ECEN 667 Power System Stability

Lecture 7: Synchronous Machine Models

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, <u>overbye@tamu.edu</u> Special Guest: TA lyke Idehen

Announcements

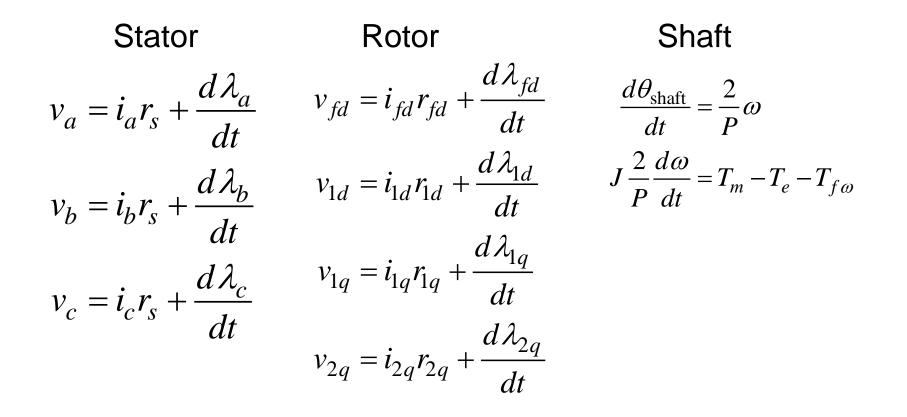
- Read Chapter 5 and Appendix A
- Homework 2 is how due on Tuesday (Sept 26)

Dq0 Reference Frame

- Stator is stationary, rotor is rotating at synchronous speed
- Rotor values need to be transformed to fixed reference frame for analysis
- Done using Park's transformation into what is known as the dq0 reference frame (direct, quadrature, zero)
 - Parks' 1929 paper voted 2nd most important power paper of 20th century (1st was Fortescue's sym. components paper)
- Convention used here is the q-axis leads the d-axis (which is the IEEE standard)
 - Others (such as Anderson and Fouad) use a q-axis lagging convention

Fundamental Laws

Kirchhoff's Voltage Law, Ohm's Law, Faraday's Law, Newton's Second Law



Dq0 transformations

$$\begin{bmatrix} v_d \\ v_q \\ v_o \end{bmatrix} \triangleq T_{dqo} \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} \quad \text{or } i, \lambda$$

$$\begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} = T_{dqo}^{-1} \begin{bmatrix} v_d \\ v_q \\ v_o \end{bmatrix}$$

Dq0 transformations

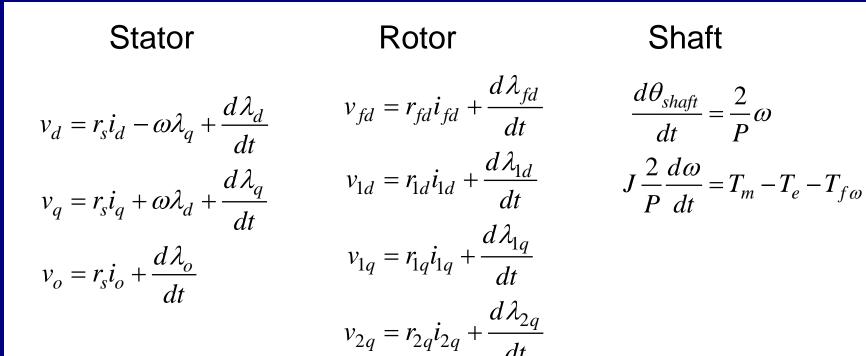
$$T_{dqo} \triangleq \frac{2}{3} \begin{bmatrix} \sin\frac{P}{2}\theta_{shaft} & \sin\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & \sin\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) \\ \cos\frac{P}{2}\theta_{shaft} & \cos\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & \cos\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

with the inverse,

$$T_{dqo}^{-1} = \begin{bmatrix} \sin\frac{P}{2}\theta_{shaft} & \cos\frac{P}{2}\theta_{shaft} & 1\\ \sin\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & \cos\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & 1\\ \sin\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) & \cos\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) & 1 \end{bmatrix}$$

Note that the transformation depends on the shaft angle.

