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Abstract

Inertial responses are seen by the system as the

injection or withdrawal of electrical energy, corre-

sponding to a change of frequency. The inertia of a

machine primarily contributes to the power system

transient stability. Oscillations are always present in

the bulk power system due to the electromechanical

nature of the grid. Poorly damped oscillations may

cause system instability. Thus, this paper aims to

study inertia’s impacts on system primary frequency

response, in particular on system oscillation modes.

Both transient stability simulations and modal analysis

are performed to provide insights into the extent to

which inertia and its location influence the system

oscillation behavior. Simulation results using both a

small-scale test system and a large-scale synthetic

network dynamic model are presented to verify the

locational impacts of resource inertia.

1. Introduction

Primary frequency response (PFR) is largely deter-

mined by generators’ inertia and governor responses.

As the power system generation side is changing

to include more renewable resources connected by

power electronics and more light-weight generators,

the system is shifting towards less inertia. With lower

grid inertia, small events may result in larger fre-

quency excursions than before. Reports [1], [2] by

the North American Electric Reliability Corporation

(NERC) indicated a declining frequency response in

both the Eastern Interconnection (EI) and the Electric

Reliability Council of Texas (ERCOT) footprints. In

references [3], [4], authors performed time-domain

simulations to analyze the inertia’s impacts on transient

stability. Previous work [5] investigated the location-

dependent impacts of inertia on power system primary

frequency response.

Post-disturbance system oscillation modes are of

interest for evaluating the system transient stability,

in addition to minimum/maximum rate of change of

frequency (RoCoF) and minimum/maximum frequency

during the first several seconds after disturbances.

Power systems can experience a wide range of oscilla-

tions, ranging from high-frequency switching transients

to sustained low frequency (< 2 Hz) inter-area oscilla-

tions affecting an entire interconnect. A system oscil-

lation mode is a natural property of electromechanical

system, and characterized by its oscillating frequency,

damping performance and effect area [6]. An os-

cillation can be either undamped, positively damped

(decaying with time) or negatively damped (growing

with time). However, there are few works studying

the impacts of resource inertia on system oscillation

frequency and damping behavior. Modal analysis was

used in [7] for analysing phase angle-based power

system inter-area oscillation. Works [8], [9] applied

modal analysis for studies on inertia in consideration of

deep solar energy penetration. Authors also extracted

modal information to investigate damping of inter-area

oscillations in large interconnected power systems [10].

As such, we aim to investigate how system oscilla-

tion modes vary with inertia being reduced and how

this oscillation mode variation is related to inertia’s

location. This paper first uses a straight-forward small-

scale test system for illustration. To obtain realistic

simulation results, this paper also performs studies on

a large-scale synthetic network model [11]–[14]. A

set of scenarios with various inertia at different sites

are constructed to show, for a power system, what

aspects the inertia and its location have effects on.

The test system in some cases experiences natural

oscillations, and forced ones in other cases. In this

work, we focus on local plant oscillations. The major

effect area of the local plant oscillation is localized

to a small set of generators close to each other and

lines connecting them [15]. Specifically, we perform

time-domain simulations and modal analysis for inertia

studies.

In this paper, four more sections come as follows.

Section II provides some background knowledges on

transient stability formulation and modal analysis tech-

niques. In Section III, a simple example is applied

to illustrate inertia’s locational impacts. Simulations

results on a large-scale synthetic system model with

varying regional inertia are presented in Section IV.

Conclusion and future work direction are provided in

Section V.
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2. Background

In this section, we give an overview of transient

stability formulation and the role of inertia in the

formation. We also briefly discuss about the basic

idea of all techniques to extract power system modal

information.

2.1. The Machine Swing Equation in System

Transient Stability Formulation

To determine response of the system over a time

period of seconds to perhaps a minute after a contin-

gency, a set of differential and algebraic equations is

formulated in a general form as follows:

ẋ = f(x,y,u) (1)

0 = g(x,y) (2)

where x is the vector of the state variables, y is the

vector of the algebraic variables, and u is the input

vector. Those equations are integrated using either

explicit or implicit methods [16].

