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Abstract—Power system equivalents have been used for faster 

simulations, but not much interest was on calculating equivalent 

line limits and this limits the use of equivalents in simulations. 

Authors used total transfer capability in assigning equivalent line 

limits in previous papers and this paper utilizes available transfer 

capability in doing so. A detailed procedure of the proposed 

method is described with a small 4-bus case. An exact solution case 

and a non-exact solution case examples are provided. For non-

exact solution cases, solutions are bounded with upper and lower 

estimates. Also, the proposed method applied to the IEEE 118-bus 

case and results are provided and compared with those with total 

transfer capability. 

Keywords—Equivalent line limits; available transfer capability; 

power system equivalent, power transfer distribution factors. 

I. INTRODUCTION 

Power system equivalents (PSEs) have been used for 
decades since the first equivalencing method named after the 
developer Ward was introduced in late 1940s [1]-[4]. This 
traditional Ward method and its variants are based on the Kron 
reduction which performs Gaussian elimination on a part of 
network (called external area) to equivalent the components in 
that area and retains the area of interest (called internal or study 
area) for study [5]. Boundary buses between the two areas are 
attached with newly created generators and loads to keep the line 
flow from the external area to the internal area. As the external 
buses are equivalenced with the Kron reduction, fictitious 
equivalent lines are created between their first neighbor buses 
and they do not have associated thermal limits. It is easy to make 
a small equivalent case where it is not possible to assign limits 
on equivalent lines that result in all the operating points same as 
those in the full system. In general, commercial tools assign zero 
to equivalent line limits which indicates any amount of power 
can flow on those lines. This aspect restricts the use of PSEs as 
line limits play a key role in many power system analyses. Other 
recent methods have been developed to create PSEs that capture 
different attributes of the full system such as power transfer 
distribution factors (PTDFs), locational marginal prices, and 
optimal power flows [6]-[8]. Even though other equivalencing 
methods have been developed for various  applications not much 
of interest have been focused on limits of equivalent lines.  

Recently, authors have produced a couple of methods that 
calculate equivalent line limits using total transfer capability [9]-

[11]. Those methods use PTDFs to keep the total transfer 
capability (TTC) between the boundary buses. Those methods 
only use the network itself dropping all the bus injections hence 
are operating point independent. When there is no exact 
solution, they offer upper, lower and/or best estimates when 
equivalent line limits do not have exact solutions. Using 
unloaded systems is good in one aspect as they only focus on 
network and therefore may be more flexible with various flow 
patterns. However, a problem with using TTC for unloaded 
systems in calculating equivalent line limits occurs when there 
are movements of bus injections which frequently occur in 
equivalencing. After they assign limits on equivalent lines and 
reload the network and it can be challenging to solve power flow 
especially when many generators and loads in the external area 
are moved to boundary buses or into the study area in large 
cases. Of course, it is more difficult to solve optimal power flow 
without considering these movement of bus injections.  

Therefore, this paper works with loaded systems considering 
all the bus injections and their movement in calculating 
equivalent line limits. The proposed method in the paper uses 
available transfer capability (ATC). According to the definition 
of ATC in the NERC document, ATC considers existing 
transmission commitments (ETC), capacity benefit margin 
(CBM) and transmission reliability margin (TRM) [12].  

TRMCBMETCTTCATC   (1) 

When calculating TTCs and ATCs, there are a few system 
constraints typically considered; voltage limits, angular stability 
limits, thermal limits, and pre- and post-contingency conditions. 
Since only the thermal limits are considered in this paper, 
available thermal transfer capability (ATTC) is defined as the 
ATC with only considering thermal limits. Also, the two 
margins are ignored for simplicity. 

II. PROPOSED METHOD

A. Simulation Setup

The Max/Hungarian method presented in [9] is used in the
paper in calculating equivalent line limits with ATTC. However, 
assumed simulation environment is the same as that in the top-
down approach presented in [11] as it is better to be used for 
large-scale systems in future applications. This means that only 
the full case and its reduced equivalent case are needed and no 
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extra information is required to know in assigning limits. 
Information such as the order of bus elimination or movement 
of bus injections from the external area to the study area are not 
needed in the simulation environment with the top-down 
approach. The limits of equivalent lines in the reduced case is 
the objective to calculate. All the data needed in assigning 
equivalent line limits are in the given two cases. This assumption 
will be beneficial for anybody who wants to use this proposed 
method as the only input is the full case and the corresponding 
equivalent case. Of course, the power flow of the full case needs 
to be solved without an error because this method uses ATTC 
which requires the amount of line flows. 

