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Abstract—This paper reviews the variable projection method
(VPM) for power system modal analysis and analyzes the
method's convergence characteristics. The purpose of the VPM
and other modal analysis tools is to decompose time series data
into damped or undamped sinusoidal components, which provide
insights into the dynamics of a measured or simulated disturbance.
The paper gives five example cases of modal analysis with VPM,
varying in size from a single synthetic signal to a 30-signal, 7-mode
data set from simulations of a large actual power system. The
analysis provides an initial indication that the VPM often finds a
solution close to the matrix pencil initialization, and that the
method's convergence speed can vary. While the inner loop of the
method, the line search, is robust and quick, the outer VPM loop
sometimes converges linearly or slower, requiring hundreds of
iterations. Simpler cases with fewer modes tend to have a more
consistent convergence, and are less sensitive to the initial modes
selected.
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I. INTRODUCTION

Extracting the modal components of power system signals
can provide insights into the dynamic characteristic and status
of an electric grid. Signal data for modal analysis can come from
actual measurements such as synchrophasors and digital fault
recorders. or from transient stability simulations during research
and planning studies. Common power system quantities these
signals represent include bus voltage and frequency. branch
power flow, and any of several generator control measurements.
Modal analysis takes time series data from one or more of these
signals, usually in the few seconds following a disturbance
event, and reports a set of oscillatory components that
approximately comprise the signal. Each component, or mode,
is defined by its frequency of oscillation and the rate at which it
is positively or negatively damped. The modes are sometimes
associated with a generator’s eigenvalues or the interarea
resonance structure of the grid. Once the modes are extracted.
analysis can be done to determine the magnitude and phase of
each mode within the signals measured, which provides further
insights. Thus power system planning and operations both
benefit from modal identification, as engineers seek to ensure
threatening oscillations are adequately damped.

Many methods have been proposed and used for performing
modal identification in power systems, and the mathematical
techniques behind them are even decades older. Prony analysis
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is a polynomial method that has been widely discussed and used
[1]-[4]. however, recent studies have pointed to its poor noise
sensitivity and expressed a preference for other methods [5]. The
matrix pencil method takes advantages of the more numerically
robust and noise tolerant singular value decomposition (SVD) to
identify the number of modes and extract their values. using the
Hermitian matrix [5]-[6]. This method. well established in
literature, is used for the initialization step in this paper.

Other more recent methods for modal analysis include the
eigensystem realization method [7], the dynamic mode
decomposition method [8], and the variable projection method
(VPM) [9]. It is this latter method that is the topic of the present
paper, a method based on nonlinear optimization to improve
upon the solutions of other methods. This paper discusses an
implementation of this method, its performance in example case
studies, overall convergence properties. and sensitivity to the
initial guess.

The rest of the paper is organized as follows. Section II
reviews the theory of the VPM, along with commentary on
implementing the method. Section III documents five case
studies of various sizes, illustrating typical behavior of the
method in synthetic signals, small test cases and a large real test
case. Section IV provides an analysis of the convergence
propertties of the method, and Section V discusses the sensitivity
of the method to the initial guess. Finally. Section VI concludes
the paper.

II. THE VARIABLE PROJECTION METHOD (VPM)

The VPM, like other modal analysis methods, begins with
m input time signals, discretely measured at a time step of At.
for n time points.

i) iet.nfet.m (1)

The objective of modal analysis is to approximate these
signals with a sum of g modes, where each mode has a
frequency wy and a damping coefficient ;. Each signal y; will
also have a mode shape defined by the magnitude 4, ; and phase
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Thus the problem is determining the best ¢ modes (wy, oy.)
and q - m mode shapes (A, j, Py, ;) such that the ¥, estimations
are as close as possible to the original y; signals. It can be shown
that given the modes, the shapes can be determined by a linear
least-squares fit, using a simple pseudo-inversion process [6],
[9]. Many other methods, such as the matrix pencil method, first
solve for the modes and then approximate the shape with this
linear method.

In contrast, one benefit of the VPM is that all the variables
are solved for simultaneously, by projecting the linear mode
shapes into the nonlinear modes. The VPM is cast as a nonlinear
optimization problem,

m

1 2
min » |- @@ - @@ -y; 3)
j=1
where the optimization vector @ of length p represents the mode
frequencies and dampings, and the n Xp matrix ®(a)
evaluates each mode at each point in time. The variable
p = 2 - q — qg, Where g is the number of modes with w, = 0.
The matrix y is the n X m matrix giving the input data.

