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Announcements

Read Chapter 8
Homework 7 Is posted; due on Tuesday Nov 28

~inal Is as per TAMU schedule. That is, Friday Dec 8
from 3 to 5pm

o

We’ll be doing power system stabilizers today, and will

pickup with modal analysis next time




Overview of a Power System
Stabilizer (PSS
T

®* A PSS adds a signal to the excitation system to improve |
the rotor damping

— A common signal is proportional to speed deviation; other
Inputs, such as like power, voltage or acceleration, can be used

— Signal is usually generated locally (e.g. from the shaft)

* Both local mode and inter-area mode can be damped.
When oscillation is observed on a system or a planning
study reveals poorly damped oscillations, use of
participation factors helps in identifying the machine(s)
where PSS has to be located

® Tuning of PSS regularly Is important




Block Diagram of System with a PSS
T

P ] Aw,

Gpss("')|
Av,
+

Vr"’ii@b" G.(s) S v -
- . 1+5T,
Exciter Field circuit
Av,
Ks
1 AFE £|-+ 4
1+5T, ‘ ) )y

Voltage transducer

Figure 12.13 Block diagram representation with AVR and PSS

Image Source: Kundur, Power System Stability and Control




Power System Stabilizer Basics
T
* Stabilizers can be motivated by considering a classical
model supplying an infinite bus

do ’

A2 1o _EY in(5)-Daw
@, dt X+ X

* Assume internal voltage has an additional component
E'=E/ . +KAw

org
® This will add additional damping if sin(d) Is positive
* |n a real system there is delay, which requires
compensation 5




Example PSS
T
* An example single input stabilizer is shown below
(IEEEST)

— The input is usually the generator shaft speed deviation, but it
could also be the bus frequency deviation, generator electric
power or voltage magnitude

Filter

[+A sHA ¢
(1+ASTALST (1A sTA 57)

Output Limiter

Vi =V if (Vg =V = V)
V, =0 if (Vcr < Vm_:l
V, =0 i (Ve > Vo)




Example PSS

® Below Is an example of a dual input PSS (PSS2A)

— Combining shaft speed deviation with generator electric
power IS common

— Both inputs have washout filters to remove low frequency
components of the input signals

® o 0 | @ @

VSTMAX
A+sT, /_ .
1+sT, _/ V,,

V.

STMIN

o




Washout Parameter Variation

® The PSS2A is the most common stabilizer in both the
2015 El and WECC cases. Plots show the variation in
Ty, for El (left) and WECC cases (right); for both the
X-axis Is the number of PSS2A stabilizers sorted by
Tw1, and the y-axis is T,,,, In seconds

o




PSS Tuning: Basic Approach

The PSS parameters need to be selected to achieve the
desired damping through a process known as tuning

The next several slides present a basic method using a
single machine, infinite bus (SMIB) representation

Start with the linearized differential, algebraic model
with controls u added to the states

AX = AAx+ BAy + EAu
0 = CAx + DAy

If D Is invertible then
Ax=(A-BD"'C)Ax+EAu=A_Ax +EAu

o




PSS Tuning: Basic Approach
T

Low frequency oscillations are considered the
following approach

A SMIB system is setup to analyze the local mode of
oscillation (in the 1 to 3 Hz range)
— A flux decay model is used with E, as the input

Then, a fast-acting exciter iIs added between the input
voltage and E,

Certain constants, K, to K, are identified and used to
tune a power system stabilizer

10




SMIB System (Flux Decay Model)
T

* SMIB with a flux decay machine model and a fast
exciter

Vel
‘ Re jxe
@ > ‘ > J‘L/V\f—ﬂM
(I, + jl )el@ V., £0°
0 =Aw,, o,

1 - -
Aa)p ZE[TM —(quq +(Xd _Xd)ldlq +DAa)pu)]