B. Criterion of Equivalent Line Limit Calculation 

The criterion for the successful equivalent line limit 
calculation is bus-to-bus ATTC matching between the full and 
the equivalent cases. More specifically, the method tries to 
match the ATTCs between pairs of buses for equivalent lines in 
the equivalent case with those for the same bus pairs in the full 
case. Here, for equivalent line limit calculation, only the lines 
that are eliminated along with the external buses denoted by 𝓛 =
{𝑙𝑖|𝑖 ∈ [1, 𝐿]} are considered in calculating ATTCs in the full 
case. The retained lines do not need to participate in the process 
of equivalencing and calculating equivalent line limits as they 
are unchanged with their limit in the reduced case. Therefore, 
the ATTCs of only eliminated lines are used in calculating 
equivalent line limits. The ATTC for eliminated line 𝑙𝑖  for 

transaction w, denoted as 𝑇𝑙𝑖

𝑤 can be calculated with the limit of 

line 𝑙𝑖, denoted as 𝐹𝑙𝑖
, PTDF of line 𝑙𝑖 for the same transaction 

w, denoted as 𝜙𝑙𝑖

𝑤 , and the existing commitment on line 𝑙𝑖 , 

denoted as 𝑀𝑙𝑖
. 
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When a PTDF value is close to zero, the transaction has little 
impact on the limiting line. It should be noted that since ATTC 
is dependent of the direction of transactions, the ATTC values 
of a transaction from bus x to bus y is different from those of a 
transaction from bus y to bus x.  

The ATTC for transaction w is the minimum of all the 
ATTCs of the eliminated lines 𝑙𝑖. 

 w

l
l

w

i
i

TT
L

 min                                (3) 

This indicates how much more power can be transferred for 
transaction w through the network loaded with the already 
existing commitment before there is any violation on line limits 
in the system. PTDF values used in calculating ATTC are 
obtained with the lossless dc approximation which only 
considers real power [13]. 

C. Problem Formulation 

When a bus or a group of adjacent buses, k, are eliminated in 
the full case and there are equivalent lines in the reduced case 

created between the first neighbor buses of k, as denoted by 𝓢 =
{𝑠𝑖|𝑖 ∈ [1, 𝑆]}. The set of equivalent lines are denoted by 𝓛̃ =

{𝑙𝜏|𝜏 ∈ [1, 𝐿̃]}  and there are 𝐿̃ = (
𝑆
2

)  number of limits to be 

determined. In the reduced case, the ATTC values of 
transactions w of bus pairs for equivalent lines only considering 
power flowing on equivalent lines 𝑙𝜏 can also be calculated as 
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where tilde indicates values are from the reduced case and 𝐹̃𝑙𝜏
 

are the unknown equivalent line limits to be calculated. 

The ATTC for transaction w in the reduced case is the 
minimum of all the ATTCs of the equivalent lines 𝑙𝜏. 

 w

l
l

w TT




~
min

~
~
L

                                (5) 

Since the criterion of assigning equivalent line limits is to 
match ATTCs between bus pairs for equivalent lines with those 
for the same bus pairs in the full case, exact solution cases occur 
when  

ww TT
~

                                    (6) 

As ATTC values are direction dependent, there should be a 
reference direction for transactions so that the calculation of 
PTDF values and ATTC values have a consistent sign 
convention. This can be done by solving the reduced case and 
set the direction of equivalent line flows as the reference for the 
transactions of interest. One may argue that the other direction 
also be considered. Combination of both directions of flow in 
each transaction can be computationally very heavy in large 
scale cases hence this paper focuses on a single direction based 
on the solved power flow. 

(6) can be solved for the only unknown, equivalent line limit 
depending on the sign of PTDF value on the corresponding 
equivalent line in the reduced case as 
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When the PTDF value of an equivalent line for a transaction 
is zero, which means there is on impact of the transaction on the 
line, the ATTC value for the transaction on the line becomes 
infinity as shown in (4). Therefore, the limit on the equivalent 
line should be infinity to accommodate the ATTC value. 

III. EXAMPLE CASES 

A 4-bus test case is used to illustrate the step-by-step 
procedure of the proposed method. Both an exact solution case 



and a non-exact solution case are demonstrated with the test 
case. When there is no exact solution, upper and lower estimates 
of equivalent line limits are calculated using the Max/Hungarian 
method presented in [9]. Also, the results of its application to the 
IEEE 118-bus case is provided.  