The VPM problem is solved using a steepest-direction
gradient line search, where the method for finding the gradient
Va is given in [9]. The method begins with an initial guess for
the modes a. and then iterates using a line search in the negative
gradient direction, until the solution converges to an acceptable
tolerance.

In implementing this method for the present paper, several
design considerations must be taken into account. First, there
may be some preprocessing of the signals to remove non-modal
components. This is done on a case-by-case basis in this paper.
For example, a frequency signal with a nominal value of 60 Hz
will have a low magnitude of oscillations compared to the signal
magnitude, and so removing the constant component may be
advantageous. All signals in this paper are normalized by their
standard deviation, so that they are compared on a consistent
basis: for example. the 500 MW line flow signal should not
overshadow the 1.0 per-unit voltage signal. After the scaling,
both signals would have a standard deviation of 1.

Next, the initial values of @ are important. For this paper, the
matrix pencil method is used to initialize a. This step also
determines the size of a and therefore the number of modes.
Two parameters of the matrix pencil method are the pencil
parameter L and the singular value threshold o, as a fraction of
the largest singular value. For this paper. L is given a value such
that the Hermitian matrix is approximately square, and the value
a; is set to 0.025 for most cases, except case 2, as described in
the next section.

Once the initial modes are determined. decisions must be
made about the optimization procedure. This paper implements
a golden section search, where the maximum distance to be
searched is some fraction of Va. which varies from 1 to 0.001 in
this paper. Then convergence tolerances must be determined.
Since the golden section search is rather fast, it is evaluated until
the cost function is minimized within 10~*2. The outer loop.
which is the actual VPM gradient calculation, is much slower
and the tolerance must depend on the size of the system, as the
following sections will discuss.

Benefits of the VPM, as discussed in [9], include that it
optimizes over the final function fit, considering the mode shape
which is usually done after the modes are locked-in. The method
also provides for flexibility in both the input functions and the
time step used. In This paper shows some examples of the
method’s use and other characteristics that may be worth
considering when deciding which approach to take for mode
extraction.

III. FIveE VPM CASE STUDIES

This section documents five case studies which apply the
VPM to various signals, extracting their modes and commenting
on the optimization process. The first two examples are
synthetic, with known modes: one also contains noise. The third
and fourth examples are from the WSCC 9-bus test case [10].
measuring various signals under a disturbance in both stable and
unstable conditions. The final example is from an actual large
power system case, with about 16,000 buses, showing how the
VPM applies to studies on a big case with many input signals
and possible modes.

A. Case 1: Synthetic Single Signal Without Noise

This case is the simplest of them all. A signal has 31 time
steps spaced 0.1 s apart, giving a noise-free single mode with a
frequency of 4 rad/s and a damping coefficient of 0.2, meaning
it is positively damped. The mode has a magnitude of 1 and
phase of 0 in the signal given.

No preprocessing was done on the signal. For the initial
matrix pencil method. the threshold o, was set to 0.025, and the
single mode was correctly identified, within a tolerance of
1071% for each of the parameters. The first VPM iteration
returned a cost function value of 2.8 x 1078, and the gradient
had a magnitude of 7.6 X 1071°, and so no VPM optimization
steps were needed.

B. Case 2: Synthetic Double Signal With Noise

Two signals are created for this case, based on two modes.
The first mode has a frequency of 6 rad/s and a damping of 0.5,
while the other has a frequency of 0 and a damping of 3, meaning
it is not an oscillatory mode. The first signal contains the first
mode with magnitude 2 and phase 0, and contains the second
mode with a magnitude of 10. The second signal contains the
first mode with magnitude of 3 and phase of 0.4 radians. and
contains the second mode with magnitude 5. Table I summarizes
these modes. In addition, a uniform random time-invariant noise
signal was added with a peak magnitude of 1. The time series
given has a sampling frequency of 0.01 and a length of 201 time
steps.

The signals were scaled by their standard deviations during
the preprocessing, to ensure they have equivalent weight in the
cost function. This scaling is compensated for in the results by
multiplying the mode shape magnitudes by the signals’ original
standard deviations. With the threshold o; increased to 0.08 to
avoid picking up numerous extra modes due to the noise, the
resulting modes are as indicated in Table L and the cost function
evaluates to 2.3039.



