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Lecture 8: Synchronous Machine Models

Prof. Tom Overbye

Dept. of Electrical and Computer Engineering

Texas A&M University, overbye@tamu.edu
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Announcements

• Read Chapter 5 and Appendix A

• Homework 2 is due today

• Homework 3 is posted, due on Thursday Oct 5
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Synchronous Machine Stator 

Image Source: Glover/Overbye/Sarma Book, Sixth Edition, Beginning of Chapter 8 Photo 3



Synchronous Machine Rotors

• Rotors are essentially electromagnets

Image Source: Dr. Gleb Tcheslavski, ee.lamar.edu/gleb/teaching.htm

Two pole (P)

round rotor

Six pole salient 

rotor
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Synchronous Machine Rotor

Image Source: Dr. Gleb Tcheslavski, ee.lamar.edu/gleb/teaching.htm

High pole

salient 

rotor

Shaft

Part of exciter,

which is used

to control the 

field current 
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Synchronous Generators

Image Source: Glover/Overbye/Sarma Book, Sixth Edition, Beginning of Chapter 11 Photo 6
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Kirchhoff’s Voltage Law, Ohm’s Law, Faraday’s 

Law, Newton’s Second Law
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Stator Rotor Shaft
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Fundamental Laws
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Stator Rotor Shaft
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Transformed System
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Define Unscaled Variables

s is the rated

synchronous speed

 plays an important role! 
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Synchronous Machine Equations 

in Per Unit
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Units of H are 

seconds
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Sinusoidal Steady-State 
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Here we consider the 

application

to balanced, sinusoidal 

conditions
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Simplifying Using 

• Recall that

• Hence

• These algebraic equations can be written as 

complex equations,

12

The conclusion is 

if we know , then

we can easily relate

the phase to the dq

values!



Summary So Far

• The model as developed so far has been derived using 

the following assumptions

– The stator has three coils in a balanced configuration, spaced 

120 electrical degrees apart

– Rotor has four coils in a balanced configuration located 90 

electrical degrees apart

– Relationship between the flux linkages and currents must 

reflect a conservative coupling field

– The relationships between the flux linkages and currents must 

be independent of shaft when expressed in the dq0 coordinate 

system 
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Assuming a Linear Magnetic Circuit

• If the flux linkages are assumed to be a linear function 

of the currents then we can write 
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Conversion to dq0 for Angle 

Independence 
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Conversion to dq0 for Angle 

Independence 
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For a round rotor

machine LB is small

and hence Lmd is 

close to Lmq. For a

salient pole machine

Lmd is substantially

larger



Convert to Normalized at f = s

• Convert to per unit, and assume frequency of s

• Then define new per unit reactance variables
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Key Simulation Parameters

• The key parameters that occur in most models can then 

be defined the following transient values
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These values

will be used in

all the 

synchronous

machine models

In a salient rotor machine

Xmq is small so Xq = X'q;

also X1q is small so 

T'q0 is small



Key Simulation Parameters

• And the subtransient parameters
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These values

will be used in the 

subtransient machine

models.  It is common

to assume X"d = X"q



Example Xd/Xq Ratios for a 

WECC Case
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Example X'q/Xq Ratios for a 

WECC Case
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About 75% are Clearly Salient Pole Machines!
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Internal Variables

• Define the following variables, which are quite 

important in subsequent models

Hence E'q and E'd are 

scaled flux linkages

and Efd is the scaled

field voltage
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Dynamic Model Development

• In developing the dynamic model not all of the currents 

and fluxes are independent

– In the book formulation only seven out of fourteen are 

independent

• Approach is to eliminate the rotor currents, retaining the 

terminal currents (Id, Iq, I0) for matching the network 

boundary conditions
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Rotor Currents

• Use new variables to solve for the rotor currents
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Rotor Currents
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Final Complete Model
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These first three equations

define what are known 

as the stator transients; we

will shortly approximate 

them as algebraic constraints
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Final Complete Model
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TFW is the friction

and windage

component that

we'll consider

later 
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Final Complete Model
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Single-Machine Steady-State
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The key variable

we need to 

determine the 

initial conditions

is actually , which

doesn't appear 

explicitly in these

equations!



Field Current

• The field current, Ifd, is defined in steady-state as

• However, what is usually used in transient stability 

simulations for the field current is 

• So the value of Xmd is not needed
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/fd fd mdI E X

fd mdI X



Single-Machine Steady-State

• Previous derivation was done assuming a linear 

magnetic circuit

• We'll consider the nonlinear magnetic circuit (section 

3.5) but will first do the steady-state condition (3.6)

• In steady-state the speed is constant (equal to s),  is 

constant, and all the derivatives are zero

• Initial values are determined from the terminal 

conditions: voltage magnitude, voltage angle, real and 

reactive power injection 
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Single-Machine Steady-State
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The key variable

we need to 

determine the 

initial conditions

is actually , which

doesn't appear 

explicitly in these

equations!



Determining  without Saturation

• Recalling the relation between  and the stator values

• We then combine the equations for Vd and Vq and get
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Determining  without Saturation

• In order to get the initial values for the variables we 

need to determine 

• We'll eventually consider two approaches: the simple 

one when there is no saturation, and then later a general 

approach for models with saturation

• To derive the simple approach we have
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Determining  without Saturation
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• Then in terms of the terminal values



D-q Reference Frame 

• Machine voltage and current are “transformed” into 

the d-q reference frame using the rotor angle, 

• Terminal voltage in network (power flow) reference 

frame are VS = Vt = Vr +jVi
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A Steady-State Example (11.10)

• Assume a generator is supplying 1.0 pu real power at 

0.95 pf lagging into an infinite bus at 1.0 pu voltage 

through the below network.  Generator pu values are 

Rs=0, Xd=2.1, Xq=2.0, X'd=0.3, X'q=0.5   

37

Infinite Bus

slack

X12 = 0.20

X13 = 0.10 X23 = 0.20

XTR = 0.10

Transient Stability Data Not Transferred

Bus 1 Bus 2

Bus 3

Angle =   0.00 DegAngle =   6.59 Deg

Bus 4

Delta (Deg): 52.08

P: 100.00 MW

Speed (Hz):  60.00

Eqp: 1.130

 1.095 pu

Edp: 0.533



A Steady-State Example, cont.

• First determine the current out of the generator from the 

initial conditions, then the terminal voltage
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A Steady-State Example, cont.  

• We can then get the initial angle and initial dq

values

• Or

  1.0946 11.59 2.0 1.052 18.2 2.814 52.1

52.1

E j
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A Steady-State Example, cont. 

• The initial state variable are determined by solving 

with the differential equations equal to zero.

  '

'

'

0.8326 0.3 0.9909 1.1299

0.7107 (0.5)(0.3553) 0.5330

( ) 1.1299 (2.1 0.3)(0.9909) 2.9135
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