A. 4-bus Test Case with Exact Solution 

Fig. 1 depicts the full 4-bus case with line loadings on the 
left  and PTDF values for a transaction from bus 2 to bus 3 on 
the right. Lines have a limit in MVA and a reactance in p.u. Bus 
1 is the external area to be equivalenced making a reduced 3-bus 
case in Fig. 2.  
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Fig. 1. Full 4-bus case with line loading (left) and PTDFs from bus 2 to bus 3 

(right) 

 

Fig. 2 also shows line loadings on the left and PTDF values 

for a transaction from bus 2 to bus 3 on the right. 
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Fig. 2. Reduced 3-bus case with line loading (left) and PTDFs from bus 2 to 

bus 3 (right) 

 

The ATTC value for a transaction from bus 2 to bus 3 
considering only eliminated lines can be calculated using (2) and 
(3) as 
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Likewise, the other two ATTC values can be calculated and 
all the ATTC values between the boundary buses are shown 
Table 1.  

These ATTC values need to be matched with those in the 
reduced case for the same pair of transactions as follows. 
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TABLE 1 

ATTCS BETWEEN BOUNDARY BUSES IN 4-BUS CASE FOR EXACT SOLUTION 

w Binding line  𝑇𝑤 (MW) 

(2, 3) (1, 3) 104.5 

(4, 2) (1, 4) 103.3 

(4, 3) (1, 3) 83.6 

 

The direction of transactions are determined by the direction 
of flows on the equivalent lines in the reduced case. (9) can be 
expanded for the 4-bus test case as 
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Depending on the sign of PTDF values on the equivalent 
lines in the reduced case, one of the three equations in (4) can be 
used to formulate equality equations in (10). The first equation 
for transaction (2,3) in (10) can be rewritten using (7) and (8) as 
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The denominators on the left hand side can be multiplied for 
each equivalent line and inequality constraints can be made as 
follows. 

50.23
~
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This can be done for the other two equations and all the 
inequality constraints can be put in a matrix as 
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72.3081.2728.39

46.2554.3415.19

50.2316.750.46

                (13) 

Each row corresponds to each transactions and each column 
corresponds to each equivalent line limit. Also, all the entries in 
each column has to be smaller than or equal to the corresponding 
equivalent line limit. One entry for each row must have an 
equality constraint so that the ATTC for the transaction can be 
determined. Moreover, one entry for each column must have an 
equality constraint so that the corresponding equivalent line 
limit can be determined.  

Criterion for exact solution: if the maximum entry in each 
column belongs to a different row, those maximum values are 
the exact solution for the equivalent line limits. This is because 
they satisfy all the equality and inequality constraints. 

Often, just choosing the maximum value in each column 
provides an exact solution. Hence, this 4-bus test case has an 



exact solution as 𝐹̃(2,3) = 46.50 𝑀𝑊, 𝐹̃(2,4) = 34.54 𝑀𝑊, and 

𝐹̃(3,4) = 31.72 𝑀𝑊. 

From experiment of other cases, entries in the Psi matrix can 
be a negative value which is not possible when using TTCs for 
unloaded systems. Negative entries may be converted to zero as 
a line limit should be a positive value from a practical point of 
view. 

The ATTC values with the exact solution limits can be 
calculated in the reduced case using (4) and (5) to see if they 
really yield the exact ATTC values from the full case. The 
ATTC value for transaction from bus 2 to bus 3 is calculated for 
validation as follows. 
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B. 4-bus Test Case with Non-Exact Solution 

Not every elimination of a bus or a group of buses results in 
an exact solution case. This is because equivalent line limits are 
not calculated the way equivalent line admittances are calculated 
by Kron reduction during the equivalencing process. Fig. 3 
shows a full 4-bus test case with line loading on the left and 
PTDF values for a transaction from bus 2 to bus 3 on the right. 
Bus 1 is the external bus to be eliminated from the full case to 
create a reduced 3-bus case in Fig. 4.  
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Fig. 3. Full 4-bus case with line loading (left) and PTDFs from bus 2 to bus 3 

(right) 

 

Fig. 4 also shows line loading on the left and PTDF values 
for the same transaction as the full case on the right. The 
difference from the exact solution case above is that bus 1 now 
has a generator attached to it injecting power into the system and 
bus 4 does not have a generator any more. 