Transformed System



Electrical & Mechanical Relationships

Electrical system:

$$v = iR + \frac{d\lambda}{dt}$$
 (voltage)
 $vi = i^2R + i\frac{d\lambda}{dt}$ (power)

Mechanical system:

$$J\left(\frac{2}{P}\right)\frac{d\omega}{dt} = T_m - T_e - T_{fw} \quad \text{(torque)}$$

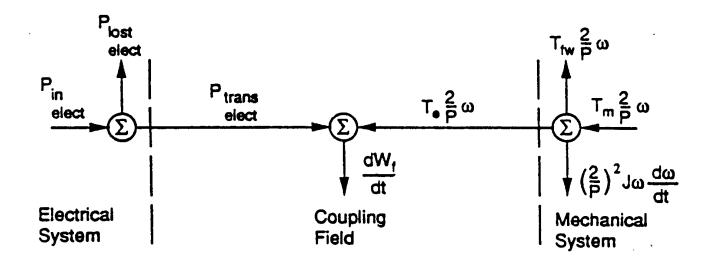
$$J\left(\frac{2}{P}\right)^{2}\omega\frac{d\omega}{dt} = \frac{2}{P}\omega T_{m} - \frac{2}{P}\omega T_{e} - \frac{2}{P}\omega T_{fw} \quad \text{(power)}$$

AM

Derive Torque

- Torque is derived by looking at the overall energy balance in the system
- Three systems: electrical, mechanical and the coupling magnetic field
 - Electrical system losses are in the form of resistance
 - Mechanical system losses are in the form of friction
- Coupling field is assumed to be lossless, hence we can track how energy moves between the electrical and mechanical systems

Energy Conversion



Look at the instantaneous power:

$$v_a i_a + v_b i_b + v_c i_c = \frac{3}{2} v_d i_d + \frac{3}{2} v_q i_q + 3 v_o i_o$$

Change to Conservation of Power

$$P_{in} = v_a i_a + v_b i_b + v_c i_c + v_{fd} i_{fd} + v_{1d} i_{1d} + v_{1q} i_{1q}$$

elect

$$+ v_{2q}i_{2q}$$

$$P_{lost} = r_s \left(i_a^2 + i_b^2 + i_c^2 \right) + r_{fd}i_{fd}^2 + r_{1d}i_{1d}^2 + r_{1q}i_{1q}^2 + r_{2q}i_{2q}^2$$

$$elect$$

$$P_{trans} = i_a \frac{d\lambda_a}{dt} + i_b \frac{d\lambda_b}{dt} + i_c \frac{d\lambda_c}{dt} + i_{fd} \frac{d\lambda_{fd}}{dt} + i_{1d} \frac{d\lambda_{1d}}{dt}$$

$$+i_{1q}rac{d\lambda_{1q}}{dt}+i_{2q}rac{d\lambda_{2q}}{dt}$$

We are using $v = d\lambda/dt$ here

With the Transformed Variables

$$P_{in}_{elect} = \frac{3}{2} v_d i_d + \frac{3}{2} v_q i_q + 3 v_o i_o + v_{fd} i_{fd} + v_{1d} i_{1d}$$

$$+ v_{1q} \dot{i}_{1q} + v_{2q} \dot{i}_{2q}$$

$$P_{lost}_{elect} = \frac{3}{2}r_s i_d^2 + \frac{3}{2}r_s i_q^2 + 3r_s i_o^2 + r_{fd} i_{fd}^2 + r_{1d} i_{1d}^2$$

$$+r_{1q}i_{1q}^2+r_{2q}i_{2q}^2$$

With the Transformed Variables

$$\begin{split} P_{trans} &= -\frac{3}{2} \frac{P}{2} \frac{d\theta_{shaft}}{dt} \lambda_q i_d + \frac{3}{2} i_d \frac{d\lambda_d}{dt} + \frac{3}{2} \frac{P}{2} \frac{d\theta_{shaft}}{dt} \lambda_d i_q \\ &+ \frac{3}{2} i_q \frac{d\lambda_q}{dt} + 3 i_o \frac{d\lambda_o}{dt} + i_{fd} \frac{d\lambda_{fd}}{dt} + i_{ld} \frac{d\lambda_{ld}}{dt} \\ &+ i_{lq} \frac{d\lambda_{lq}}{dt} + i_{2q} \frac{d\lambda_{2q}}{dt} \end{split}$$

AM

Change in Coupling Field Energy

$$\frac{dW_f}{dt} = \begin{bmatrix} T_e \frac{2}{P} \end{bmatrix} \frac{d\theta}{dt} + \begin{bmatrix} i_a \end{bmatrix} \frac{d\lambda_a}{dt} + \begin{bmatrix} i_b \end{bmatrix} \frac{d\lambda_b}{dt} \\ + \begin{bmatrix} i_c \end{bmatrix} \frac{d\lambda_c}{dt} + \begin{bmatrix} i_{fd} \end{bmatrix} \frac{d\lambda_{fd}}{dt} + \begin{bmatrix} i_{1d} \end{bmatrix} \frac{d\lambda_{1d}}{dt} \\ + \begin{bmatrix} i_{1q} \end{bmatrix} \frac{d\lambda_{1q}}{dt} + \begin{bmatrix} i_{2q} \end{bmatrix} \frac{d\lambda_{2q}}{dt}$$

