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Abstract—Wide-area load model validation using disturbances
is difficult because the large number of load buses makes the
problem intractable. One method to mitigate this problem is
to reduce the number of buses on which dynamic models are
implemented. In this paper, we define the region of influence
(ROI) as those buses which are most impacted by the disturbance,
and we propose using the ROI to determine the internal and
external buses of the analysis. The analysis shows that a large
percentage of the system is minimally impacted by the distur-
bance when only the voltage is considered, unlike frequency,
which is a global system phenomenon. Such a voltage effect based
equivalent is assumed to be adequate for load model validation
due to the close coupling between load and voltage dynamics. By
setting a threshold and only placing dynamic load models on the
ROI region within, the number of differential equations can be
reduced significantly. Finally, we investigate how the parameter
estimation is affected by using this reduced load model.

I. INTRODUCTION

Transient stability model validation involves ensuring that

simulations of power system dynamic models adequately

represent real-system response. Following certain outages and

oscillations, for example in the Western Electricity Coordinat-

ing Council (WECC), post-event analyses showed incorrect

model behavior and predictions; subsequently, significant work

was done in model validation [1], [2]. Key improvements

were done in generator model validation using point of inter-

connection PMU measurements, coupled with single machine

infinite bus simulations. Apart from validating models with

data, work has also been done to cross-validate models across

different software packages and implementations [3]. Recently,

the focus has been on load models with newer, comprehensive

dynamic models being proposed [4]. Load model validation is

also commonly conducted at the device and aggregate level,

for transmission system studies [5]. Several papers describe

parameter estimation techniques for load models [6], [7].

Unlike generator dynamic parameters that do not change

drastically in a short period, load dynamics are much more

transient in nature, and hence need more frequent validation

or parameter calibration.

Currently, the vast majority of measurement-based param-

eter estimation research is performed with small systems or

at a single bus [7]–[11]. However, owing to the deployment

of wide-area measurement systems there is a wealth of high-

fidelity, reasonably accurate data available now which can

be used for this application. This data forms the cornerstone

of system-level validation [2], which aims to match global

system response, rather than that of individual devices. This

is a challenging problem. A dynamic model for a load can have

anywhere from 8 to 135 parameters [12], [4]. In [7]–[11], the

authors do not need to address this issue because even with a

complicated load model, the small number of buses means that

the computational costs are insignificant. However, in a typical

interconnect-level system of tens of thousands of buses, this

could mean having to deal with an order of 106 parameters

for estimation.

To address this, this paper investigates the concept of

network reduction to perform parameter estimation for load

models. It divides a large, interconnect-level system into dif-

ferent regions based on the propagation of voltage disturbance.

These layered regions can be used to define “internal” and

“external” parts of the network, such that load modeling and

estimation is performed only in the internal part. This is

aimed at reducing the computational requirements. The effects

of choosing different sizes of the “internal” region on the

validation results is also studied. The network is “reduced”

in terms of the number of dynamic loads and their parameters

considered in the estimation problem.

The methodology and analysis are demonstrated using only

transmission system-level PMU measurements. This poses

an additional challenge to load modeling, which is usually

performed at lower voltages. We utilize actual PMU measure-

ments from the high voltage transmission network of a North

American electric utility. A system-wide disturbance event and

its associated data are used in this paper to demonstrate the

algorithms and results. A key goal of this reduction is to

enable the automation of the validation process, yet keep it

computationally tractable.

Section II introduces the system under study and the three-

phase induction motor model used in this paper. Section

III explains the concept and calculation of the “region of

influence” which aims to narrow the scope of load modeling,

for faster calculations. Section IV investigates the performance

of parameter estimation using the reduced load model defined

by the region of influence. Finally, Section V summarizes the

key findings of the paper and proposes the next steps in this

research.

II. BACKGROUND

A. Wide Area System Model

The system considered here consists of around 13,000 buses

and 3000 generators, and is henceforth called the “System”. To

recreate the system state as it was just before the disturbance

occurred, a state estimator (SE) snapshot of the system was

obtained, rather than using an offline (i.e. planning) case.

Dynamic models for generators were mapped to this SE case

from the offline case. Due to the changing nature of loads,

Copyright (c) 2017 IEEE. Personal use of this material is permitted. However, 
permission to use this material for any other purposes must be obtained from the IEEE 
by sending a request to pubspermissions@ieee.org. This paper was presented at the 
IEEE PowerTech, Manchester, UK, June 2017.



Time [s]

V
ol
ta
ge

[p
u
]

PMU Measurements

PW Simulation

Fig. 1. PMU recorded data compared to simulations at a bus.

the mappings for loads are currently a work in progress in the

industry. Hence a 20%, 15-parameter induction motor model

assumption was made at each load, based on past industry

assumptions [12].