L

Eq :T (_E(lq_(xd _Xc'i)ld +Efd)
do

11




Stator Equations

* Assume R.=0, then the stator algebraic equations are:

X1, —Vsin(6-0)=0
E,—V,cos(6—0)— X 1, =0
(v, + 1V, el =g
LoV + V=Vl
Expand the right hand side of (4)
Vi + IV, =V;sin(o - 0) + }JV, cos(o — 0)
-V =V sin(6 —6) and V, =V, cos(o - 0)
(1) and (2) become X I -V,=0

E('4 —Vq—X(;,IOI =0

(1)
(2)
3)
(4)

()

(6)
(7)

o

12




Network Equations

Al
® The network equation is (assuming zero angle at the
Infinite bus and no local load)

(V, + jV, el v _/0°

(1, + i1,)e"" =

R, + JX,
+jV,) -V e e
(|d+j|q):(\/d J q) .oo
R, + JX,
Simplifying ol =Xl =V, =V sing
Xly + R, =V, -V, coso
Vel
‘ Re Xe
@ ‘ A |

s V. _~£0°
(14 +j1,)e! 7" 13




Complete SMIB Model
1 AT

(_E(':] _(Xd o Xclj)ld T Efd)
Tdo

o= Aw, o, noteinthe book v=w, = d ‘Machine equations

W

E, =

: 1 . .
@, ZE[TM —(E 1, + (X = X)l, + DAw,, )]

Ky -V, =  storequatons.
Ve~ Xal =0 }—

Rely — X1, =V, =V, sino
Xly +R 1, =V, =V_coso

V_/0°

(1, + jl, el 14




Linearization of SMIB Model

o

Step 1. Linearize the stator equations

RS

Step 2: Linearize the network equations
AV, R, —X, || Al V_coso°
= + _ Ao
AV, X. R, || Al —V_sino°
Step 3: Equate the righthand sides of the above equations

R, —(X, +X,) || Al 0 -V_C0So°
. = |+ _ Ao
(X, +X,) R, Al AE, V_sino®°

_ 15




Linearization (contd)

Al
Solve for Al, Al

Alg | 1] X+ X, —RV,cos6°+V, sind°(X, +X,) || AE, M
Al, | Al R RV_sind°+V_coso°(X,+X,) || As

The determinant is A = R? + (X, + X, )(X, + X;)

* Final Steps involve
1. Linearizing Machine Equations

x=f(x, 1,1 Ex.T,) ()
2. Substitute (1) in the linearized equations of (2).

16




Linearization of Machine
Equations
T

e ] [0 0 M ap
AE, T AE,

Ad |=|0 0 aw || A | ()

S

_Aa)pU_ _;—E 0 —%__Awpu_
'%(xd—x;) ) _ Al e AE
+ 0 0 le} 0 0 LT“’}
A1 =X A (G =XI =B | 0 A

Syrﬁbolically we have
AX = AAX+BAu+CAI,_, (2)

Al,_, = DAX (3)

® Substitute (3) In (2) to get the linearized model.
17




Linearized SMIB Model

KM
AE, = - . AE, — % AS+--AE,,
K Tdo Tdo Tdo
AS = o Ao,
A, =—ﬁAE;q B g5 22 Aw, +iAT
2H 2H 2H 2H

® Excitation system is not yet included.
* K, — K, constants are defined on next slide

18




K1 - K4 Constants

Al
1, K= X)(Xe+X,)
K, A
K4:V°O(X"A_Xd)[(xq+xe)sin 5°—Recos5°]
1 0 0 '0
KZ—X[ A—12(X} =X )X+ X.) =R, (X5 = X )1 +R.E®|

K, = —X[lgvoo(x;, — X H(X, +X,)sin 5°— R, cos 5%
V(X = X )1 —ECH(X, + X,) cos §°— R, sin 5°]

* K; - K, only involve machine and not the exciter.
19




Manual Control

o

* Without an exciter, the machine is on manual control.

