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Announcements

• Read Chapter 7 from the book

• Homework 2 is due today

• Homework 3 should be done before the exam put 

does not need to be turned in

• First exam is Tuesday October 8 in class; closed 

book, closed notes.  One 8.5 by 11 inch note sheet 

and calculators allowed
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Example: 7 by 7 Matrix

• Consider the 7 x 7 matrix A with the zero-nonzero 

pattern shown in (a): of the 49 possible elements 

there are only 31 that are nonzero

• If elimination proceeds with the given ordering, all 

but two of the 18 originally zero entries, will fill in, 

as seen in (b)



3

1 2 3 4 5 6 7

1 X X X X X X

2 X X X X X

3 X X X X X

4 X X X

5 X X X X

6 X X X X X

7 X X X

The original zero-nonzero 

structure

1 2 3 4 5 6 7

1 X X X X X X

2 X X X F F X X

3 X X X F F X X

4 X F F X X F F

5 X F F X X X F

6 X X X F X X F

7 X X F F F X

The post- elimination  zero 

nonzero pattern

r
c

r
c

Example: 7 by 7 Matrix Structure



4

• We next reorder the rows and the columns of A so as to 

result in the pattern shown in (c)

• For this reordering, we obtain no fills, as shown in the 

table of factors given in (d )

• In this way, we preserve the original sparsity of A

Example: 7 by 7 Matrix Reordering
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4 5 1 6 7 3 2

4 X X X

5 X X X X

1 X X X X X X

6 X X X X X

7 X X X

3 X X X X X

2 X X X X X

The reordered system

4 5 1 6 7 3 2

4 X X X

5 X X X X

1 X X X X X X

6 X X X X X

7 X X X

3 X X X X X

2 X X X X X

The post- elimination 

reordered system

r
c

r
c

Example: 7 by 7 Matrix Reordered 

Structure
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Sparse Matrix Reordering

• There is no computationally efficient way to optimally 

reorder a sparse matrix; however there are very 

efficient algorithms to greatly reduce the fills

• Two steps here: 1) order the matrix, 2) add fills

• A quite common algorithm combines ordering the 

matrix with adding the fills

• The two methods discussed here were presented in the 

1963 paper by Sato and Tinney from BPA; known as 

Tinney Scheme 1 and Tinney Scheme 2 since they are 

more explicitly described in Tinney’s 1967 paper

– 1967 paper also has Tinney Scheme 3 (briefly covered)

6
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Tinney Scheme 1

• Easy to describe, but not really used since the number 

of fills, while reduced, is still quite high

• In graph theory the degree (or valence or valency) of a 

vertex is the number of edges incident to the vertex

• Order the nodes (buses) by the number of incident 

branches (i.e., its valence) those with the lowest 

valence are ordered first

– Nodes with just one incident line result in no new fills

– Obviously in a large system many nodes will have the same 

number of incident branches; ties can be handled arbitrarily

7
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Tinney Scheme 1, Cont.

• Once the nodes are reordered, the fills are added

– Common approach to ties is to take the lower numbered node first

• A shortcoming of this method is as the fills are added 

the valence of the adjacent nodes changes

1 2 3

4 5
6

78
Node Valence

1 1

2 1

3 1

4 4

5 3

6 3

7 2

8 3Tinney 1 order is 1,2,3,7,5,6,8,4

Number of new branches is 2 (4-8, 4-6)
8
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Tinney Scheme 2

• The Tinney Scheme 2 usually combines adding the fills 

with the ordering in order to update the valence on-the-

fly as the fills are added

• As before the nodes are chosen based on their valence, 

but now the valence is the actual valence they have 

with the added lines (fills)

– This is also known as the Minimum Degree Algorithm (MDA)

– Ties are again broken using the lowest node number

• This method is quite effective for power systems, and is 

highly recommended; however it is certainly not 

guaranteed to result in the fewest fills (i.e. not optimal)

9
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Tinney Scheme 2 Example

• Consider the previous network:

• Nodes 1,2,3 are chosen as before.  But once these 

nodes are eliminated the valence of 4 is 1, so it is 

chosen next.  Then 5 (with a new valence of 2 tied with 

7), followed by 6 (new valence of 2), 7 then 8.  

1 2 3

4 5
6

78

10
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Coding Tinney 2

• The following slides show how to code Tinney 2 

for an n by n sparse matrix A

• First we setup linked lists grouping all the nodes by 

their original valence

• vcHead is a pointer vector [0..mvValence] 

– If a node has no connections its incidence is 0

– Theoretically mvValence should be n-1, but in practice a 

much smaller number can be used, putting nodes with 

valence values above this into the vcHead[mvValence] is

11



12

Coding Tinney 2, cont.