First term on right is what is going on mechanically, other terms are what is going on electrically

This requires the lossless coupling field assumption

Change in Coupling Field Energy

For independent states θ , λ_a , λ_b , λ_c , λ_{fd} , λ_{1d} , λ_{1q} , λ_{2q}

$$\frac{dW_{f}}{dt} = \left[\frac{\partial W_{f}}{\partial \theta}\right] \frac{d\theta}{dt} + \left[\frac{\partial W_{f}}{\partial \lambda_{a}}\right] \frac{d\lambda_{a}}{dt} + \left[\frac{\partial W_{f}}{\partial \lambda_{b}}\right] \frac{d\lambda_{b}}{dt}$$

$$+ \left[\frac{\partial W_f}{\partial \lambda_c} \right] \frac{d\lambda_c}{dt} + \left[\frac{\partial W_f}{\partial \lambda_{fd}} \right] \frac{d\lambda_{fd}}{dt} + \left[\frac{\partial W_f}{\partial \lambda_{1d}} \right] \frac{d\lambda_{1d}}{dt}$$

$$+\left[\frac{\partial W_{f}}{\partial \lambda_{1q}}\right]\frac{d\lambda_{1q}}{dt}+\left[\frac{\partial W_{f}}{\partial \lambda_{2q}}\right]\frac{d\lambda_{2q}}{dt}$$

Equate the Coefficients

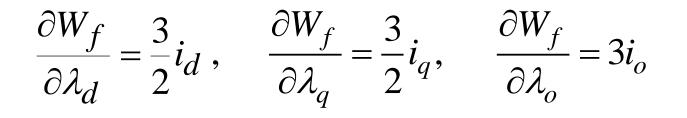
$$T_e \frac{2}{P} = \frac{\partial W_f}{\partial \theta}$$
 $i_a = \frac{\partial W_f}{\partial \lambda_a}$ etc.

There are eight such "reciprocity conditions for this model.

These are key conditions - i.e. the first one gives an expression for the torque in terms of the coupling field energy.

Equate the Coefficients

 $\frac{\partial W_f}{\partial \theta_{shaft}} = \frac{3}{2} \frac{P}{2} \left(\lambda_d i_q - \lambda_q i_d \right) + T_e$



 $\frac{\partial W_f}{\partial \lambda_{fd}} = i_{fd}, \quad \frac{\partial W_f}{\partial \lambda_{1d}} = i_{1d}, \quad \frac{\partial W_f}{\partial \lambda_{1q}} = i_{1q}, \quad \frac{\partial W_f}{\partial \lambda_{2q}} = i_{2q}$

These are key conditions – i.e. the first one gives an expression for the torque in terms of the coupling field energy. 17

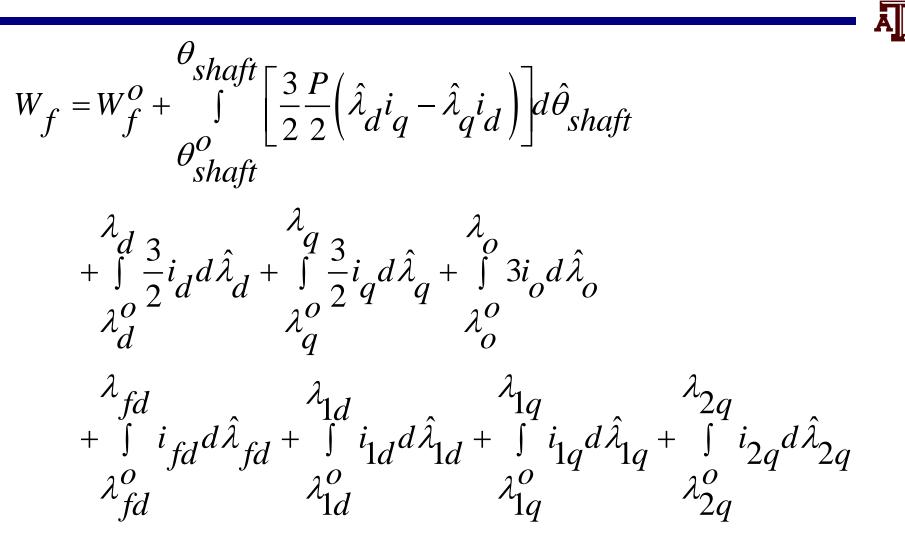
Coupling Field Energy

- The coupling field energy is calculated using a path independent integration
 - For integral to be path independent, the partial derivatives of all integrands with respect to the other states must be equal

For example,
$$\frac{3}{2} \frac{\partial i_d}{\partial \lambda_{fd}} = \frac{\partial i_{fd}}{\partial \lambda_d}$$