The disturbance started with a single-phase fault at one cir-

cuit of a 500 kV transmission line, hereafter referred to as Line

AB, in the system, while the other circuit was out of service.

This is simulated at t = 1 second using PowerWorld (PW),

and shown in Fig. 1. This fault was cleared by opening of the

line. This led to the remedial action scheme in the system

to operate, dropping several generators totaling 2500 MW,

followed by the insertion of a 1400 MW breaking resistor,

all within 0.6 seconds of the opening of the line. Between

t = 3 and 6.3 seconds, there were more generator drops and

shunt insertions. Following that, there were no more events

until t = 33.9 seconds, when more shunts were inserted and

one more generation drop event occurred at t = 42 seconds.

The simulation was run until t = 60 seconds, and the results

were compared to the PMU data with the corresponding event

time stamps.

The said PMU data was received from a particular entity

within the Interconnect System, hereafter referred to as the

“Utility”. Bus voltage and frequency measurements at 45

high-voltage locations that lie entirely within the Utility were

received, and no measurements in other parts of the System

were available for this analysis.

B. Three-Phase Induction Motor Model

The three-phase induction motor (TPIM) load model used

in this paper is commonly used in industry for dynamic

studies. For instance, in the WECC, power system studies

were done with 20% of the load modeled as TPIM, and

the remaining as static load, up until 2014 [13]. This model

represents an aggregation of several motors dispersed through

a load represented at a high voltage bus [14], thus making

it appropriate for validation with the transmission-level PMU

TABLE I
TYPICAL ELECTRICAL DATA FOR THE TPIM MODEL

PARAMETER SMALL MOTOR LARGE MOTOR

Ra 0.03− 0.04 < 0.01
Ls 1.8− 3.0 2.5− 5.5
L′ 0.15− 0.18 0.18− 0.20
L′′ 0.12− 0.15 0.15− 0.18
T ′

0 0.12− 0.20 0.8− 1.8
T ′′

0 0.0024− 0.003 0.003− 0.005

data considered in this paper. It is not intended for modeling

the characteristics of individual motors. This model typically

has six electrical parameters: synchronous reactance (Ls),

transient reactance (L′), stator resistance (Ra), transient time

constant (T ′

0), sub-transient reactance (L′′), and sub-transient

time constant (T ′′

0 ). It can represent either a small or a large

motor, based on certain values assigned to its parameters, as

shown in Table I derived from [13].

III. REGION OF INFLUENCE

The goal of this paper is to provide a means to find a subset

of the system where we need to perform load model validation.

This will result in a faster transient stability calculation,

which means a shorter computation time will be required for

each iteration of the parameter optimization. This is found

by quantifying how various regions in the footprint of the

system are “excited” in different degrees by the disturbance.

Coupling this with geographic visualization, it is possible

to divide the large interconnected power system into several

“internal” and “external” regions. This is somewhat similar to

the concept of partitioning the network in creating equivalents.

An internal region in this case indicates an area in which

the load buses are assigned the TPIM model for performing

parameter estimation. The loads in the rest of the system, i.e.

the “external” part, are represented using a constant impedance

model. The idea is to show how the sizes of these internal

regions, i.e. the load buses considered for estimation in that

zone, impact the validation results. The region also proves to

be an effective visualization tool for disturbance propagation.

A. Approach

The ROI seeks to capture how far the disturbance propagates

on the System. Since the 45 PMU measurements are all within

the Utility, we cannot determine the ROI for the interconnect

from the measurements. Thus, we use the simulation to

determine the ROI, since simulation results are available for

the entire System. To measure the impact of the disturbance,

we perform the transient stability simulation with an end

time of 60 s. This time span is sufficient to capture all the

events during the fault and during the recovery. Then, for

each bus, we find the difference between its transient stability

result and the average transient stability result across all buses

at each time step, and use this to calculate the root mean

square error (RMSE). The reason we use the average of



the system instead of simply the pre-fault values is because

the goal is to find those buses which are most important to

retain in the internal system. A bus with an average transient

result is simply swinging with the rest of the system and not

contributing significant dynamics of its own, and can thus

be equivalenced. The signals studied are the same as the

PMU measurements available, i.e. bus voltage magnitude and

frequency. Mathematically, the RMSE for bus i that we use

for ROI is defined as follows:
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where Vi and Fi are the voltage and frequency simulation

results for bus i, τ is the time step (note that τ = 1 is

equivalent to t = 0), T is the total number of time steps,

and I is the total number of buses.

To measure the size of the ROI, a distance measure must be

defined. In this paper, we use geographical distance. Ideally,

the geographical distance could be easily calculated from

the geographical coordinates (latitude/longitude) of the buses.