® The previous matrix will tend to have two complex
eigenvalues, corresponding to the electromechanical

mode, and one real eigenvalue corresponding to the flux
decay

® Changes In the operating point can push the real
eigenvalue into the right-hand plane

— This i1s demonstrated in the following example

20




Numerical Example

A

* Consider an SMIB system with Z,, = 0.5, Vs = 1.05,
In which in the power flow the generator has
S =54.34 —j2.85 MVA with a V, of 1/15°

— Machine is modeled with a flux decay model with (pu, 100
MVA) H=3.2, T';,=9.6, X;=2.5, X,=2.1, X';=0.39, R;=0, D=0

Flux Decay BuS 1

rn

15.00 Deg
1.000 pu

X=0.5

Bus 2
U Infinite Bus

=

0.00 Deg
1.050 pu

21




Initial Conditions

AlM
®* The initial conditions are

le¥ = (1 + jl,)e’ ™ = — __0150540 =0.5443.,18°
JU.

5(0) =angle of E where E =V,e" + (R, + jX,)1.e".

E =1./15°+(j2.1)(0.5443./18°)
~1.4788./65.5°

I+ jl, = 1,e"7e717® =0.5443./42.48°,
|, =0.4014, and 1, =0.3676.

V, + jV, =Vele 7% = 1.,39.48°
Hence, V, =0.7718, V, =0.6358

22




SMIB Eigenvalues

A

* With the initial condition of Q =-2.85 Mvar the SMIB

® Changing the Q to 20 Mvar gives eigenvalues of

® Change the Q to —20 Mvar gives eigenvalues of

eigenvalues are -0.223 +7.374, -0.0764
-0.181 +j7.432, -0.171

-0.256 + 6.981, +0.018

103
102
101

100
994
98
97
96
95

23




Including Terminal Voltage

Al
® The change in the terminal voltage magnitude also needs
to be include since it Is an input into the exciter

re

ref ::>
V, AV,
V, = V2 +V2
Differentiating v =V} +V/}

\Y AV et

VAV, = VAV, + VAV,

0 Ve
Vo AV, +—qAV

t t

AV, =

24




Computing

* While linearizing the stator algebraic equations, we had

AV | | 0 X [AaE | | O
AV, | |-X, 0 || A5 | |AE,
® Substitute this in expression for AV, to get

AV, = K,AS + KGAE,

Vv, . |
K, = %{V—d X [RV, sino°+V, coso°(X, + X,)]

t

t

\VARENS
+V_q[xd (RV, cosd°-V, (X, + X,)sin 50)]}

: A A
Ky =24V X Ry~ X, (X, +X,) bt
AV, V, v

t

o

25




Heffron—Phillips Model
from 1952 and 1969
T

* Add a fast exciter with a single differential equation
TAEfd T Efd +K (Vref )

® Linearize |
TAAEfd = _AEfd + KA(AVref _Avt)

T\AE =-AE, + K, AV, — K, (K;AS + K AE,)

® This is then combined with the previous three
differential equations to give

X=A_X+BAu

Au=[AT, AV.]

26




Block Diagram

A

* K, to K; are affected by system loading

K
N\
Y~ (rad/sec)
ATl 1 Q’ S et Ad (rad).
. o7 71 il Sl P i
a1y, | N
A4 \/
D
K
/
A ag; = S
- -
P :
1+ K3T s + 1+S8T, ;
ALz " ‘v\’f
AV,

\'%
&

27




Add an EXST1 Exciter Model

Al
® Set the parameters to K, =400, T,=0.2, all others zero
with no limits and no compensation

Vs

1'-"‘IrT1"’?-l’l_t\.d.nl';.‘.l(

e/ .
1457, _/ S

VTVM -K C I]FD

K1

IFD

>z}
* Hence this simplified exciter is represented by a single
differential equation

TAEfd = _Efd + KA(VREF _Vt +Vs)




Initial Conditions (contd)