When a bus with bus injection is being eliminated during an 
equivalencing process, the Ward equivalent and its variant split 
the bus injection and attach a portion of it to its first neighbor 
buses to maintain flow on retained lines unaffected. Another 
way is to just remove it from the external area when the bus 
injection is far from the study area so that it does not have much 

impact on fidelity of simulation results. Also, some application 
moves the bus injection as a whole to a bus in the study area and 
attach loads in other buses to keep the same line flows [14]-[15]. 
No matter how bus injections from the external area are 
redistributed into the study area during equivalencing, the 
proposed method does not need to know. It just needs a full case 
and a reduced case to assign equivalent line limits to keep the 
ATTC values as close as those in the full case. 
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Fig. 4. Reduced 3-bus case with line loading (left) and PTDFs from bus 2 to 

bus 3 (right) 

 

When a bus with bus injection is being eliminated during an 
equivalencing process, the Ward equivalent and its variant split 
the bus injection and attach a portion of it to its first neighbor 
buses to maintain flow on retained lines unaffected. Another 
way is to just remove it from the external area when the bus 
injection is far from the study area so that it does not have much 
impact on fidelity of simulation results. Also, some application 
moves the bus injection as a whole to a bus in the study area and 
attach loads in other buses to keep the same line flows [14]-[15]. 
No matter how bus injections from the external area are 
redistributed into the study area during equivalencing, the 
proposed method does not need to know. It just needs a full case 
and a reduced case to assign equivalent line limits to keep the 
ATTC values as close as those in the full case. 

The ATTC values between the boundary buses of bus 1 can 
be calculated using (2) and (2) as shown in Table 2. As this is 
different line flows from the exact solution case, the ATTC 
values are also different. 

TABLE 2 

ATTCS BETWEEN BOUNDARY BUSES IN 4-BUS CASE FOR NON-EXACT 

SOLUTION 

w Binding line  𝑇𝑤 (MW) 

(2, 3) (1, 3) 87.01 

(4, 2) (1, 4) 176.31 

(4, 3) (1, 3) 69.61 

 

The Psi matrix for inequality constraints can be obtained 
with (10) as follows. 



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

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





62.2271.1546.34

04.2809.4378.15

60.1648.147.40

               (15) 

Now, choosing the maximum value in each column does not 
meet the Criterion for exact solution as both the 2nd and 3rd 



column has their maximum values at the 2nd row. This does not 
satisfy equality constraints for transaction (3,4), which is the 3rd 
row. The power flow for the transaction is overestimated as no 
entry in the row is enforced. Therefore, this set of entries is the 

upper estimate of equivalent line limits; 𝐹̃(2,3) = 40.47 𝑀𝑊 , 

𝐹̃(2,4) = 43.09 𝑀𝑊, and 𝐹̃(3,4) = 28.04 𝑀𝑊. 

Lower estimates can be obtained by enforcing the equality 
constraint for all transactions. This causes some of the inequality 
constraints to be violated as this solution underestimate the 
power flow in some transactions. Given the Psi matrix for the 
non-exact solution case, the Hungarian method is utilized for 
underestimate [16]. The Hungarian method also known as 
Kuhn-Munkres algorithm is a combinatorial optimization 
algorithm to solve assignment problems. The first step is to 
create a matrix with limit violation cost for each entry. The limit 
violation cost is defined by the sum of violation for all entries in 
each column. Let the Psi be an m by n matrix and then the 
procedure to obtain the matrix with limit violation cost is as 
follows. 

a. Create a matrix with the same size as the Psi matrix. 

b. With the 1st entry in each column in Psi, compare with 
all the other entries in its column. 

c. Sum the differences between itself and larger entries in 
its column and put the value in the new matrix. 

d. Repeat b and c for all the other entries in each column. 

The matrix with limit violation cost for the 4-bus non-exact 
solution case is obtained with the above procedure as  


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













43.538.2702.6

0029.105

46.1783.550

                  (16) 

Now, this becomes a resource assignment problem where 
one entry in each row and each column has to be chosen to that 
the sum of all the chosen entries is minimized. Applying the 
Hungarian method, the selected entries are zero in the 1st and 
the 2nd column and 5.43 for the 3rd column. This combination 
minimizes the sum of limit violation cost. Therefore, the lower 

estimates for equivalent line limits are 𝐹̃(2,3) = 40.47 𝑀𝑊 , 

𝐹̃(2,4) = 43.09 𝑀𝑊 , and 𝐹̃(3,4) = 22.62 𝑀𝑊 . The limit for 

equivalent line (3,4) is the only difference from the 
overestimates. 

The ATTC values with the upper estimates and lower 
estimates are calculated in the reduced case using (4) and (5) to 
see how much ATTCs are overestimated and underestimated, 
respectively, comparing with those in the full case as shown in 
Table 3. 