However, there are two obstacles. The first is that geographical

coordinates for many of the buses are not available as this

data is not a standard part of either offline or SE cases in

industry. Of the 12853 buses in service, we do however have

the coordinates for 3025 buses. Thus, we will have to perform

the analysis with approximately a quarter of the total number

of buses. However, 3025 buses spread evenly throughout the

System should still provide more than sufficient resolution for

finding the ROI, and the results confirm this assumption.

The second obstacle is that the coordinates for some of the

buses are incorrect. The reason for this is that the geography

data was mapped to the SE case from the planning case, as

geography data is not a part of the SE case. However, the two

cases typically use starkly different bus numbers, and some-

what different bus names, to refer to the same physical bus

in the system. As a result, the coordinates for some similarly

named buses may be mapped incorrectly. To overcome this,

an algorithm was used to detect suspicious geography data.

The premise of this algorithm is that a bus with coordinates

that are very distant from its neighbor buses most likely

had incorrect coordinates. Thus, buses with geographically

distance neighbor buses were deemed suspicious, and their

coordinates were discarded.

B. Results

Figs. 2 and 3 show contours of the log of the RMSE values,

based on geographical coordinates. The black cross is the

location of the faulted line. We can see that the ROI for

voltage is close to the fault, as expected. From this figure,

it would be possible to define an ROI by simply selecting

Fig. 2. The geographical region of influence for voltage. Red indicates higher
RMSE.

Fig. 3. The geographical region of influence for frequency. Red indicates
higher RMSE.



a color and including the buses within that region. The ROI

for frequency, on the other hand, provides much less insight.

Because frequency is a system-wide phenomenon, all buses

are affected regardless of where the fault occurs. Fig. 3 shows

that the largest deviations of frequency occur at the extremities

of the system, while the center shows relatively little deviation,

essentially because the extremities are farther away from the

sources of inertia on the system.

C. Reducing the Load Model Based on ROI

Based on the results above, we conclude that the geo-

graphical distance-based voltage ROI is the best candidate for

defining the internal and external systems of the equivalent.

This is an expected result, given that voltage effects tend

to be localized. From a load model validation perspective,

this is desirable since the newer models such as the WECC

composite load model CMPLDW that are in need of validation

are sensitive to voltage, and were actually introduced to better

represent voltage swings in the system.

This voltage ROI is analogous to voltage control areas

[15], in that they are a group of buses in a geographically

compact area having similar voltage changes for disturbances

[16]. VCAs can be found by methods such as Jacobian

sensitivities [15], [17] but they are not suitable for topology

changes, and certainly not for large disturbances. Reference

[18] also proposes a method to partition the system based

purely on graph theory, without accounting for any sensi-

tivities, to eventually provide secondary voltage control and

prevent disturbance propagation. In [19] dynamic VCAs are

found for transient contingencies. Each VCA is composed

of contingency clusters, and the most influential buses for

dynamic var injections. The first step in this process is to

find buses that are most impacted by the contingencies, i.e.

choosing a voltage divergence criteria, followed by clustering.

Our paper does not aim to find such voltage control areas, but

it does start from the same point of finding the most impacted

buses to eventually find these areas, or what we refer to here

as “regions”.

In this section, we partition the buses into internal and

external systems based on the ROI. However, as we noted

in Section III-A, we only have the geographical coordinates

of approximately one quarter of the buses. For a bus which

does not have coordinates, we must estimate its location to

determine if it lies within the ROI. To accomplish this, we

make use of force-directed graph drawing techniques. Force-

directed graph drawing attempts to lay out the nodes and

edges of a graph in an aesthetically pleasing way. It typically

accomplishes this by modeling the edges of the graph as

attractive springs, and the nodes of the graph as repulsive

electric charges [20]. At equilibrium of the N-body simulation,

the forces balance, resulting in a graph where connected nodes

are close together, but all nodes are fairly evenly spaced. The

motivation for using this technique comes from [21], which

essentially found that in the real power system, nodes are

typically connected in a lattice structure as opposed to a radial

structure. The technique has also been used frequently for

power system visualization [22], [23].

IV. PARAMETER ESTIMATION USING THE REDUCED LOAD

MODEL

In Section III-B, we calculated the ROI contour based on

the geographical coordinates of the buses we had coordinates

of. Then, in Section III-C, we estimated the coordinates of

the other buses so that we could determine the internal and

external systems given the selection of a contour level. Finally,

in this section, we look at how the performance of parameter

estimation is affected by the selection of the contour level for

load modeling. In Fig. 4, we plot the cumulative distribution

of the RMSE of the buses. This graph can be interpreted as

follows: if we select the brown region, we retain 0.3% of

all buses; if we select the red region, we retain 6.6% of all

buses, including those in the brown region above it; if we

select dark blue, we retain all buses in all colors. We can see

that as we choose larger contours, many more buses will be

included. The question is whether we can achieve relatively

good parameter estimation results with a small subset of the

buses. For example: Can we place load models only on buses

in the orange contour and still achieve a good match between

the simulated results and the measurements? If so, this will

reduce the number of differential equations in the simulation,

thus reducing the computation time required for the simulation

in each iteration.