Through network impedance, machine characteris-

tics, load characteristics and transient stability controls

all play their parts in system dynamic responses. For

each synchronous machine i, there are two differential

equations in (1), known as the swing equation:

δ̇i = ωi − ωB = ∆ωi (3)

2Hi

ωs

dωi

dt
=

2Hi

ωs

d∆ωi

dt
= TMi − TEi

−Di∆ωi (4)

TMi and TEi are mechanical and electrical torques,

between which the difference results in the change of

rotor angular velocity ωi and position δi. Hi is the

normalized inertia value Hi = Ji(ωB)2

2SB

, with a MVA

base SB and rotor’s actual moment of inertia Ji. Given

a fixed difference between a generator’s mechanical

input and electrical output, rotor accelerates or decel-

erates faster if inertia is lower, and vice versa.

2.2. Modal Analysis

Post-contingency system responses may experience

oscillations that either damp out, sustain or grow. Those

oscillatory responses can be measured and analyzed to

extract modal information of the system. Idea of modal

analysis is to approximate a signal z(t) by the sum

of exponential functions ẑ(t) =
∑

k ak exp(λkt) that

could preserve the original signal’s properties such as

oscillation frequency and damping. ẑ(t) is typically ob-

tained by solving the following minimization problem

for a set of sampling points [17], [18].

min
ak,λk

∑

t∈T

(z(t)− ẑ(t))2 (5)

The damping ratio is then calculated as − 100σk√
σ2

k
+ω2

k

,

where σk and ωk = 2πfk are the real and imaginary

parts of the eigenvalue λk associated with each mode

k. fk is mode k oscillation frequency. For each mode,

unique relationships among the four parameters are: a)

when damping of a mode increases, the real part σk

changes from positive to negative, and vice versa; b)

when frequency of a mode increases, the imaginary

part ωk increases, and vice versa.

In this paper, the variable projection method (VPM)

is used to determine the characteristic modes observed

from time series analysis [19]. We use oscillation

frequency and damping ratio as metrics to analyze

the locational impacts of inertia on system oscillation

modes.

3. Preliminary Studies

In this section, we apply a simple, straightforward

138-kV test system with three generators for illus-

trating resource inertia’s locational impacts on system

oscillation and damping behavior.

Fig. 1: Oneline diagram of a three-bus test system

3.1. Simulation Setup and Results

The three-bus test system as shown in Fig.1 supplies

a load connected to bus 3. Each bus is connected to a

generator. A balanced 3-phase fault is applied to bus 1

at 1 second and cleared 0.01 seconds later. We reduce

the inertia of gen 3 by amounts from 0 MWs to 300

MWs in increment of 100 MWs (Case 1)1. Fig.2 shows

the rotor speeds of generators at buses 1 and 3 in Case

1. For comparisons, Case 2 reduces the inertia of gen

1 by amounts from 0 MWs to 300 MWs in increment

of 100 MWs. The rotor speeds of generators at buses

1 and 3 in Case 2 are displayed in Fig.3.

1. Inertia is often expressed in unit of second on the machine
MVA base that varies by generator. Thus, we express inertia in MWs
( = MVA base × inertia in s) for convenient comparisons among
different generators. For instance, given a base of 100 MVA, an
inertia of 1 s is equivalent to an inertia of 100 MWs.
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Fig. 2: Simulation results of a bus fault event on the
three-bus test system with varying inertia of gen 3

Fig. 3: Simulation results of a bus fault event on the
three-bus test system with varying inertia of gen 1

3.2. Discussion

The inertia reduction at each generator significantly

changes the local oscillation magnitude. In Case 1, the

local oscillation magnitude at bus 3 becomes smaller

first and then increases as the gen 3’s inertia is reduced.

Meanwhile, the local oscillation frequency at bus 3 has

similar behavior. Rather, gen 1’s inertia reduction in

Case 2 always enlarges the local oscillation magnitude

and frequency at bus 1. Those results indicate that local

inertia has large effects on local oscillation modes. We

also note that the inertia reduction at each generator

also impacts its nearby generator’s oscillation. In Fig.2

(Fig.3), inertia reduction at bus 3 (1) slightly increases

the oscillation magnitude of gen 1 (3). Furthermore,

with 300-MWs inertia reduction in Case 2, more than

one oscillation mode are observed for the gen 3 rotor

speed.