TABLEI
CASE 2 MODES

Mode 0 Mode 1
Frequency, actual (rad/s) 6 0
Frequency, initial 6.0512 -
Frequency, VPM final 6.0495 -
Damping, actual 05 3
Damping, initial 05192 2.9498
Damping, VPM final 0.5053 2.9857
S1 magnitude, actual 2 10
S1 magmitude, mitial 2.0035 99371
S1 magnitude, VPM final 1.9628 10.0203
S1 phase, actual (radians) 0 2
S1 phase, mitial -0.01273 -
S1 phase, VPM final ~0.00890 —
S2 magmitude, actual 3 5
S2 magmitude, mitial 3.0481 47244
S2 magnitude, VPM final 3.0092 4.7710
S2 phase, actual (radians) 04 —
S2 phase, mitial 0.3210 -
S2 phase, VPM final 0.3241 o

The VPM iterations use a line search with the maximum
distance to be searched is Va. For completeness, the VPM
iterations were continued until the cost function changes less
than 1012, which takes 35 iterations and 4.2 seconds. Probably
actual applications would not require this mmuch precision. At
this step, the cost function has reduced to 1.9917. and the modes
are shown in Table I. As can be seen in this table, the initial
guess is relatively close to the actual values, considering the
noise, and the VPM iterations, while they decreased the cost
function by 14%, did not appreciably increase the proximity to
the actual modes.

C. Case 3: WSCC 9-Bus Stable Frequency Disturbance

The WSCC 9-bus system [10] contains three generators.
Case 3 measures the bus frequency at each generator, in the 10
seconds following a line faulting and opening. The signals are
sampled at a time step of 0.05. and 201 time steps are used for
the three signals. The preprocessing step subtracts 60.04 from
each signal, to remove the dc offset. The standard 0.025 is used
for a,, and the initialization picks out four modes at frequencies
1.098 Hz, 1.001 Hz, 0.180 Hz, and 0 Hz.

The line search width is slowed to 0.1Va since using the full
gradient width causes the line search to diverge. The process is
run to six digits of precision, which takes 770 iterations and
about 4 minutes. The cost function decreases from 0.4288 to
0.3166. The change from the initial to final modes is shown in
Table II. Similar to the previous example, the modes do not
change dramatically. One interesting trend in this case is that the
VPM increases the damping of each mode. and compensates by
increasing each mode’s magnitude in the various signals.

D. Case 4: WSCC 9-Bus Unstable Voltage Disturbance

The WSCC 9-bus system is used again in case 4, with the
per-unit voltage magnitude measured at all 9 buses this time.
The disturbance is similar to case 3, however the generator at
bus 2 has its exciter feedback gain increased to make the system
unstable. The 9 signals are sampled at the simulation time step
0f 0.008333 s, for a 10s window, which leads to 10809 total data
points, on the order of the studies done in [9]. The preprocessing

TABLEII

CASE 3 MODES
Mode Initial VPM final

0, Frequency (Hz) 1.0982 1.1077

0, Damping 0.5357 0.7816

1, Frequency 1.0088 1.0093

1, Damping 0.1937 0.2663

2, Frequency 0.1900 0.1869

2, Damping 0.4902 0.5012

3, Frequency 0 0

3, Damping 1.0034 1.2665

TABLEII
CASE 4 MODES
Mode Imitial VPM final

0, Frequency (Hz) 09368 0.9462
0, Damping 0.4452 0.3818
1, Frequency 0.1768 0.1775
1, Damping 0.4481 0.4900
2, Frequency 0 0
2, Damping 0.01625 0.02413
3, Frequency 0 0
3, Damping -0.15235 -0.14997

step subtracts 1.0 from each signal and scales each by its
standard deviation. The initialization picks out four modes, one
of which is negatively damped.

For this case, the line search width must be slowed again to
0.01 Va because the search diverges in the first iteration
otherwise. The process is run again to six digits of precision, and
again it takes about 5 minutes to complete, but this time only 19
iterations are required. The modes can be seen in Table III,
including mode 3, which shows the negatively damped, unstable
portion of the signals. The modes do not tend to change
dramatically, but the damping changes more than the frequency.

