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Announcements

 Start reading chapters 1 to 3 from the book (more
packground material)

 Download the 42 bus educational version of
PowerWorld Simulator at

nttps.//www.powerworld.com/gloveroverbyesarma
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https://www.powerworld.com/gloveroverbyesarma

US Energy Consumption
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https://flowcharts.llnl.gov/content/assets/images/charts/Energy/Energy_2017_United-States.png

My Favorite 8/14/2003 Blackout
Cartoon!

‘Suddenly, knowing a lot about the u.s. power gn_id“became[ :
- sexy at cocktail parties. B e
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Electric Grid History:
The Rise of Natural Gas Generation

Electric generation capacity additions by technology (1950-2013) =,
gigawatts d
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Source: US EIA, 2016 5
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Rise of Renewables: Wind

AlM
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The Smart Grid

* The term “Smart Grid” dates officially to the 2007
“Energy Independence and Security Act”, Title 13
(“Smart Grid™)

- Use of digital information and control technigues
Dynamic grid optimization with cyber-security
Deployment of distributed resources including
Customer participation and smart appliances

Integration of storage including PHEVs
Development of interoperability standards

A



Smart Grid Perceptions (Some of
Us Like the Term “Smarter”)

12



Renewable Portfolio Standards
(September 2012)

Renewable Portfolio Standard Policies

www.dsireusa.org / September 2012
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See also www.ncsl.org/research/energy/renewable-portfolio-standards.aspx 13



Growth In Solar PV
T

Residential small-scale solar photovoltaic GE
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gigawatthours Apr” 2018
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Slowing Electric Load Growth
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ERCOT set a new peak electric load of 73.3 GW on July 19,
2018; total energy in 2017 was 357 billion kWh

Image source: CEO Perspectives, Bill Magness, ERCOT, May 2017



Interconnected Power System
Basic Characteristics

Al
* Three — phase AC systems:
— generation and transmission equipment is usually three
phase
— Industrial loads are three phase
— residential and commercial loads are single phase and
distributed equally among the phases; consequently, a
balanced three — phase system results
« Synchronous machines generate electricity
~  Exceptions: some wind is induction generators; solar PV

 Interconnection transmits power over a wider
region with subsystems operating at different
voltage levels

17



Power Systems: Basic Characteristics

T
The transmission network consists of following
— the high voltage transmission system; | iy
— frequently, the subtransmission system; |
— sometimes, even the distribution system “

The transmission system forms the
backbone of the integrated power
system and operates at the highest —
voltage levels; typically, above 150 k\/ S
Less losses at high voltages (S=VI* and I°R

losses), but more difficult to insulate.

The subtransmission levels are in the 69 t0138 kV
range

18



Power Systems: Basic Characteristics

T
« The generator output voltages are typically in the

11kV to 35 kV range and step up transformers are

used to transform the potentials to transmission

system voltage levels

— Wind turbines have voltages in 600V range

* Bulk power system, which includes the
transmission system and generators, is networked

19



Power Systems: Basic Characteristics

T
 Electrical devices are joined A Substation Bus
together at buses E
* The distribution systemis |
used to supply the electricity LA
to the consumers Ak
— primary distribution voltages
are in the 4 kV to 34.5 kV
range at which industrial
customers obtain their electricity supply
— secondary distribution voltage is 120/240 V to the
residential/commercial customers
—distribution system is usually radial, except in some
urban areas

09/12/200¢

20



Electricity Supply
T
* The basic function of a power system is to convert
energy from one source to the electrical form; a key
characteristic is that energy Is not consumed as
electricity but converted into heat, light, sound,
mechanical energy or information
« The widespread use of electricity Is due to its ability to
transport and control efficiently and reliably
 Electricity is, by and large, a relatively clean source of

energy
~- Most forms of renewable energy are created in the form of
electricity; examples include hydro, wind and solar.

