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Announcements

Homework 5 is due on Tuesday Nov 13
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Study vs External System

T
« The key decision In creating an equivalent is to divide
the system into a study portion that is represented in
detail, and an external portion that is represented by the
equivalent

« The two systems are joined at boundary buses, which
are part of the study subsystem

« How this is done is application specific; for example:

- for real-time use it does not make sense to retain significant
portions of the grid for which there is no real-time information

- for contingency analysis the impact of the contingency is
localized

- for planning the new system additions have localized impacts ;




Ward Type Equivalencing
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Ward Type Equivalencing
Considerations

« The Ward equivalent is calculated by doing a
partial factorization of the Y

- The equivalent buses are numbered after the study buses
- As the equivalent buses are eliminated their first

neighbors are joined together

- At the end, many of the boundary buses are connected
- This can GREATLY decrease the sparsity of the system
- Buses with different voltages can be directly connected
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Ward Type Equivalencing
Considerations

A|M
« At the end of the Ward process often many of the newT
equivalent lines have high impedances
- Often there is an impedance threshold, and lines with
Impedances above this value are eliminated
« The equivalent lines may have unusual values, including

negative resistances

« Load and generation is represented as equivalent current
Injections or shunts; sometimes these values are
converted back to constant power

« Consideration needs to be given to loss of reactive
support

« The equivalent embeds the present load and gen valuess



B7Flat Eqv Example

In this example the B7Flat_Eqv case Is reduced,
eliminating buses 1, 3 and 4. The study system is
then 2, 5, 6, 7, with buses 2 and 5 the boundary buses
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0 MW oMW o mw
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0 MW 0 MW
Top Are c st
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B7Flat Eqv Example
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B7Flat Eqv Example
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Equivalencing in PowerWorld

Al

Open a case and solve it; then select Edit Mode, Tools,
Equivalencing; this displays the Power System

Equivalents Form
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Next step Is then to
divide the buses Into
the study system and
the external system;
buses can be loaded
from a text file as
well

10



Equivalencing in PowerWorld

A|M
Then go to the Create The Equivalent page, select the
desired options and select Build Equivalent System

Power System Equivalents - o I IE8

Select The Buses  Create The Equivalent

Build Equivalent

[FlDelete All External Generators Max Per Unit Impedance for Equivalent Lines - S _ IVI aX I u

Two Character Circuit ID for Mew EquivalentLines | gg

Max MWW Ratings Above 0« [JRemove External Objects from Onelines I I I l p e d an Ce
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0 -
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[ Transformers [CJremove Radial Syste
[ pelete Empty Areas/Zol
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[Jzero Impedance Ties (% < 0.001)
I:| Area Tie Lines
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rchange to Zero Out ACE

$—— Click to create the equivalent 09" or 'EQ
are common

The following are alternative non-equivalencing tasks that can be applied to the External Sy:
Bus Shunts Across Zero Impedance Branches - -
Bus Shunt Values Above = C I rC u I Va u es

Save External System in File Mer
Across Branches

(O Entire External System Save External System
e for eCIUivalent

(®) Entire External System and Ties Mer:
Merge Shunts

[ indude Generator Dynamic
Build Equivalent System

Delete External System

[CJremove External Objects from Onelines
Delete External System

O Delete empty Areas/Zones/Substations -
incuded in the External System Mote: If bus NNt values are merged across area tie
lines, the unspkified MW transactions for the areas
will be adjuste cordingly.

Save To Aux ? Help M Close

Removes equivalenced objects from the oneline 11



Small System Equivalent Example

A

Example shows the creation of an equivalent for
Aggieland37 example

Aggleland Power and nght
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Case Is Aggieland37 HW5

First example is
simple, just removing
WHITE138 (bus 3);
note TEXAS138 is
now directly joined to
RELLIS138..
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Small System Equivalent Example

?

Aggieland Power and nght On|y bus 3 was

removed: the new
equivalent line was
auto-inserted.

Total Load 1420.7 MW
1o2m [ reveses  TORAl LoSses: 24.70 MW
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Small System Equivalent Example

T

* Now remove buses at WHITE138 and TEXAS and
RELLIS (1, 3, 12, 40, 41, 44); set Max Per Unit
ImpEdance for Aggieland Power and Light
Equivalent :
Lines to eudagiprtet
99 (per unit)
to retain all
lines. Again
to an auto-
Insert to show
the equivalent
lines.
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Small System Equivalent Example

Now set the Max Per Unit Impedance for

Equivalent Lines to 2.5.
Aggieland Power and Light
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Large System Example: 70K Case
T

* Original System has 70,000 buses and 71,343 lines
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Ry ¥ Case Is available at
% ; s e electricgrids.engr.tamu.edu;
' TAMU students can get a
" license to the full version
=== of PowerWorld (for educational
== USe); email lyke for details
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Large System Example: 70K Case
T

e Just retain the Oklahoma Area; now 1591 buses and
1745 lines (deleting ones above 2.5 pu impedance)

ol N = "MM
TN ‘\\;{ f"'t‘;
\ \V\ :-\ m 1 ’"\‘ ‘4

\“‘_‘au

“‘ N
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Grid Equivalent Examples
KM
« A 2016 EI case had about 350 lines with a circuit ID of
’99’ and about 60 with ‘EQ’ (out of a total of 102,000)

—- Both WECC and the EI use 99’ or ‘EQ’ circuit IDs to
Indicate equivalent lines

— One would expect few equivalent lines in interconnect wide
models

« A ten year old El case had about 1633 lines with a
circuit ID of 99 and 400 with ‘EQ’ (out of a total of
65673)

« A ten year old case with about 5000 buses and 5000
lines had 600 equivalent lines
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Power System Voltage Stability

T

* Voltage Stability: The ability to maintain system
voltage so that both power and voltage are controllable.
System voltage responds as expected (i.e., an increase in
load causes proportional decrease in voltage).