- Since integration is path independent, choose a convenient path
 - Start with a de-energized system so all variables are zero
 - Integrate shaft position while other variables are zero, hence no energy
 - Integrate sources in sequence with shaft at final θ_{shaft} value

Do the Integration



Torque

- <u>Assume:</u> i_q , i_d , i_o , i_{fd} , i_{1d} , i_{1q} , i_{2q} are independent of θ_{shaft} (current/flux linkage relationship is independent of θ_{shaft})
- Then W_f will be independent of θ_{shaft} as well
- Since we have

$$\frac{\partial W_f}{\partial \theta_{shaft}} = \frac{3}{2} \frac{P}{2} \left(\lambda_d i_q - \lambda_q i_d \right) + T_e = 0$$

$$T_e = -\frac{3}{2} \frac{P}{2} \left(\lambda_d i_q - \lambda_q i_d \right)$$

Define Unscaled Variables

J

$$\delta \underline{\Delta} \frac{P}{2} \theta_{shaft} - \omega_s t$$

 ω_s is the rated synchronous speed δ plays an important role!

$$\frac{d\lambda_d}{dt} = -r_s i_d + \omega \lambda_q + v_d$$
$$\frac{d\lambda_q}{dt} = -r_s i_q - \omega \lambda_d + v_q$$
$$\frac{d\lambda_o}{dt} = -r_s i_o + v_o$$

$$\frac{d\lambda_{fd}}{dt} = -r_{fd}i_{fd} + v_{fd}$$
$$\frac{d\lambda_{1d}}{dt} = -r_{1d}i_{1d} + v_{1d}$$

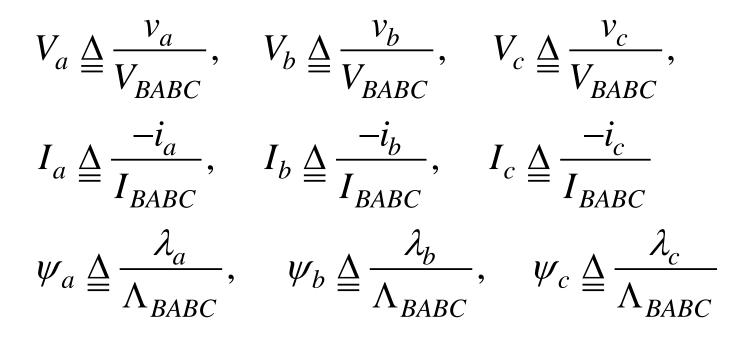
$$\frac{d\lambda_{1q}}{dt} = -r_{1q}i_{1q} + v_{1q}$$
$$\frac{d\lambda_{2q}}{dt} = -r_{2q}i_{2q} + v_{2q}$$

$$\frac{d\delta}{dt} = \omega - \omega_s$$
$$\frac{2}{p}\frac{d\omega}{dt} = T_m + \left(\frac{3}{2}\right)\left(\frac{P}{2}\right)\left(\lambda_d i_q - \lambda_q i_d\right) - T_{f\omega}$$

• As with power flow, values are usually expressed in per unit, here on the machine power rating

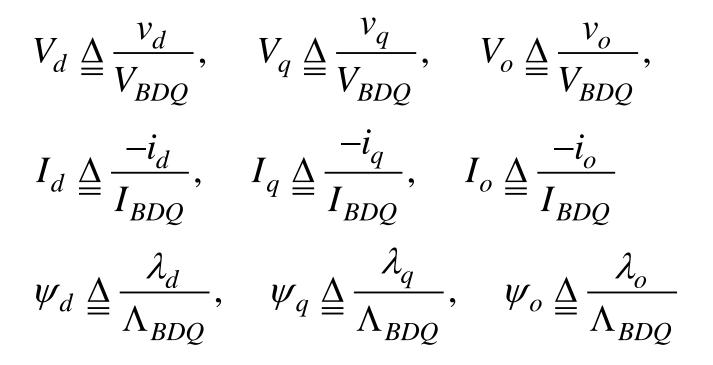
$$V_{Base}I_{Base} = P_{Base}$$

- Two common sign conventions for current: motor has positive currents into machine, generator has positive out of the machine
- Modify the flux linkage current relationship to account for the non power invariant "dqo" transformation