E. Case 5: Large System Study

This final case uses time series data from a transient stability
simulation using a large actual power system test case with
about 16,000 buses. The contingency is a fault and opening of a
large inter-area transmission line. and thirty signals are saved for
analysis: ten bus voltages, ten generator speeds, and ten branch
active power flows. The sampling time step is 0.025s for a 10s
ringdown period, leading to 12.030 data points. The system is
stable under this contingency. For preprocessing, each signal
was subjected to a linear regression, with the least-squares linear
line of best fit removed from the signal, and following this the
signals were scaled according to their standard deviations, so
that in the cost function they would be equivalent.

The matrix pencil initialization process results in seven
modes, which the VPM iterations change more significantly
than in the other cases, as Table IV shows. The cost function was
reduced by the VPM method from 198.64 to 30.21, a reduction
of 85%. The acceleration factor for the gradient is reduced to
0.001 in this case, and the iterations were run until the change in
cost function was less than 10~3, which took 392 iterations and
about 100 minutes. It should be noted that the cost function was
reduced 77% of the 85% within 2 iterations. which could be
completed in less than one minute.



TABLEIV
CASE 5 MODES

Mode Initial VPM final
0, Frequency (Hz) 1.1045 1.1414
0, Damping 09514 1.0819
1, Frequency 0.8955 0.8653
1, Damping 09714 12715
2, Frequency 0.6484 0.6520
2, Damping 0.2181 0.5308
3, Frequency 03642 03370
3, Damping 0.4424 0.2748
4, Frequency 03106 03630
4, Damping 0.5606 0.9842
5, Frequency 0.1688 02061
5, Damping 0.2725 0.2554
6, Frequency 0.0341 0.0361
6, Damping 0.0207 -0.0354

The greatest change in frequency for this case was mode 5.
which changed 22%., while the greatest change in damping were
modes 2 and 6. Mode 6 is particularly interesting, because the
VPM changed a slightly damped mode at a very low frequency
into one at approximately the same frequency that is very
slightly undamped.

IV. CONVERGENCE ANALYSIS

The previous five case studies show example VPM
applications in a variety of time steps, number of signals, and
type of data. It is clear that there is a variety in the solution as
well, in terms of the change in modes as well as the number of
iterations and time required to reach a certain level of
convergence. This section provides an initial analysis into the
characteristics of these solutions and their implications about the
method’s performance.

A. Inner Loop Line Search

As noted in Section II, each VPM iteration solves for the
gradient, and then a golden section line search is performed to
find the optimal distance to travel in the negative gradient
direction. Fig. 1 illustrates the space of this search with the first
iteration of case 5. This figure shows a search space that is
approximately quadratic in shape, with a clear minimum. This
general shape is typical for a VPM iteration, which makes the
convergence properties of the inner loop quite fast, provided the
search window is wide enough to include the minimum and
narrow enough to exclude numerical issues, which occur beyond
0.001 in the given plot. So long as this window is found, the
convergence rafe is quadratic, and the minimum is found within
a tolerance of 1072 in less than 40 iterations throughout each
VPM iteration in each case. For case 3. the average number of
iterations is 20.6. and for case 5. the average is 25.3. This is
consistent with a quadratic convergence rate, where one
additional digit of precision is obtained for every two to three
iterations. Fig. 2 shows the golden section search process. where
the window length decays exponentially with the number of
iterations. This portion of the method seems quick and robust,
provided a sufficient original window length can be found.
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Fig. 1. First VPM iteration of case 5, showing the cost function with respect to
the distance in the negative gradient direction.
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Fig. 2. First VPM iteration of case 5, showing the decrease in window width
through the iterations of the golden section search (inner loop).

B. Quter Loop VPM

‘When it comes to the convergence of the outer VPM loop.
the five cases show a variety in the response characteristics.
Case 1 acutely illustrates an observation that the rest of the cases
confirm: the matrix pencil initialization provides a very good
guess of the modal content. In the perfect, noiseless case, the
VPM convergence is immediate because the initialization can
find the modes accurately. Under noise. as case 2 and others
show, matrix pencil performs relatively well too, and the
objective of the VPM would be to improve upon an already good
solution.

Figs. 3-6 show the convergence rates of each solution for
cases 2-5. These figures plot the change in cost function as the
iterations progress. There is a clear difference between cases 2
and 4. which converged relatively quickly. and cases 3 and 5,
which very slowly converged. In cases 3 and 5. the first few
iterations showed rapid improvement, but after that the
convergence was linear or worse.