* Voltage Instability: Inability to maintain system
voltage. System voltage and/or power become
uncontrollable. System voltage does not respond as
expected.

* Voltage Collapse: Process by which voltage instability
leads to unacceptably low voltages in a significant
portion of the system. Typically results in loss of

system load. 19



Voltage Stability

Two good references are

— P. Kundur, et. al., “Definitions and Classification of
Power System Stability,” IEEE Trans. on Power Systems,
pp. 1387-1401, August 2004.

— T. Van Cutsem, “Voltage Instability: Phenomena,

Countermeasures, and Analysis Methods,” Proc. IEEE,
February 2000, pp. 208-227.

Classified by either size of disturbance or duration

— Small or large disturbance: small disturbance is just
perturbations about an equilibrium point (power flow)

— Short-term (several seconds) or long-term (many seconds
to minutes) (covered in ECEN 667)

o
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Small Disturbance Voltage Stability
T

« Small disturbance voltage stability can be assessed
using a power flow (maximum loadability)

* Depending on the assumed load model, the power
flow can have multiple (or now solutions)

* PV curve is created by plotting power versus voltage

Bus 1 x=0.2 Bus 2
(Slack)

[] x=0.2 — P Assume V
P —BVsind=0
Q, +BVcosd-BV? =0

1.0

slack™

Where B is the line susceptance =-10,
V Z0 Is the load voltage 21



Small Disturbance Voltage Stability
T

Question: how do the power flow solutions vary as
the load Is changed?

« A Solution: Calculate a series of power flow
solutions for various load levels and see how they

change
« Power flow Jacobian
—BV cosd —Bsing |
J(O,V) = _
—BVsing Bcosd-2BV

detJ(0,V) =VB? 2V cos 6 —cos® @ —sin’ 6)

Singular when (2V cos@—-1)=0
22



Maximum Loadability When Power
Flow Jacobian is Singular

Al

« An important paper considering this was by Sauer and
Pal from IEEE Trans. Power Systems in Nov 1990,
“Power system steady-state stability and the load-flow

Jacobian”

« Other earlier papers were looking at the characteristics
of multiple power flow solutions

« Work with the power flow optimal multiplier around
the same time had shown that optimal multiplier goes
to zero as the power flow Jacobian becomes singular

* The power flow Jacobian depends on the assumed load
model (we’ll see the impact in a few slides)
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Relationship Between Stability and
Power Flow Jacobian

T
« The Sauer/Pal paper related system stability to the
power flow Jacobian by noting the system dynamics
could be written as a set of differential algebraic

equations

x=1(x,y,p)
0=9(X,y,p)
Linearing about and equilibrium gives

- of of |

AX| | OX 0Oy || AX
0| |ag &g | Ay

| OX oY |
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Relationship Between Stability and
Power Flow Jacobian

* Then
0g

Assuming — Is nonsingular then

o

-1 ]
A — of of|og| dg Ax
OX oy|oy | oX

« What Sauer and Pai show is if g/ 0y Is singular then
the system is unstable; if g/ 0 y Is nonsingular then
the system may or may not be stable

« Hence it provides an upper bound on stability
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Bifurcations
T
* In general, bifurcation is the division of something into
two branches or parts

* For a dynamic system, a bifurcation occurs when small
changes in a parameter cause a new gquality of motion
of the dynamic system

« Two types of bifurcation are considered for voltage
stability

— Saddle node bifurcation is the disappearance of an equilibrium
point for parameter variation; for voltage stability it is two
power flow solutions coalescing with parameter variation

— Hopf bifurcation is cause by two eigenvalues crossing into the

right-half plane
26



PV and QV Curves
T

PV curves can be traced by plotting the voltage as the
real power Is increased; QV curves as reactive power IS
Increased

— At least for the upper portion of the curve
Two bus example PV and QV curves
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0 100 200 300 400 500 600 0 50 100 150 200 250 300
Real power load (MW) Reactive power load (Mvar)
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Small Disturbance Voltage Collapse
T
At constant frequency (e.g., 60 Hz) the complex power
transferred down a transmission line is S=VI~
— V is phasor voltage, I is phasor current
— This is the reason for using a high voltage grid

 Line real power losses are given by RI? and reactive

power losses by XI?

—- R s the line’s resistance, and X its reactance; for a high
voltage line X >> R

* Increased reactive power tends to drive down the

voltage, which increases the current, which further

Increases the reactive power losses
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