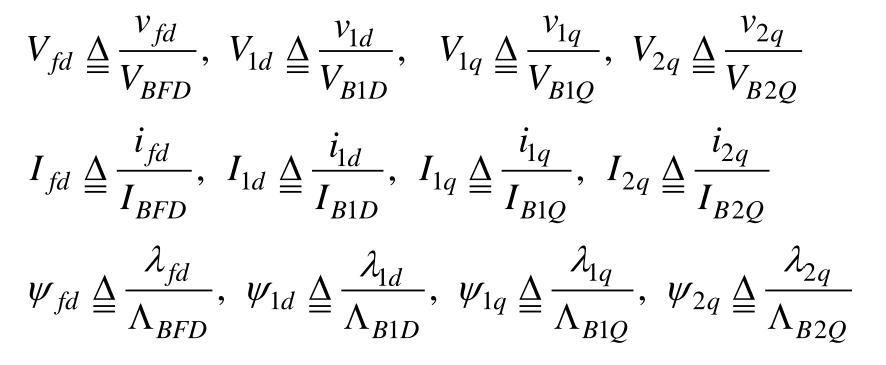
where V_{BABC} is rated RMS line-to-neutral stator voltage and

$$I_{BABC} \stackrel{\Delta}{=} \frac{P_B}{3V_{BABC}}, \quad \Lambda_{BABC} \stackrel{\Delta}{=} \frac{V_{BABC}}{\omega_B}$$



where V_{BDQ} is rated peak line-to-neutral stator voltage and

$$I_{BDQ} \stackrel{\Delta}{=} \frac{2P_B}{3V_{BDQ}}, \quad \Lambda_{BDQ} \stackrel{\Delta}{=} \frac{V_{BDQ}}{\omega_B}$$



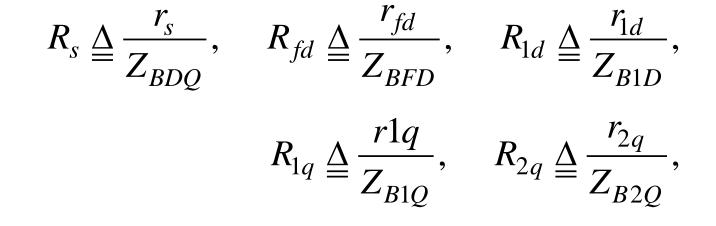
Hence the ψ variables are just normalized flux linkages

Where the rotor circuit base voltages are

$$V_{BFD} \stackrel{\Delta}{=} \frac{P_B}{I_{BFD}}, \quad V_{B1D} \stackrel{\Delta}{=} \frac{P_B}{I_{B1D}},$$
$$V_{B1Q} \stackrel{\Delta}{=} \frac{P_B}{I_{B1Q}}, \quad V_{B2Q} \stackrel{\Delta}{=} \frac{P_B}{I_{B2Q}}$$

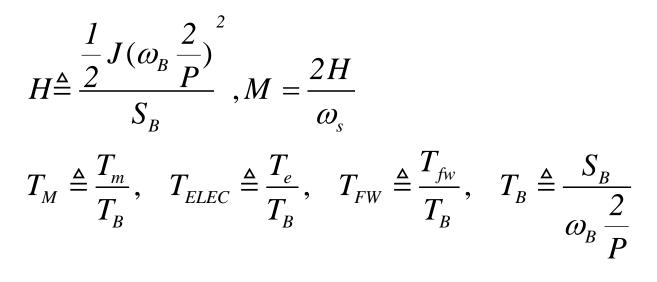
And the rotor circuit base flux linkages are

$$\Lambda_{BFD} \stackrel{\Delta}{=} \frac{V_{BFD}}{\omega_B}, \quad \Lambda_{B1D} \stackrel{\Delta}{=} \frac{V_{B1D}}{\omega_B},$$
$$\Lambda_{B1Q} \stackrel{\Delta}{=} \frac{V_{B1Q}}{\omega_B}, \quad \Lambda_{B2Q} \stackrel{\Delta}{=} \frac{V_{B2Q}}{\omega_B}$$



$Z_{BDQ} \stackrel{\Delta}{=} \frac{V_{BDQ}}{I_{BDQ}},$	$Z_{BFD} \triangleq \frac{V_{BFD}}{I_{BFD}},$	$Z_{B1D} \stackrel{\Delta}{=} \frac{V_{B1D}}{I_{B1D}},$
	$Z_{B1Q} \stackrel{\Delta}{=} \frac{V_{B1Q}}{I_{B1Q}},$	$Z_{B2Q} \stackrel{\Delta}{=} \frac{V_{B2Q}}{I_{B2Q}}$

• Almost done with the per unit conversions! Finally define inertia constants and torque



Synchronous Machine Equations

$$\frac{1}{\omega_s} \frac{d\psi_d}{dt} = R_s I_d + \frac{\omega}{\omega_s} \psi_q + V_d$$
$$\frac{1}{\omega_s} \frac{d\psi_q}{dt} = R_s I_q - \frac{\omega}{\omega_s} \psi_d + V_q$$
$$\frac{1}{\omega_s} \frac{d\psi_o}{dt} = R_s I_o + V_o$$