• Setup a boolean vectors chosenNode[1..n] to 

indicate which nodes are chosen and BSWR[1..n] 

as a sparse working row; initialize both to all false

• Setup an integer vector rowPerm[1..n] to hold the 

permuted rows; initialize to all zeros

• For i := 1 to n Do Begin

– Choose node from valence data structure with the lowest 

current valence; let this be node k

• Go through vcHead from lastchosen level (last chosen level may 

need to be reduced by one during the following elimination 

process;

– Set rowPerm[i] = k; set chosenNode[k] = true

12
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Coding Tinney 2, cont.

– Modify sparse matrix A to add fills between all of k’s adjacent 

nodes provided 

1. a branch doesn’t already exist

2. both nodes have not already been chosen (their chosenNode

entries are false)

• These fills are added by going through each element in row k; for 

each element set the BSWR elements to true for the incident nodes; 

add fills if a connection does not already exist (this requires adding 

two new elements to A)

– Again go through row k updating the valence data structure 

for those nodes that have not yet been chosen

• These values can either increase or go down by one (because of the 

elimination of node k)

13
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Coding Tinney 2, cont.

• This continues through all the nodes; free all vectors 

except for rowPerm

• At this point in the algorithm the rowPerm vector 

contains the new ordering and matrix A has been 

modified so that all the fills have been added

– The order of the rows in A has not been changed, and its 

columns are no longer sorted 

14
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Coding Tinney 2, cont

• Sort the rows of A to match the order in rowPerm

– Surprising sorting A is of computational order equal to the 

number of elements in A

• Go through A putting its elements into column linked lists; these 

columns will be ordered by row

• Then through the columns linked lists in reverse order given by 

rowPerm

– That is For i := n downto 1 Do Begin

p1 := TSparmatLL(colHead[rowPerm[i]).Head;

….

• That’s it – the matrix A is now readying for factoring

• Pivoting may be required, but usually isn’t needed in 

the power flow  

15
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Some Example Values for Tinney 2

Number of 

buses

Nonzeros

before fills

Fills Total 

nonzeros

Percent

nonzeros

37 63 72 135 9.86%

118 478 168 646 4.64%

18,190 64,948 31,478 96,426 0.029%

62,605 228,513 201,546 430,059 0.011%

16
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Tinney Scheme 3

• “Number the rows so that at each step of the process 

the next row to be operated upon is the one that will 

introduce the fewest new nonzero terms.” 

• “If more than one row meets this criterion, select any 

one. This involves a trial simulation of every feasible 

alternative of the elimination process at each step. 

Input information is the same as for scheme 2).”

• Tinney 3 takes more computation and in general does 

not give fewer fills than the quicker Tinney 2

• Tinney got  into the NAE in 1998

These are direct quotes from the Tinney-Walker 1967 IEEE Proceedings Paper
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Sparse Forward Substitution with  a 
Permutation Vector

Pass in b in bvector

For i := 1 to n Do Begin 

k = rowPerm[i];  // this is the only change, except using k

p1 := rowHead[k];  // the row needs to be ordered correctly!

While p1 <> rowDiag[k] Do Begin 

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

End;

18
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Sparse Backward Substitution with 
Permutation Vector

Pass in b in bvector

For i := n downto 1 Do Begin 

k = rowPerm[i]; 

p1 := rowDiag[k].next;  

While p1 <> nil Do Begin 

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

bvector[k] := bvector[k]/rowDiag[k].value;

End;

• Note, numeric problems such as matrix singularity are 

indicated with rowDiag[k].value being zero!
19
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Sparse Vector Methods

• Sparse vector methods are useful for cases in 

solving Ax=b in which

– A is sparse

– b is sparse

– only certain elements of x are needed

• In these right circumstances sparse vector methods 

can result in extremely fast solutions!

• A common example is to find selected elements of 

the inverse of A, such as diagonal elements.  

20
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Sparse Vector Methods

• Often times multiple solutions with varying b

values are required

– A only needs to be factored once, with its factored form 

used many times 

• Key reference is 

W.F. Tinney, V. Brandwajn, and S.M. Chan, "Sparse Vector 

Methods", IEEE Transactions on Power Apparatus and 

Systems, vol. PAS-104, no. 2, February 1985, pp. 295-300
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