21



Fundamental Power System
Requirements

T

« System must be able to track load continuously:
continuous balance of supply and demand

« System must provide reliable supply of electricity at
least cost

« System must have least environmental impacts in

providing electricity to meet its customers’ demands
Yearly Load Variation Daily Load Variation
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Fundamental Requirements of a
Power System
— i

Electric power delivery by the system must meet

minimum standards of power quality
— constant frequency

~ constant voltage

— adequate reliability

System must be able to supply electricity even
when subjected to a variety of unexpected
contingencies, such as the loss of a transmission
line or generator

A key focus of this course is the control capability
to meet these requirements

23



Power Systems Operate on

Many Time Scales

machine-network
interaction

mechanica
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Slide source: Prof. George Gross UIUC ECE 530
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Power Systems Operate on
Many Time Scales

A

Icladlpower translfer increase I
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Slide source: Prof. George Gross UIUC ECE 530 25



Power System Operation Regimes

A

steady state operations

steady state contingencies

operator response

automatic system response

disturbance response

transients :
hime
T T 1.1 >
10°107107°10 7107 10 .
seconds minutes  hours; days; months
< operations horizon ——planning horizon »

Slide source: Prof. George Gross UIUC ECE 530 26



Generation Control and
Scheduling Example

load
variations

automatic generation | match the on-line generation with the
control load

seconds

allocate economically the load among

minutes economic dispatch the committed generating units

hydro

scheduling water releases from reservoirs and
hourly hydro generation

unit

commitment start-up and shutdown of units

hydrothermal integrated hydro schedule and unit
coordination commitment

transaction interchange of power/energy with
evaluation neighboring systems

fuel, hydro and

very wide )
ry maintenance

swings

meet load economically with the
installed resource mix

scheduling

Slide source: Prof. George Gross UIUC ECE 530

A
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Modeling Cautions!
T
"All models are wrong but some are useful," George
Box, Empirical Model-Building and Response
Surfaces, (1987, p. 424)

— Models are an approximation to reality, not reality, so they
always have some degree of approximation

- Box went on to say that the practical question is how wrong
to they have to be to not be useful

A good part of engineering Is deciding what is the

appropriate level of modeling, and knowing under

what conditions the model will falil

Always keep in mind what problem you are trying to

solvel
28



Course Objectives
T
Acqguaint students with some key analytical aspects of
large-scale systems
Stress the importance of problem formulation
Expose students to some of the major considerations in
the design and operation of large-scale systems
Equip students with skills to read the relevant literature
on analytical and computational techniques
Develop practical skills in solving these types of
oroblems
_earn how to use example commercial software,
especially with application to larger systems

29



Static Power System Analysis
T
* One of the most common power system analysis tools
Is the power flow, which tells how power flows through
a power system in the quasi-steady state time frame

- Load flow is an alternative name for power flow; both terms
have been used interchangeably for at least 50 years. | prefer
power flow because the power flows, not the load

* The power flow can be used to model the full, three-
phase system, but usually (practically always) for
transmission system analysis the system is assumed to
be balanced. Hence a per phase equivalent model is
used.



Power System Component Models:
Transmission Lines
—_————————————— il

« Power flow timeframe models for common power
system devices, including transmission lines,
transformers, generators and loads, are developed in the
prerequisite courses ECEN 459 and 460

~ In 615 we will just be using the models, so it 1sn’t strictly
required that you know the details on how they were
developed; engineers need to know model validity range

« Transmission lines will be modeled using the & circuit

— =/
ST z i
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Power System Component Models:
Transformers

o

« Transformer equivalent model

5 Re 2 ¥e Qs f

In 615 the off-nominal turns ratio, a, will be a key control
value. This is potentially a complex number (e.g., with a
phase shifting transformer)

32



Power System Component Models:
Generators

o

* Engineering models depend upon application
* Generators are usually synchronous machines

* For generators we will use two different models:

— a steady-state model, treating the generator as a constant power
source operating at a fixed voltage; this model will be used for
power flow and economic analysis

— ashort term model treating the generator as a constant voltage
source behind a possibly time-varying reactance (with much
more detailed modeled developed in ECEN 667)

%
N

i

£
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Per Phase Calculations

A key problem in analyzing power systems is the
large number of transformers.

— It would be very difficult to continually have to refer
Impedances to the different sides of the transformers

This problem is avoided by a normalization of all
variables.

This normalization is known as per unit analysis

actual quantity

guantity in per unit = _
base value of quantity

o
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Per Unit Conversion Procedure, 1¢
T
1. Pick a1¢ VA base for the entire system, Sg

2. Pick a voltage base for each different voltage level,
V. Voltage bases are related by transformer turns
ratios. Voltages are line to neutral.

