
ECEN 615
Methods of Electric Power

Systems Analysis

Lecture 10: Sparse Systems

Prof. Tom Overbye

Dept. of Electrical and Computer Engineering

Texas A&M University

overbye@tamu.edu

mailto:overbye@tamu.edu

1

Announcements

• Read Chapter 7 from the book

• Homework 2 is due today

• Homework 3 should be done before the exam put

does not need to be turned in

• First exam is Tuesday October 8 in class; closed

book, closed notes. One 8.5 by 11 inch note sheet

and calculators allowed

2

Example: 7 by 7 Matrix

• Consider the 7 x 7 matrix A with the zero-nonzero

pattern shown in (a): of the 49 possible elements

there are only 31 that are nonzero

• If elimination proceeds with the given ordering, all

but two of the 18 originally zero entries, will fill in,

as seen in (b)

3

1 2 3 4 5 6 7

1 X X X X X X

2 X X X X X

3 X X X X X

4 X X X

5 X X X X

6 X X X X X

7 X X X

The original zero-nonzero

structure

1 2 3 4 5 6 7

1 X X X X X X

2 X X X F F X X

3 X X X F F X X

4 X F F X X F F

5 X F F X X X F

6 X X X F X X F

7 X X F F F X

The post- elimination zero

nonzero pattern

r
c

r
c

Example: 7 by 7 Matrix Structure

4

• We next reorder the rows and the columns of A so as to

result in the pattern shown in (c)

• For this reordering, we obtain no fills, as shown in the

table of factors given in (d)

• In this way, we preserve the original sparsity of A

Example: 7 by 7 Matrix Reordering

5

4 5 1 6 7 3 2

4 X X X

5 X X X X

1 X X X X X X

6 X X X X X

7 X X X

3 X X X X X

2 X X X X X

The reordered system

4 5 1 6 7 3 2

4 X X X

5 X X X X

1 X X X X X X

6 X X X X X

7 X X X

3 X X X X X

2 X X X X X

The post- elimination

reordered system

r
c

r
c

Example: 7 by 7 Matrix Reordered

Structure

6

Sparse Matrix Reordering

• There is no computationally efficient way to optimally

reorder a sparse matrix; however there are very

efficient algorithms to greatly reduce the fills

• Two steps here: 1) order the matrix, 2) add fills

• A quite common algorithm combines ordering the

matrix with adding the fills

• The two methods discussed here were presented in the

1963 paper by Sato and Tinney from BPA; known as

Tinney Scheme 1 and Tinney Scheme 2 since they are

more explicitly described in Tinney’s 1967 paper

– 1967 paper also has Tinney Scheme 3 (briefly covered)

6

7

Tinney Scheme 1

• Easy to describe, but not really used since the number

of fills, while reduced, is still quite high

• In graph theory the degree (or valence or valency) of a

vertex is the number of edges incident to the vertex

• Order the nodes (buses) by the number of incident

branches (i.e., its valence) those with the lowest

valence are ordered first

– Nodes with just one incident line result in no new fills

– Obviously in a large system many nodes will have the same

number of incident branches; ties can be handled arbitrarily

7

8

Tinney Scheme 1, Cont.

• Once the nodes are reordered, the fills are added

– Common approach to ties is to take the lower numbered node first

• A shortcoming of this method is as the fills are added

the valence of the adjacent nodes changes

1 2 3

4 5
6

78
Node Valence

1 1

2 1

3 1

4 4

5 3

6 3

7 2

8 3Tinney 1 order is 1,2,3,7,5,6,8,4

Number of new branches is 2 (4-8, 4-6)
8

9

Tinney Scheme 2

• The Tinney Scheme 2 usually combines adding the fills

with the ordering in order to update the valence on-the-

fly as the fills are added

• As before the nodes are chosen based on their valence,

but now the valence is the actual valence they have

with the added lines (fills)

– This is also known as the Minimum Degree Algorithm (MDA)

– Ties are again broken using the lowest node number

• This method is quite effective for power systems, and is

highly recommended; however it is certainly not

guaranteed to result in the fewest fills (i.e. not optimal)

9

10

Tinney Scheme 2 Example

• Consider the previous network:

• Nodes 1,2,3 are chosen as before. But once these

nodes are eliminated the valence of 4 is 1, so it is

chosen next. Then 5 (with a new valence of 2 tied with

7), followed by 6 (new valence of 2), 7 then 8.