* From the stator algebraic equation,
E('q =V, + X Ny
=0.63581+(0.39)(0.4014) =0.7924
Ey = Eth +(Xy = X)I,
=0.7924+(2.5-0.39)0.4014 =1.6394

E
Ve =V, + -2 =14 29390 1 0041
K 400
w, =377, T, =E, I, + (X, = X )4l
= (0.7924)(0.3676) + (2.1-0.39)(0.4014)(0.3676)

=0.5436 (checks with (VV_sin8)/X,)

A

29




SMIB Results
A]M

* Doing the SMIB gives a matrix that closely matches the
book’s matrix from Example 8.7

— The variable order is different; the entries in the w column are
different because of the speed dependence in the swing
equation and the Norton equivalent current injection

Generator SMIB Eigenvalue Information - o IE3
Bus Number |1 S Find By Number Status
Bus Name  |Bus 1 ~ | Find By Name ez —s
D |1 Find ... Area Mame
Generator Information (on Generator MVA Base)
General | Info AMatrix  Eigenvalues
E] By Ak %8 5% % 8 Records - Set~ Columns~ B~ | fgE- 8- ¥ BH- W fo- B options-
Row Name Machine Angle |Machine Speed W Machine Eqp Exciter EField
before limit
1|Machine Angle 0.0000 376.9911 0.0000 0.0000
2|Machine Speed w -0.1441 -0.1723 -0.1677 0.0000
3|Machine Eqp -0.2360 -0.1957 -0.3511 0.1042
4| Exciter EField befare limit -10.0694 -566.1410 -714.5081 -5.0000

¢ OK Save x Cancel ? Help Print




Computation of K1 — K6 Constants
T

® Calculating the values with the formulas gives
A=R;+(X, + X )X, +X,)=2314
1, X + X)Xy +X,)

—=1 =3.3707

K, A

K, =0.296667

K, = Vi (Xy = Xo) [(X, + X,)sin6°~R, cos6°] = 2.26555

A
1 0 0 ' ' 0 '0
K, :X[IqA— 12(Xy = X)Xy + X, ) =R (Xy = X )19 +R,E]=1.0739

Similarly K, ,K;,and K are calculated as
K,=0.9224 , K, =0.005, K, =0.3572

31




Damping of Electromechanical Modes

o

* Damping can be considered using either state-space
analysis or frequency analysis
* With state-space analysis the equations can be written

as

AE.

q

AS

Aw

pu

1
K3Td’o
0

Ky
) To

0

K,

2H

0

0

S

Do,

2H

AE.

q

Ao

Aw

pu

!
Tdo

The change In E;; comes from the exciter

1

0 |AE,
0

32




State-Space Analysis

* With no exciter there -
are three loops G
— Top complex pair of i /P%T’Iﬁ ey
eigenvalues loop G \
— Bottom loop through 2 =

AE,’ contributes positive A

damping

A8 (rad)

1+ K3 Td'os

* Adding the exciter gives

1

AE,, = T—(AEfd — K, KsAS — K, K AE! + K,AV,,, )

A

o

33




B2 PSS Flux Example

A

®* The SMIB can be used to plot how the eigenvalues
change as the parameters (like K,) are varied

AE,

AE

]
Ao
Aw

pu

1
) KT
0
K,
2H
_ KaKs

K, 1
T T

0 10) 0

_K _Dao,
2H  2H
KK, -1

_ 0 -

TA

TA TA

AE

q

Ao
Aw

pu

AE,,

AV

ref

>—I‘>7< o o o

Generator SMIB Eigenvalue Information o IES
Bus Mumber |1 v Find By Mumber Status
Bus Mame |Bus 1 “ | Find By Name Open Closed
D (1 Find ... Area Name (Home (1)
Generator Information (on Generator MVA Base)
General | Info A Matrix  Eigenvalues
E] B ok %8 5% &% 8% Records~ Set+ Columns - B~ | gi- W8 F By B - H v
Row Name Machine Angle Machine Speeq Machine Eqp | Exciter EField
w before limit
1|Machine Angle 0.0000 376,991 0.0000 0.0000
2|Machine Speed w -0.14441 01723 01677 0.0000
3|Machine Eqp -0.2360] -0.1957 -0.3511 01042
4|Exciter EField before limit -10.0695 -566.1410 -714.5081 -5.0000
¢ OK Save x Cancel ? Help Print