3. Calculate the impedance base, Zz= (V)%/Sg
4. Calculate the current base, Iz = Vg/Zg
5. Convert actual values to per unit

Note, per unit conversion only affects magnitudes, not
the angles. Also, per unit quantities no longer have
units (i.e., a voltage is 1.0 p.u., not 1 p.u. volts)

35



Per Unit Solution Procedure

T
1. Convert to per unit (p.u.) (many problems are
already In per unit)

2. Solve
3. Convert back to actual as necessary



Single-Phase Per Unit Example
T
Solve for the current, load voltage and load power
In the circuit shown below using per unit analysis
with a single-phase Sg of 100 MV A, and voltage bases of
8 kV, 80 kV and 16 kV

5 S ad st iR

3o kV

| %16 G- f
Original Circuit

37



Per Unit Example, cont’d

Left 8kV2
ZB
100|\/|VA
- Middle _ 80kV°
5 100MVA
2
AN 16kV 56Q
100|\/IVA

.0 Lo

hse - JG2 1 YEoS

Al

Ui R

L I

t ~ Same circuit, with

A values expressed
In per unit
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Per Unit Example, cont’d
T

20-39

s \)013“]5

3 +
Olo b \V
' 391 1; &

_ 1.0£0 =0.22/—30.8° p.u. (not amps)

3.91+ j2.327
V, = 1.0£0°-0.22/ —30.8°x 2.327./90°

= 0.859£-30.8° p.u.

7

Sg = 1.0£0°x0.22£30.8°=0.22.£30.8° p.u.
39



Per Unit Example, cont’d

Al
To convert back to actual values just multiply the
per unit values by their per unit base

V LAct“a' — 0.859/—30.8°x16 kV =13.7/ —30.8° kV

sActal —0,189.20°x100 MVA =18.920° MVA

shdal — 0.22.,30.8°x100 MVA = 22.0./30.8° MVA

B 80 kV

Ihcha — 0,22/ -30.8°x1250 Amps =275/—-30.8° A

=1250 Amps

40



Three Phase Per Unit
T
Procedure is very similar to 1¢ except we use a 3¢
VA base, and use line to line voltage bases
1. Pick a 3¢ VA base for the entire system,

2. Pick a voltage base for each different voltage
level, Vg. Voltages are line to line.

3. Calculate the impedance base
i :VBZ,LL _ (\/§VB,LN)2 _ VI32,LN
° T s¥ 3sY Sl
Exactly the same impedance bases as with single phase!
41




Three Phase Per Unit, cont'd

4. Calculate the current base, I
3 1 1
|BB¢ _ SB¢ _ 353¢ _ SB¢ _ |lB¢
\/§VB,LL \/é\/évB,LN VB,LN

Exactly the same current bases as with single-phase!

5. Convert actual values to per unit

o

42



Three-Phase Per Unit Example

Al
Solve for the current, load voltage and load power
In the previous circuit, assuming a 3¢ power base of
300 MV A, and line to line voltage bases of 13.8 kV,
138 kV and 27.6 kV (square root of 3 larger than the
1 example voltages). Also assume the generator 1s
Y-connected so its line to line voltage 1s 13.8 kV.

56 40:305  40-3T

‘ Convert to per unit

| as before. Note the
system is exactly the
same!

[Ne)¥e)
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Three-Phase Per Unit Example, cont'd

o

- 1'04_0 =0.22/—-30.8° p.u. (not amps)
3.91+ J2.327

V, = 1.0£0°-0.22/£-30.8°x2.327290°
= 0.859£-30.8° p.u.

S, = VI _\/;_0.189 p.U.

Sg = 1.0£0°x0.22.£30.8°=0.22.£30.8° p.u.

Again, analysis Is exactly the same!
44



Three-Phase Per Unit Example, cont'd

A

Differences appear when we convert back to actual values

vLACt“a' — 0.859/ —30.8°%27.6 kV =23.8/—30.8° kV

sAcal — 0 189./0°x 300 MVA =56.7.20° MVA

sheal _ 022 ,30.8°x 300 MVA = 66.0.,30.8° MVA
> J3138 kV

=1250 Amps (same current!)

|actal — 0,22/ -30.8°x1250 Amps =275/ -30.8° A

45



Three-Phase Per Unit Example 2

Alw
Assume a 3¢ load of 100+)50 MVA with V|, of 69 kV
IS connected to a source through the below network:

SZO®+J93J7JL 19 5L

L

1383 (1

What is the supply current and complex power?

Answer: 1=467 amps, S = 103.3 +}76.0 MVA