To provide insights into changes in oscillation

modes, Table 1 displays the modal analysis results

on the three-bus test system with varying inertia. The

original system oscillates at 2.1 Hz. We observe one

slow mode (2.106 Hz with damping ratio of 0.127 %)

and one fast mode (2.122 Hz with damping ratio of

0.087 %). Inertia reduction in Case 1 slightly changes

the slow oscillation mode, and significantly speed

up and amplify the fast oscillation. In contrast, the

slow oscillation mode oscillates faster with a higher

magnitude and the fast one changes little, as inertia in

bus 1 is reduced. Furthermore, in Case 2, 300-MWs

inertia reduction at Gen 1 results in unstable system

frequency with a negative damping ratio. This mode

at 3.648 Hz is also observed at Gen 3 rotor speed, as

shown in the bottom figure of Fig.3.

Table 1: Modal analysis results on the three-bus test system
with varying inertia

Case 1 2

Mode
Inertia Ch- Freq Damping Freq Damping

ange(MWs) (Hz) Ratio (%) (Hz) Ratio (%)

Slow

0 2.106 0.127 2.106 0.127

100 2.107 0.076 2.328 0.055

200 2.108 0.092 2.716 0.012

300 2.107 0.085 3.648 -0.035

Fast

0 2.122 0.087 2.122 0.087

100 2.348 0.065 2.126 0.083

200 2.755 0.055 2.125 0.096

300 3.371 0.049 2.122 0.108

Both cases demonstrate that inertia contributes to the

system oscillation modes. The locational dependence

of resource inertia’s impacts on power system oscil-

lation modes is also observed in this small-test case

system. In the remaining of this paper, we focus our

simulations studies on system dynamic responses using

a synthetic large-scale test system.

4. Illustrative Studies using Synthetic Net-

work Models

To provide insightful and realistic results, we per-

form more simulations using synthetic network models

that are built by applying statistics summarized from
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actual system models and data available to public [11]–

[13]. Those synthetic models available at [14] are

entirely fictitious, but are able to capture structural and

functional features of actual power grids.

4.1. Simulation Setup

This section adopts a 2000-bus synthetic network -

ACTIVSg2k - on the Electric Reliability Council of

Texas (ERCOT) footprint, as shown in Fig.4. Given

a load level set to 67 GW, the system has a total

inertia of 390 GWs from online generation units. This

test system has eight areas. Table. 2 summarizes the

total resource inertia of online units in each area.

We consider three regions (R1 with COAST, R2 with

SCENT and SOUTH, and R3 with NORTH, NCENT

and FWEST) in the following case studies. R2 and R3

have similar total regional inertia, which is lower than

that of R1.

Fig. 4: Eight areas in the ACTIVSg2k model

Table 2: Total resource inertia of online generation units of
each area in the synthetic network dynamic model

Area Name COAST EAST FWEST WEST

Inertia (MWs) 153548 26638 8318 301

Area Name NCENT NORTH SCENT SOUTH

Inertia (MWs) 83090 11626 74521 34557

4.2. Case Study Set I

Table.3 provides details on Case Set I. Each subset in

Set I has a local oscillation caused by a few generators,

defined as a set O . Set I aims to study how local

oscillations are impacted by the amount and location

of inertia of generator set O (local inertia), nearby

generators in the same region as O (nearby inertia)

and ones far away from O (remote inertia). In both

Case Sets I.1 and I.2, Case (a) performs studies using

the original system. Cases (b) and (c) reduce remote

inertia in one region by 50 GWs. Nearby inertia that

does not include that of generators in O is reduced

by 50 GWs in Case (d). Inertia of generators in O is

decreased by 50 % in Case (e).

Table 3: Case Set I Detail

Case I.1 I.2

Event Type three-phase bus fault line outage

Event Location R1 R3

Oscillation Origin R3 R1

Local Inertia O1 O2

Nearby Inertia
R3 R1

(O1 excluded) (O2 excluded)

Remote Inertia R1 & R2 R2 & R3

Fig. 5: Simulated bus frequencies in Case Set I.1

Case Set I.1 considers a three-bus fault in R1. As

shown in Fig.5(a), the original system experiences

a 0.66-Hz local oscillation of the generator set O1

in R3. Fig.5(b) and (c) present bus frequencies with

a 50-GWs regional inertia reduction in R1 and R2,

respectively. Results in Fig.5(d) are obtained after R3

regional inertia of online generators (O1 excluded)

is reduced by 50 GWs, while those in Fig.5(e) are

obtained after only inertia of generator set O1 is

reduced by 50%. Oscillation frequency and damping

ratio are also displayed in Fig.5(a)-(e). Nearby and re-

mote inertia reduction slows down this oscillation and

improves its damping performance. However, impacts

of both nearby and remote inertia reduction on this
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local oscillation are trivial. In contrast, the local inertia

reduction significantly worsens this local oscillation.