The VPM follows a steepest-descent algorithm, which is
known to have a convergence rate that can sometimes be very
slow. since following the instantaneous steepest-descent
direction can lead to zig-zagging paths. depending on the



1E-2

&

5 1E-4

c

=

L 1E-6

8

Lo}

£ 1E-8

1]

="1]

c

S 1E-10

(]
1E-12

0 5 10 15 20 25 30 35

VPM Iteration

Fig. 3. Convergence of case 2.

1E+2
1E+1
1E+0
1E-1
1E-2
1E-3
1E-4
1E-5
1E-6
1E-7

Change in Cost Function

o
w

10 15 20
VPM lteration

Fig. 5. Convergence of case 4.

convexity and eccentricity of the optimization gradient. The rate
may change during the process as well.

It is clear that the VPM can sometimes have a quick, robust
convergence rate, as in cases 2 and 4, where any logarithm of
convergence tolerance can be reached with a small linear
number of iterations. Other times VPM will converge very
slowly, where an additional decimal of convergence will require
hundreds of iterations or more. That rate may change throughout
the process, as illustrated particularly by case 5. In case 5, the
first few iterations show fast convergence, but the convergence
stalls and even decreases from iterations 91-118, before
increasing again at a much slower rate, as shown in Fig. 6.

Different factors may contribute to the convergence rates of
the VPM. A small number of time points, such as in case 2, may
help, although case 3 has fewer time points than case 4. The
number of modes is important, as case 5 converted to quadratic
convergence when the initialization threshold was changed to
only allow 2 modes instead of 7. But this is not a universal
principle, since cases 3 and 4 have the same number of modes.
Case 5 has 7 modes, which is more than the examples given in
[9]. and may point to convergence issues and unreliable
behavior when the number of modes becomes too large.

V. SENSITIVITY TO INITIAL GUESS

It is important to note that VPM does not determine the
number of modes, or the number of modes which are non-
oscillatory. This must be pre-determined. However, there are
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many options for the initial values of those modes, of which the
matrix pencil method used in this paper is only one.

Case 1 serves as the first example for examining the VPM’s
region of convergence, because it is simple with only two
variables in a. It is found that, approximately, if the initial
frequency is within the range 0.01 to 20, and the damping is
between -20 and 10, the VPM will eventually converge to the
same. correct solution, frequency of 4 and damping of -0.2. This
is a wide region of convergence, however the number of VPM
iterations required to get the specified solution varies greatly.
Fig. 7 illustrates this for varying initial frequencies, with the
damping initialized to 0, and Fig. 8 shows the same thing for
varying initial damping with an initial frequency of 3. For this
case, a reasonably wide radius around the solution converges
within 20 iterations.

A similar analysis is performed on case 3, with the number
of convergence iterations recorded for various initialization
configurations. Table V shows the results, where the
initialization was equal to the VPM solution, with a slight
perturbation on one variable. This process was followed for all
seven variables, for perturbations of 1%, 10%, and for some
variables 100%. The convergence of this case is known to be
slow. so it is not surprising that most variables show slow
convergence when perturbed 10%. Within a very narrow region,
it appears that the convergence is quick.
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with the initial guess of damping set to 0.

TABLEV
CASE 3 MODES, NUMBER OF CONVERGENCE ITERATIONS
FOLLOWING VARIOUS PERTURBATIONS

Perturbation
S 1% 10% 100%
0, Frequency (Hz) 245 1382 -
0, Damping 61 256 903
1, Frequency 12 945 -
1, Damping 7 28 296
2, Frequency 7 575 844
2, Damping 7 12 156
3, Damping 5 429 —

Cases 1 and 3 show the importance of the initialization step
to obtaining an accurate solution in a reasonable amount of time.
For some simple cases, as in case 1, initializing in the
neighborhood of the solution will lead to quick convergence.
while even initialization far from the answer is likely to
converge eventually. Other cases, like case 3, converge
prohibitively slowly if the initial values are not close to the final
solution.

VI. CONCLUSION

The VPM is a relatively newly-developed method to be used
in modal extraction for power system modal analysis in
potentially both online monitoring and transient stability
contingency studies during the planning process. In many cases,
especially those with few modes, the method appears robust and
quickly converging. Future work may improve upon the
optimization procedure to provide better performance in those
conditions which tend toward slower convergence.

with the mitial guess of frequency set to 3. Only those inifialized from -29 to 13
converged to the correct value.
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