 $d\delta$

$$\frac{1}{\omega_s} \frac{d\psi_{fd}}{dt} = -R_{fd}I_{fd} + V_{fd}$$
$$\frac{1}{\omega_s} \frac{d\psi_{1d}}{dt} = -R_{1d}I_{1d} + V_{1d}$$
$$\frac{1}{\omega_s} \frac{d\psi_{1q}}{dt} = -R_{1q}I_{1q} + V_{1q}$$
$$\frac{1}{\omega_s} \frac{d\psi_{2q}}{dt} = -R_{2q}I2 + V_{2q}$$
$$I_d - T_{FW}$$

$$\frac{1}{dt} = \omega - \omega_s$$

$$\frac{2H}{\omega_s} \frac{d\omega}{dt} = T_M - \left(\psi_d I_q - \psi_q I_d\right) - T_{FW}$$

Sinusoidal Steady-State

$$V_{a} = \sqrt{2}V_{s}\cos(\omega_{s}t + \theta_{vs})$$

$$V_{b} = \sqrt{2}V_{s}\cos\left(\omega_{s}t + \theta_{vs} - \frac{2\pi}{3}\right)$$

$$V_{c} = \sqrt{2}V_{s}\cos\left(\omega_{s}t + \theta_{vs} + \frac{2\pi}{3}\right)$$

$$I_{a} = \sqrt{2}I_{s}\cos(\omega_{s}t + \theta_{is})$$

$$I_{b} = \sqrt{2}I_{s}\cos\left(\omega_{s}t + \theta_{is} - \frac{2\pi}{3}\right)$$

$$I_{c} = \sqrt{2}I_{s}\cos\left(\omega_{s}t + \theta_{is} + \frac{2\pi}{3}\right)$$

Here we consider the application to balanced, sinusoidal conditions

Transforming to dq0

$$V_{d} = \left(\frac{\sqrt{2}V_{s}V_{BABC}}{V_{BDQ}}\right) \sin\left(\frac{P}{2}\theta_{shaft} - \omega_{s}t - \theta_{vs}\right)$$
$$V_{q} = \left(\frac{\sqrt{2}V_{s}V_{BABC}}{V_{BDQ}}\right) \cos\left(\frac{P}{2}\theta_{shaft} - \omega_{s}t - \theta_{vs}\right)$$
$$V_{o} = 0$$

$$I_{d} = \left(\frac{\sqrt{2}I_{s}I_{BABC}}{I_{BDQ}}\right) \sin\left(\frac{P}{2}\theta_{shaft} - \omega_{s}t - \theta_{is}\right)$$
$$I_{q} = \left(\frac{\sqrt{2}I_{s}I_{BABC}}{I_{BDQ}}\right) \cos\left(\frac{P}{2}\theta_{shaft} - \omega_{s}t - \theta_{is}\right)$$

 $I_{o} = 0$

Simplifying Using δ

• Recall that
$$\delta \triangleq \frac{P}{2} \theta_{shaft} - \omega_s t$$

• Hence $V_d = V_s \sin(\delta - \theta_{vs})$
 $V_q = V_s \cos(\delta - \theta_{vs})$
 $I_d = I_s \sin(\delta - \theta_{is})$
 $I_q = I_s \cos(\delta - \theta_{is})$

The conclusion is if we know δ , then we can easily relate the phase to the dq values!

• These algebraic equations can be written as complex equations, $(V + iV)_e^{j(\delta - \pi/2)} - V_e^{j\theta_v}$

$$\left(V_d + jV_q \right) e^{j\left(\delta - \pi/2\right)} = V_s e^{j\theta_{VS}}$$
$$\left(I_d + jI_q \right) e^{j\left(\delta - \pi/2\right)} = I_s e^{j\theta_{iS}}$$

Summary So Far

- The model as developed so far has been derived using the following assumptions
 - The stator has three coils in a balanced configuration, spaced 120 electrical degrees apart
 - Rotor has four coils in a balanced configuration located 90 electrical degrees apart
 - Relationship between the flux linkages and currents must reflect a conservative coupling field
 - The relationships between the flux linkages and currents must be independent of θ_{shaft} when expressed in the dq0 coordinate system

Two Main Types of Synchronous Machines

A M

- Round Rotor
 - Air-gap is constant, used with higher speed machines
- Salient Rotor (often called Salient Pole)
 - Air-gap varies circumferentially
 - Used with many pole, slower machines such as hydro
 - Narrowest part of gap in the d-axis and the widest along the q-axis