TABLE 3 
COMPARISON OF ATTCS BETWEEN THE FULL AND THE REDUCED CASE FOR 

NON-EXACT SOLUTION 

w 

Full 4-bus case Reduced 3-bus case 

𝑇𝑤 (MW) 
𝑇𝑤 /w 

overestimate 

𝑇𝑤 /w 

underestimate 

(2,3) 87.01 87.02 87.02 

(4,2) 176.31 176.31 126.37 

(4,3) 69.61 97.15 69.60 

 

When the maximum entry in each column in the Psi matrix 
is chosen for upper estimates, the ATTC for transaction from 
bus 4 to bus 3 is overestimated about 39.6% while with the lower 
estimates determined with the Hungarian method, the ATTC for 
transaction from bus 4 to bus 2 is underestimated about 28.3%. 

C. IEEE 118-bus Case 

The proposed method is applied to the IEEE 118-bus case. 
The buses to be eliminated are selected as the same buses used 
in [10] to compare the results. While [10] uses the unloaded 
IEEE 118-bus case only considering the network itself, this 
paper uses the whole network. The Ward equivalencing is used 
to make a reduced 62-bus case and bus injections in the external 
area are redistributed into the boundary buses in the reduced 
case. Also, the same grouping of maximal adjacent external 
buses is performed as [10] resulting in 31 mutually independent 
subgroups of buses to be eliminated. Fig. 5 shows the result of 
the eliminating 31 subgroups from the IEEE 118-bus case using 
ATTC. The numbers of x-axis indicate the bus numbers in each 
subgroup. Number of boundary buses of each group is shown 
with circles and normalized rms ATC values for each group in 
the reduced cases are shown with squares. 

Fig. 5 Result of eliminating 31 subgroups of 56 buses in IEEE 118-bus case using ATTC 
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An interesting point in this result is that the groups with non-
exact solution are different from [10]. When using TTC in [10], 
a subgroup with buses 19, 20, 21 and 22, and the other with 
buses 28, 29, 31 and 113 are the non-exact solution cases while 
using ATTC in this paper, a subgroup with buses 51,52, 53 and 
58, and the other with buses 82,83,84,95,96 and 97 result in 
upper and lower limits. Since subgroup eliminations is used 
here, the number of fill-ins does not need to be considered when 
equivalencing as it is in [10]. 

There are three subgroups with just one boundary bus. These 
subgroups do not have any associated equivalent lines, thus their 
normalized rms ATC is zero.  

Table 4 compares line loading between the full case and the 
reduced case when solved for power flow. The reduced case 
with lower limits have one additional line overloaded compared 
to the full case. This line is one of the equivalent lines when the 
subgroup of buses 82, 83, 84, 95, 96 and 97 is eliminated and its 
boundary buses are 77, 80, 85 and 94. However, this line is not 
overloaded when the reduced case with assign with upper line 
limits. 

TABLE 4 
COMPARISON BETWEEN FULL AND REDUCED CASE FOR LINE LOADING 

 From To CID 
Limit 

(MVA) 

Loading 

(%) 

Full case 8 30 1 100 117.1 

Eq. case 

w/ lower 

limits 

8 30 1 100 122.1 

80 85 99 4.7 166.5 

Eq. case 

w/ upper 

limits 

8 30 1 100 122.1 

80 85 99 7.9 33.1 

 

IV. COMPUTATIONAL ASPECT 

Let S be the number of boundary buses of a group of adjacent 

buses that are being eliminated. There are (
𝑆
2

)  number of 

equivalent lines created between the boundary buses. The 
number of transaction to consider is also the same. The number 

of PTDF calculation is (
𝑆
2

) [(
𝑆
2

) + 𝑆] for both the full case and 

the reduced case. The number of ATTC calculations in the full 

case is (
𝑆
2

)
2

. For non-exact solution cases, the Hungarian 

method requires the computation complexity in the order of 

(
𝑆
2

)
3

which is not small. For larger cases, this could be a 

problematic as the number of boundary buses increases. 
Choosing the group of external buses with fewer number of 
boundary buses would be wise for faster simulations. 

V. CONCLUSIONS 

This paper introduced a way to assign limits on equivalent 
lines by trying to keep available thermal transfer capability in 
the reduced case as close as possible to those in the full case. 

Given the full case and the reduced case, the proposed method 
can calculate exact equivalent line limits if possible. When exact 
solution does not exist, the method provides upper and lower 
estimates. Testing with larger cases should be the  next step since 
computation would be very expensive with the current method 
as the number of boundary buses increase. Also, larger cases are 
harder to solve power flow as more amount of bus injections are 
moved to boundary buses.  
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