® The below equations verify the results provided on the
previous slide SMIB matrix with the earlier values

Kl_

KZ_

1

!
3Tdo

K

!
do

_ KaKs

A
KAKG

A

Verified K Values

=-0.1441— K, =0.2882x3.2 =0.922

~0.1677 — K, =0.3354x 3.2 =1.073

1

=0.297
0.3511x9.6

~0.3511—> K, =

¢ =-0.236 — K, = 0.236x9.6 = 2.266

=-10.069 — K, = 10'0235 0-2 _ 0005

= 71455 K, = 7144';;0'2 =0.357

o

35




Root Locus for Varying K,

Alw
® This can be considered a feedback system, with the
general root locus as shown

5] I B e

AVief + ~ K4

| Y 1+sT,
- A
_ ) 4 Av,

H(s)

Y

Figure 8.9: Small-signal model viewed as a feedback system

36




Frequency Domain Analysis

Alternatively we could use frequency domain analysis

Ignoring T, gives  AE;(s)  —K,(K,+K,K;)

AS(s)  1+K, KK +sK,T,

If K. IS positive, then the E
response Is similartothe ¥ . oo

case without an exciter il
If K¢ IS negative, then with [« 2

AS (rad)

a sufficiently large K, the 1
electromechanical modes
can become unstable

o

37




Frequency Domain Analysis

o

® Thus a fast acting exciter can be bad for damping, but

has over benefits, such as minimizing voltage
deviations

e Including T, AE[(s)  —K (K, (1+5T,)+K,K;)

AS(S) KKK +(1+8K T, )(1+5T,)
* Including the torque angle gives

[}

AE, S AT : %HS Av = (rai/:w 1 AB (rad)
ATe(S) — K2 q( ) _ H (S) :;/)99‘
AO(S) AO(S)




* The torque-

Torgue-Angle Loop
T

angle loop is as given in Figure 8.11;

with damping neglected it has two imaginary

eigenvalues R _
l <
D) a, _Y
_ + 1775 ¢ > = 1 >
11,2 *) 7H /\_ 2Hs Al s -~ AS
/ b <

, Ad
4 ‘9 ~
2H 24 ps+ K -~

A

Figure 8.11: Torque-angle loop
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Torque-Angle Loop with
Other Dynamics
A

® The other dynamics can be included as in Figure 8.12

Torque-angle loop

ATy=0_ ™\~
= 20, K Ad
AT, /N
H(s)

Figure 8.12: Torque-angle loop with other dynamics added

2h S°AS+K,AS+H(S)AS =0

Wy




Torque-Angle Loop with
Other Dynamics
AJM
® Previously we had
AT, (S) H (s) = _Ksz(K4 (1+sT,)+ KAKS)
A5(S) - - KAK3K6 +(1+SK3TOI'0)(1+STA)

* If we neglect K, (which has little effect at 1 to 3 Hz)
and divide by K, we get

ATe (S) _ _KzKAKs

o) e = 1 (T
KK, +——+s| A +T/ [+s°T, T,
K, | K,

3
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Synchronizing Torque
T
® The synchronizing torque is determined by looking at
the response at low frequencies (w~0)
_KZKAK5

1
K.K, +—
A" 6 K

3

H(jw=0)=

* With high K,, this is approximately

_Kz K5
Ke

HJjow=0)=

2H

Wy

S°AS +K,AS+H(S)AS =0

42




