage has an additional component

• This will add additional damping if sin(d) is positive

• In a real system there is delay, which requires 

compensation 5
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Example PSS

• An example single input stabilizer is shown below 

(IEEEST) 

– The input is usually the generator shaft speed deviation, but it 

could also be the bus frequency deviation, generator electric 

power or voltage magnitude
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VST is an

input into

the exciter

The model can be 

simplified by setting 

parameters to zero



Example PSS

• Below is an example of a dual input PSS (PSS2A)

– Combining shaft speed deviation with generator electric 

power is common

– Both inputs have washout filters to remove low frequency 

components of the input signals
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IEEE Std 421.5 describes the common stabilizers



Washout Parameter Variation

• The PSS2A is the most common stabilizer in both the 

2015 EI and WECC cases.  Plots show the variation in 

TW1 for EI (left) and WECC cases (right); for both the 

x-axis is the number of PSS2A stabilizers sorted by 

TW1, and the y-axis is TW1 in seconds
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PSS Tuning: Basic Approach

• The PSS parameters need to be selected to achieve the 

desired damping through a process known as tuning

• The next several slides present a basic method using a 

single machine, infinite bus (SMIB) representation

• Start with the linearized differential, algebraic model 

with controls u added to the states

• If D is invertible then 
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 Δx = AΔx BΔy EΔu

0 = CΔx+DΔy

    -1

sysΔx = A BD C Δx EΔu A Δx EΔu



PSS Tuning: Basic Approach

• Low frequency oscillations are considered the 

following approach

• A SMIB system is setup to analyze the local mode of 

oscillation (in the 1 to 3 Hz range)

– A flux decay model is used with Efd as the input 

• Then, a fast-acting exciter is added between the input 

voltage and Efd

• Certain constants, K1 to K6, are identified and used to 

tune a power system stabilizer
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SMIB System (Flux Decay Model)

• SMIB with a flux decay machine model and a fast 

exciter
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Stator Equations

• Assume Rs=0, then the stator algebraic equations are:

' '
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Network Equations

• The network equation is (assuming zero angle at the 
infinite bus and no local load)
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Complete SMIB Model
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Linearization of SMIB Model

''

Step 1: Linearize the stator equations

Step 2: Linearize the network equations
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Linearization (contd)

• Final Steps involve

1. Linearizing Machine Equations

2. Substitute (1) in the linearized equations of (2). 
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Linearization of Machine 

Equations

• Substitute (3) in (2) to get the linearized model.

Symbolically we have 
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Linearized SMIB Model

• Excitation system is not yet included.

• K1 – K4 constants are defined on next slide
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K1 – K4 Constants

• K1 – K4 only involve machine and not the exciter.
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Manual Control

• Without an exciter, the machine is on manual control.

• The previous matrix will tend to have two complex 

eigenvalues, corresponding to the electromechanical 

mode, and one real eigenvalue corresponding to the flux 

decay

• Changes in the operating point can push the real 

eigenvalue into the right-hand plane

– This is demonstrated in the following example
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Numerical Example

• Consider an SMIB system with Zeq = j0.5, Vinf = 1.05, 

in which in the power flow the generator has 

S = 54.34 – j2.85 MVA with a Vt of 115

– Machine is modeled with a flux decay model with (pu, 100 

MVA) H=3.2, T'do=9.6, Xd=2.5, Xq=2.1, X'd=0.39, Rs=0, D=0
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Saved as case B2_PSS_Flux



Initial Conditions

• The initial conditions are
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SMIB Eigenvalues

• With the initial condition of Q = -2.85 Mvar the SMIB 

eigenvalues are -0.223  j7.374, -0.0764

• Changing the Q to 20 Mvar gives eigenvalues of

-0.181  j7.432, -0.171

• Change the Q to –20 Mvar gives eigenvalues of

-0.256  j6.981, +0.018
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in Eqp 



Including Terminal Voltage

• The change in the terminal voltage magnitude also needs 

to be include since it is an input into the exciter
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Computing

• While linearizing the stator algebraic equations, we had

• Substitute this in expression for Vt to get
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Heffron–Phillips Model 

(from 1952 and 1969 ) 

• Add a fast exciter with a single differential equation

• Linearize

• This is then combined with the previous three 
differential equations to give 
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Block Diagram

• K1 to K6 are affected by system loading
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On diagram

v is used to
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Add an EXST1 Exciter Model

• Set the parameters to KA = 400, TA=0.2, all others zero 

with no limits and no compensation

• Hence this simplified exciter is represented by a single 

differential equation
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Initial Conditions (contd)

• From the stator algebraic equation,
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SMIB Results

• Doing the SMIB gives a matrix that closely matches the 

book’s matrix from Example 8.7 

– The variable order is different; the entries in the w column are 

different because of the speed dependence in the swing 

equation and the Norton equivalent current injection

30

The  values are

different from the

book because of

speed dependence

included in the

stator voltage

and swing

equations 



Computation of K1 – K6 Constants

• Calculating the values with the formulas gives
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Damping of Electromechanical Modes

• Damping can be considered using either state-space 

analysis or frequency analysis

• With state-space analysis the equations can be written 

as

The change in Efd comes from the exciter
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State-Space Analysis

• With no exciter there

are three loops

– Top complex pair of

eigenvalues loop

– Bottom loop through

Eq’ contributes positive

damping

• Adding the exciter gives
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B2_PSS_Flux Example

• The SMIB can be used to plot how the eigenvalues 

change as the parameters (like KA) are varied
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Verified K Values

• The below equations verify the results provided on the 

previous slide SMIB matrix with the earlier values 
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1
1

2
2

3

3

4
4

5
5

6
5

0.1441 0.2882 3.2 0.922
2

0.1677 0.3354 3.2 1.073
2

1 1
0.3511 0.297

0.3511 9.6

0.236 0.236 9.6 2.266

10.069 0.2
10.069 0.005

400

714.5 0.
714.5

do

do

A

A

A

A

K
K

H

K
K

H

K
K T

K
K

T

K K
K

T

K K
K

T

      

      

     
 

      



     


    

2
0.357

400




Root Locus for Varying KA

• This can be considered a feedback system, with the 

general root locus as shown 
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Frequency Domain Analysis

• Alternatively we could use frequency domain analysis

• Ignoring TA gives

• If K5 is positive, then the

response is similar to the

case without an exciter

• If K5 is negative, then with

a sufficiently large KA the

electromechanical modes

can become unstable 
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Frequency Domain Analysis

• Thus a fast acting exciter can be bad for damping, but 

has over benefits, such as minimizing voltage 

deviations

• Including TA  

• Including the torque angle gives
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 

 



Torque-Angle Loop

• The torque-angle loop is as given in Figure 8.11;

with damping neglected it has two imaginary 

eigenvalues
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Torque-Angle Loop with 

Other Dynamics

• The other dynamics can be included as in Figure 8.12
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2

1

2
( ) 0

s

H
s K H sd d d


     

H(s) contributes

both synchronizing

torque and 

damping torque



Torque-Angle Loop with 

Other Dynamics

• Previously we had 

• If we neglect K4 (which has little effect at 1 to 3 Hz) 

and divide by K3 we get
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e 2 A 5
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Synchronizing Torque

• The synchronizing torque is determined by looking at 

the response at low frequencies (0)

• With high KA, this is approximately  
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(j ) 2 A 5

A 6

3

K K K
H 0

1
K K

K




 



(j ) 2 5

6

K K
H 0

K



 

2

1

2
( ) 0

s

H
s K H sd d d


     

The synchronizing

torque is dominated

by K1; it is enhanced

if K5 is negative