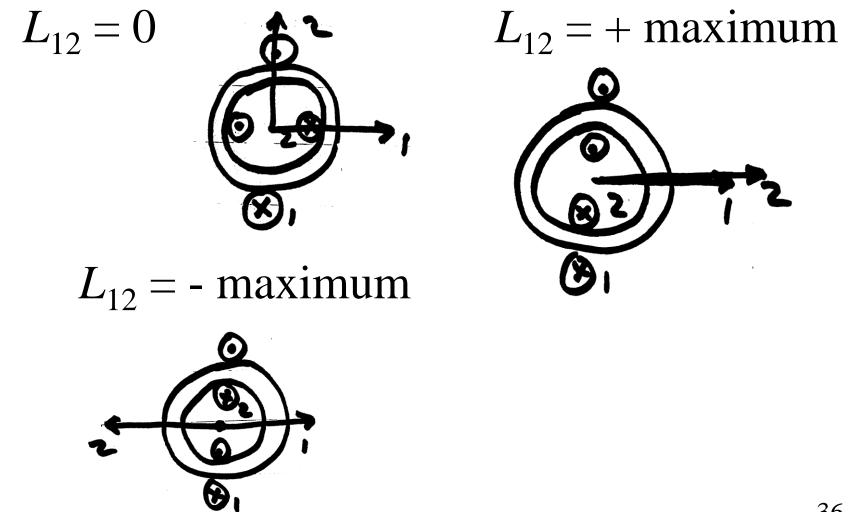
Assuming a Linear Magnetic Circuit

• If the flux linkages are assumed to be a linear function of the currents then we can write

$$\begin{bmatrix} \lambda_{a} \\ \lambda_{b} \\ \frac{\lambda_{c}}{\lambda_{fd}} \\ \lambda_{1d} \\ \lambda_{1q} \\ \lambda_{2q} \end{bmatrix} = \begin{bmatrix} L_{ss} \left(\theta_{shaft} \right) & L_{sr} \left(\theta_{shaft} \right) \\ L_{rs} \left(\theta_{shaft} \right) & L_{rr} \left(\theta_{shaft} \right) \end{bmatrix} \begin{bmatrix} i_{a} \\ i_{b} \\ \frac{i_{c}}{i_{fd}} \\ i_{1d} \\ i_{1q} \\ i_{2q} \end{bmatrix}$$

The rotor selfinductance matrix L_{rr} is independent of θ_{shaft}

Inductive Dependence on Shaft Angle



Stator Inductances

- A M
- The self inductance for each stator winding has a portion that is due to the leakage flux which does not cross the air gap, L_{1s}
- The other portion of the self inductance is due to flux crossing the air gap and can be modeled for phase a as