In this analysis, we focused on using parameter estimation

to find the best fit between measurements and simulation at one

specific bus out of the 45 total buses with measurements, and

for only the first 3 seconds. The reason we make this simplifi-

cation is that, through empirical testing, the 14 parameters in

TPIM are only enough to fit this limited set of measurements.

In Section V, we will elaborate on how this paper sets the

Percentage of buses [%]

RMSE of V

Fig. 4. The sorted RMSE values, overlaid on the contour region colors.
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Fig. 5. Measurements and simulated results before parameter estimation.
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Fig. 6. Measurements and simulated results after parameter estimation of
TPIM models placed on load buses within the orange contour.

framework to allow us to fit longer windows, and at multiple

buses.

In Fig. 5, we compare the measurements and the simulation

results for the default parameters of the TPIM. In Figs. 6

and 7, we perform load modeling on the buses in the small

orange contour area, and the medium cyan contour area,

respectively. Finally, in Fig. 8, the TPIM is placed on all load

buses. Table II also shows the parameter values before and

after parameter estimation using all buses. As expected, the

parameter estimation results improve as more buses contain

load models. From Fig. 5 (before parameter estimation) to

Fig. 6 (orange contour), we can see that the peak at t = 2
s is closer to the measurements. However, in general, the

simulation result after parameter estimation is only marginally

better than before parameter estimation. From Fig. 6 to Fig.

7, the improvement is much more pronounced. The simulation
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Fig. 7. Measurements and simulated results after parameter estimation of
TPIM models placed on load buses within the cyan contour.
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Fig. 8. Measurements and simulated results after parameter estimation of
TPIM models placed on all load buses.

and measurements are quite close until t = 2.5 s. However,

the last 0.5 s of simulation still swings differently than the

measurements. Finally, from Fig. 7 to Fig. 8, the match is

even better for t < 2.5 s, and more importantly, the swing

after 2.5 s also matches much better. What we can take away

from this analysis is that the shorter the window we wish to

match, the fewer buses we need at which to perform parameter

estimation.

V. CONCLUSION AND FUTURE WORK

In this work, we first used simulations to investigate how a

voltage disturbance propagates in a large network. Based on

the magnitude of the voltage swings at each bus, a contour

was produced which revealed possible regions of interest. A

few buses near the disturbance had large deviations, while



TABLE II
MODEL BEFORE AND AFTER PARAMETER ESTIMATION

PARAMETER BEFORE AFTER

Pul Fraction of total load 0.2 0.8933
Ls Synchronous reactance 3.6 2.1506
L′ Transient reactance 0.17 0.0388
Ra Stator resistance 0.0068 0.0074
T ′

0 Transient rotor time const. 0.53 0.9214
H Inertia constant 0.5 0.2027
D Damping factor 2 0.3730
VT Voltage trip threshold 0.6 0.8438
TV Trip pickup time 30 26.168
Tbkr Breaker operation time 0.03333 0.0575
Acc Acceleration factor 0.6 0.2563
L′′ Subtransient reactance 0.17 0.3561
T ′′

0 Subtrans. rotor time const. 0 0
n∆ Time step subdivision 10 10.546
ω∆ Subdiv. speed threshold 0.8 0.7688

each larger contour level contained increasingly more buses.

We then hypothesized that placing dynamic induction motor

models at the buses in a larger contour would result in a better

fit, at the expense of greater computational costs. This was

indeed the case. However, the improvement was not linear.

When we increased the number of load models from a small

to a moderate number, the first 2.5 s matched well, while the

last 0.5 s did not improve. Only by adding load models to the

remaining buses were we able to achieve a close match in the

last 0.5 s.

The methods discussed in this paper set the framework

for continued research. Most importantly, we have confirmed

our hypothesis that we would require more load models in

order to achieve a match in a longer window. Eventually,

we would like to match all 60 seconds of the disturbance.

In order to do so, we require more degrees of freedom. In this

paper, we used the same parameters at all induction motor

models simultaneously; in the future, we will need to relax

this constraint. The ROI contour will play a much larger role

here. For the small contours near the disturbance—those that

showed the largest deviation—we will perform load modeling

at finer resolution. For the large contours that encompass much

of the entire system, a coarser resolution can be used. For

example, in the dark red region, we may use a different load

model for every bus. In the orange region, we may partition

the buses into several clusters, and use a different model for

each cluster. For the rest of the system, we can use even

larger clusters. This approach will allow us to increase the

dimensionality of the optimization in a controlled fashion, with

computational resources allocated first to the most important

buses.
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