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Announcements

• Read Chapter 5 and Appendix A

• Homework 2 is how due on Tuesday (Sept 26)
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Dq0 Reference Frame

• Stator is stationary, rotor is rotating at synchronous 

speed

• Rotor values need to be transformed to fixed reference 

frame for analysis

• Done using Park's transformation into what is known as 

the dq0 reference frame (direct, quadrature, zero)

– Parks’ 1929 paper voted 2nd most important power paper of  

20th century (1st was Fortescue’s sym. components paper)

• Convention used here is the q-axis leads the d-axis 

(which is the IEEE standard)

– Others (such as Anderson and Fouad) use a q-axis lagging 

convention 3
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Kirchhoff’s Voltage Law, Ohm’s Law, Faraday’s 

Law, Newton’s Second Law
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Fundamental Laws
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Dq0 transformations 
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Dq0 transformations 

Note that the

transformation

depends on the

shaft angle.  
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Stator Rotor Shaft
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Transformed System



Electrical system:
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Electrical & Mechanical Relationships
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P is the 

number of

poles (e.g.,

2,4,6); Tfw

is the friction

and windage

torque



Derive Torque

• Torque is derived by looking at the overall energy 

balance in the system

• Three systems: electrical, mechanical and the coupling 

magnetic field

– Electrical system losses are in the form of resistance

– Mechanical system losses are in the form of friction

• Coupling field is assumed to be lossless, hence we can 

track how energy moves between the electrical and 

mechanical systems
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Energy Conversion
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Look at the instantaneous power:
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Change to Conservation of Power

We are using

v = d/dt here
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With the Transformed Variables
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With the Transformed Variables
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This requires the lossless coupling field 

assumption
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Change in Coupling Field Energy

First term on 

right is what is 

going on

mechanically, 

other terms are 

what is going 

on electrically



For independent states , a, b, c, fd, 1d, 1q, 2q
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Change in Coupling Field Energy
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There are eight such “reciprocity conditions for 

this model.

These are key conditions – i.e. the first one gives 

an expression for the torque in terms of the 

coupling field energy.
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Equate the Coefficients
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Equate the Coefficients

These are key conditions – i.e. the first one gives an 

expression for the torque in terms of the coupling field energy.



Coupling Field Energy

• The coupling field energy is calculated using a path 

independent integration

– For integral to be path independent, the partial derivatives of 

all integrands with respect to the other states must be equal

• Since integration is path independent, choose a 

convenient path

– Start with a de-energized system so all variables are zero

– Integrate shaft position while other variables are zero, hence 

no energy

– Integrate sources in sequence with shaft at final shaft value
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Do the Integration



Torque
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• Assume: iq, id, io, ifd, i1d, i1q, i2q are independent of shaft

(current/flux linkage relationship is independent of 

shaft)

• Then Wf will be independent of shaft as well

• Since we have 
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Define Unscaled Variables

s is the rated

synchronous speed

 plays an important role! 
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Convert to Per Unit

• As with power flow, values are usually expressed in per 

unit, here on the machine power rating

• Two common sign conventions for current: motor has 

positive currents into machine, generator has positive 

out of the machine

• Modify the flux linkage current relationship to account 

for the non power invariant “dqo” transformation
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BaseBaseBase PIV 
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Convert to Per Unit
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Convert to Per Unit
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Hence the  variables are just normalized

flux linkages



Where the rotor circuit base voltages are
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Convert to Per Unit
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Convert to Per Unit
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Convert to Per Unit

• Almost done with the per unit conversions!  Finally 

define inertia constants and torque
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Synchronous Machine Equations
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Sinusoidal Steady-State 
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Here we consider the 

application

to balanced, sinusoidal 

conditions
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Transforming to dq0
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Simplifying Using 

• Recall that

• Hence

• These algebraic equations can be written as 

complex equations,
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The conclusion is 

if we know , then

we can easily relate

the phase to the dq

values!



Summary So Far

• The model as developed so far has been derived using 

the following assumptions

– The stator has three coils in a balanced configuration, spaced 

120 electrical degrees apart

– Rotor has four coils in a balanced configuration located 90 

electrical degrees apart

– Relationship between the flux linkages and currents must 

reflect a conservative coupling field

– The relationships between the flux linkages and currents must 

be independent of shaft when expressed in the dq0 coordinate 

system 
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Two Main Types of Synchronous 

Machines

• Round Rotor

– Air-gap is constant, used with higher speed machines

• Salient Rotor (often called Salient Pole) 

– Air-gap varies circumferentially

– Used with many pole, slower machines such as hydro

– Narrowest part of gap in the d-axis and the widest along the 

q-axis
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Assuming a Linear Magnetic Circuit

• If the flux linkages are assumed to be a linear function 

of the currents then we can write 
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Inductive Dependence on Shaft Angle
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Stator Inductances

• The self inductance for each stator winding has a 

portion that is due to the leakage flux which does not 

cross the air gap, Lls

• The other portion of the self inductance is due to flux 

crossing the air gap and can be modeled for phase a as 

• Mutual inductance between the stator windings is 

modeled as 

37
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Conversion to dq0 for Angle 

Independence 
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Independence 
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For a round rotor

machine LB is small

and hence Lmd is 

close to Lmq. For a

salient pole machine

Lmd is substantially

larger



Convert to Normalized at f = s

• Convert to per unit, and assume frequency of s

• Then define new per unit reactance variables
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Example Xd/Xq Ratios for a 

WECC Case
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Key Simulation Parameters

• The key parameters that occur in most models can then 

be defined the following transient values
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These values

will be 

used in

all the 

synchronous

machine

models

In a salient rotor machine

Xmq is small so Xq = X'q;

also X1q is small so 

T'q0 is small