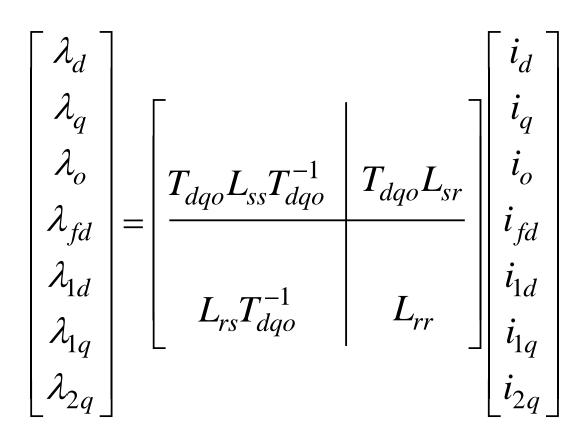
 $L_A + L_B \cos(P\theta_{shaft})$

• Mutual inductance between the stator windings is modeled as

$$\frac{1}{2}L_A - L_B \cos(P\theta_{shaft} + offset)$$

The offset angle is either $2\pi/3$ or $-2\pi/3$

Conversion to dq0 for Angle Independence



Conversion to dq0 for Angle Independence

$$\lambda_{d} = (L_{\ell s} + L_{md}) i_{d} + L_{sfd} i_{fd} + L_{s1d} i_{1d}$$

$$\lambda_{fd} = \frac{3}{2} L_{sfd} i_{d} + L_{fdfd} i_{fd} + L_{fd1d} i_{1d}$$

$$\lambda_{1d} = \frac{3}{2} L_{s1d} i_{d} + L_{fd1d} i_{fd} + L_{1d1d} i_{1d}$$

$$\lambda_{q} = (L_{\ell s} + L_{mq}) i_{q} + L_{s1q} i_{1q} + L_{s2q} i_{2q}$$

$$\lambda_{1q} = \frac{3}{2} L_{s1q} i_{q} + L_{1q1q} i_{1q} + L_{1q2q} i_{2q}$$

$$\lambda_{2q} = \frac{3}{2} L_{s2q} i_{q} + L_{1q2q} i_{1q} + L_{2q2q} i_{2q}$$

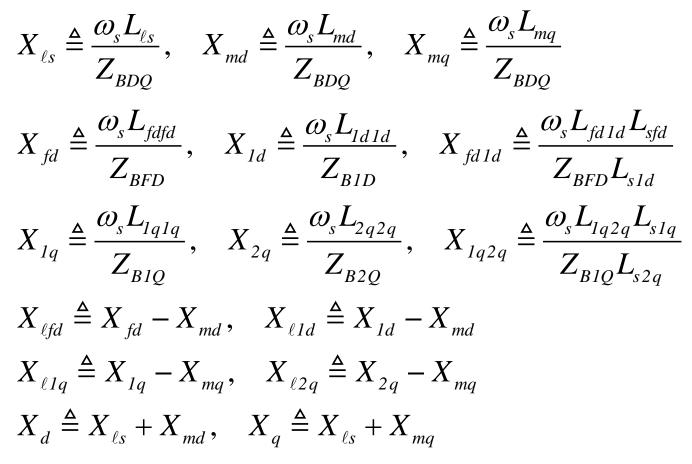
 $\lambda_{o} = L_{\ell s} i_{o}$

$$L_{md} \triangleq \frac{3}{2} (L_A + L_B),$$
$$L_{mq} \triangleq \frac{3}{2} (L_A - L_B)$$

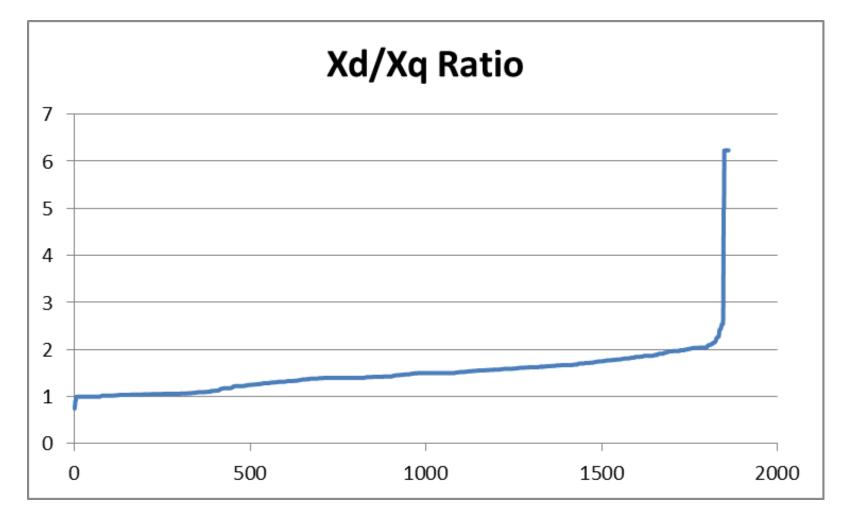
For a round rotor machine L_B is small and hence L_{md} is close to L_{mq} . For a salient pole machine L_{md} is substantially larger

Convert to Normalized at f = \omega_s

- Convert to per unit, and assume frequency of ω_s
- Then define new per unit reactance variables



Example Xd/Xq Ratios for a WECC Case

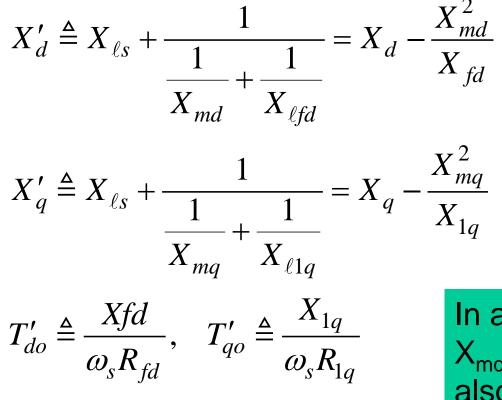


Normalized Equations

$$\begin{split} \psi_{d} &= X_{d} \left(-I_{d} \right) + X_{md} I_{fd} + X_{md} I_{1d} \\ \psi_{fd} &= X_{md} \left(-I_{d} \right) + X_{fd} I_{fd} + c_{d} X_{md} I_{1d} \\ \psi_{1d} &= X_{md} \left(-I_{d} \right) + c_{d} X_{md} I_{fd} + X_{1d} I_{1d} \\ c_{d} &\approx 1 \\ \psi_{q} &= X_{q} \left(-I_{q} \right) + X_{mq} I_{1q} + X_{mq} I_{2q} \\ \psi_{1q} &= X_{mq} \left(-I_{q} \right) + X_{1q} I_{1q} + c_{q} X_{mq} I_{2q} \\ \psi_{2q} &= X_{mq} \left(-I_{q} \right) + c_{q} X_{mq} I_{1q} + X_{2q} I_{2q} \\ c_{q} &\approx 1 \\ \psi_{o} &= X_{\ell s} \left(-I_{o} \right) \end{split}$$

Key Simulation Parameters

• The key parameters that occur in most models can then be defined the following transient values



These values will be used in all the synchronous machine models

In a salient rotor machine X_{mq} is small so $X_q = X'_{q}$; also X_{1q} is small so T'_{q0} is small