1 2 3

4 5
6

78

10

11

Coding Tinney 2

• The following slides show how to code Tinney 2

for an n by n sparse matrix A

• First we setup linked lists grouping all the nodes by

their original valence

• vcHead is a pointer vector [0..mvValence]

– If a node has no connections its incidence is 0

– Theoretically mvValence should be n-1, but in practice a

much smaller number can be used, putting nodes with

valence values above this into the vcHead[mvValence] is

11

12

Coding Tinney 2, cont.

• Setup a boolean vectors chosenNode[1..n] to

indicate which nodes are chosen and BSWR[1..n]

as a sparse working row; initialize both to all false

• Setup an integer vector rowPerm[1..n] to hold the

permuted rows; initialize to all zeros

• For i := 1 to n Do Begin

– Choose node from valence data structure with the lowest

current valence; let this be node k

• Go through vcHead from lastchosen level (last chosen level may

need to be reduced by one during the following elimination

process;

– Set rowPerm[i] = k; set chosenNode[k] = true

12

13

Coding Tinney 2, cont.

– Modify sparse matrix A to add fills between all of k’s adjacent

nodes provided

1. a branch doesn’t already exist

2. both nodes have not already been chosen (their chosenNode

entries are false)

• These fills are added by going through each element in row k; for

each element set the BSWR elements to true for the incident nodes;

add fills if a connection does not already exist (this requires adding

two new elements to A)

– Again go through row k updating the valence data structure

for those nodes that have not yet been chosen

• These values can either increase or go down by one (because of the

elimination of node k)

13

14

Coding Tinney 2, cont.

• This continues through all the nodes; free all vectors

except for rowPerm

• At this point in the algorithm the rowPerm vector

contains the new ordering and matrix A has been

modified so that all the fills have been added

– The order of the rows in A has not been changed, and its

columns are no longer sorted

14

15

Coding Tinney 2, cont

• Sort the rows of A to match the order in rowPerm

– Surprising sorting A is of computational order equal to the

number of elements in A

• Go through A putting its elements into column linked lists; these

columns will be ordered by row

• Then through the columns linked lists in reverse order given by

rowPerm

– That is For i := n downto 1 Do Begin

p1 := TSparmatLL(colHead[rowPerm[i]).Head;

….

• That’s it – the matrix A is now readying for factoring

• Pivoting may be required, but usually isn’t needed in

the power flow

15

16

Some Example Values for Tinney 2

Number of

buses

Nonzeros

before fills

Fills Total

nonzeros

Percent

nonzeros

37 63 72 135 9.86%

118 478 168 646 4.64%

18,190 64,948 31,478 96,426 0.029%

62,605 228,513 201,546 430,059 0.011%

16

17

Tinney Scheme 3

• “Number the rows so that at each step of the process

the next row to be operated upon is the one that will

introduce the fewest new nonzero terms.”

• “If more than one row meets this criterion, select any

one. This involves a trial simulation of every feasible

alternative of the elimination process at each step.

Input information is the same as for scheme 2).”

• Tinney 3 takes more computation and in general does

not give fewer fills than the quicker Tinney 2

• Tinney got into the NAE in 1998

These are direct quotes from the Tinney-Walker 1967 IEEE Proceedings Paper

18

Sparse Forward Substitution with a
Permutation Vector

Pass in b in bvector

For i := 1 to n Do Begin

k = rowPerm[i]; // this is the only change, except using k

p1 := rowHead[k]; // the row needs to be ordered correctly!

While p1 <> rowDiag[k] Do Begin

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

End;

18

19

Sparse Backward Substitution with
Permutation Vector

Pass in b in bvector

For i := n downto 1 Do Begin

k = rowPerm[i];

p1 := rowDiag[k].next;

While p1 <> nil Do Begin

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

bvector[k] := bvector[k]/rowDiag[k].value;

End;

• Note, numeric problems such as matrix singularity are

indicated with rowDiag[k].value being zero!
19

20

Sparse Vector Methods

• Sparse vector methods are useful for cases in

solving Ax=b in which

– A is sparse

– b is sparse

– only certain elements of x are needed

• In these right circumstances sparse vector methods

can result in extremely fast solutions!

• A common example is to find selected elements of

the inverse of A, such as diagonal elements.

20

21

Sparse Vector Methods

• Often times multiple solutions with varying b

values are required

– A only needs to be factored once, with its factored form

used many times

• Key reference is

W.F. Tinney, V. Brandwajn, and S.M. Chan, "Sparse Vector

Methods", IEEE Transactions on Power Apparatus and

Systems, vol. PAS-104, no. 2, February 1985, pp. 295-300

21