Due to decreased local inertia, this mode oscillates

faster and its damping ratio becomes negative, which

causes an unstable system condition.

In Case Set I.2, after a transmission line in R3 is

open, this test system experiences a 1.24-Hz local os-

cillation caused by the generator set O2 in R1. Similar

to case design in Set I.1, Case I.2.b and Case I.2.c study

the impact of remote inertia, by running simulation

with a 50-GWs regional inertia reduction in R2 and

R3, respectively. Case I.2.d reduces the R1 regional

inertia of online generators (O2 excluded) by 50 GWs,

and Case I.2.e decreases inertia only of generators in

O2 by 50%. Comparing with Case Set I.1, we observe

very different results in Case Set I.2. The well-damped

oscillations in Fig.6(e) shows that local inertia reduc-

tion significantly improves local oscillation. Nearby

and remote inertia reduction significantly worsen this

oscillation. In particular, oscillations in Cases I.2.b-

I.2.d are growing with negative damping ratios. This

is because the generators near the local oscillation

origin are less capable to prevent the oscillation from

spreading over the network and disturbing the network

as their inertia is reduced.

Fig. 6: Simulated bus frequencies in Case Set I.2

Both case sets indicate an important role of local

inertia in the local oscillations. Local inertia reduc-

tion may largely deteriorate or alleviate oscillations.

Decreased nearby and remote inertia typically worsen

local oscillations, and its severeness varies by location.

Furthermore, the locational variation in the impacts of

local inertia, nearby inertia and remote inertia is also

depending on the current system operating condition.

4.3. Case Study Set II

To further study the effects of the inertia and its

location on system oscillation modes, we perform

sensitivity studies with a forced oscillation to trigger

system oscillations. In Case Set II, we subject this

system to a 1-Hz forced oscillation for a generator

in R1. For each region, we proportionally reduce

the inertia of each unit in that region such that the

reduction in the regional total inertia varies from 0

MWs to 50,000 MWs in increment of 5,000 MWs. For

comparisons, we perform the same simulations using

the synthetic model with the reduced total inertia of

the system varying from 0 MWs to 50,000 MWs in

increment of 5,000 MWs (reference case 0).

Fig. 7: Modal analysis results in Case Set II

Fig.7 displays the change of oscillation frequency

and damping ratio with respect to the reduction in

regional inertia. We note that the inertia reduction in

different regions have distinguishable impacts on the

system modes. In particular, inertia reduction in R2

causes the 2-Hz mode moving from poorly damping

to negatively damping. We note discontinuity in oscil-

lation mode change as the inertia reduces. Some modes

always exist from 0 GWs all the way up to 50 GWs of

inertia reduction, while other modes only show up in

a particular period of inertia reduction. This is because

the VPM is a measurement-based approach and hence

the modes with a trivial magnitude are not observable

for a certain period of inertia reduction. For instance,

when the regional inertia in R1 is reduced by more

than 15 GWs, the 2.1-Hz mode vanishes.
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In summary, we carried out several studies to reveal

the sensitivity of modal analysis results with respect to

the inertia reduction in different regions. Simulation

results demonstrate that the impacts of inertia on

system oscillation behavior vary by inertia’s location.

5. Conclusion

In this paper, both a small-scale test system and

a large-scale synthetic dynamic model were used to

study the inertia’s impacts on system oscillation modes.

Natural oscillation modes were triggered by either

a three-phase bus fault, a transmission line outage

or a forced oscillation. We performed time-domain

simulations and modal analysis, and observed the lo-

cational dependence of impacts of inertia. As such,

inertia should be an important factor to be taken into

consideration during activities related to power system

transient stability.

Replacement of conventional units by light- or zero-

inertia units will be considered to study the locational

impacts of inertia. Both frequency/RoCoF ranges and

oscillation modes should be considered as essential

metrics for assessment of system dynamic responses.

Given the location-dependent values and impacts of

inertia, it is also of interest to construct a comprehen-

sive market simulation tool with integration of transient

stability constraints. We will report these studies in

future work.
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