ECEN 615
Methods of Electric Power
Systems Analysis

Lecture 10: Sparse Systems

Prof. Tom Overbye
Dept. of Electrical and Computer Engineering
Texas A&M University
overbye@tamu.edu

A'Fw TEXAS A&M

UNIVERSITY

mailto:overbye@tamu.edu

Announcements

e Read Chapter 7 from the book
 Homework 2 Is due today

« Homework 3 should be done before the exam put
does not need to be turned In

* First exam is Tuesday October 8 in class; closed
book, closed notes. One 8.5 by 11 inch note sheet
and calculators allowed

o

Example: 7 by 7 Matrix

Consider the 7 x 7 matrix A with the zero-nonzero
pattern shown in (a): of the 49 possible elements
there are only 31 that are nonzero

If elimination proceeds with the given ordering, all
but two of the 18 originally zero entries, will fill in,
as seen in (b)

o

Example: 7 by 7 Matrix Structure

N1lz2]s]alsle|7] N|l1]2][s]|a]s]s
1 X | X|X|[X][X]X 1 X | X | X|X]|X]X
2 | X | X | X X | X 2| X | X|X|F|F|X]|X
3| X[XX X | X 3| X | X|X|F|F|X]|X
4 | x X | X A X|F|FE|X|X|F|F
5 | X X | X | X 5 (X |F|F|X|X|X|F
6 | X |X|X X | X 6| X | X|X|F|X|X|F
7 X | X X 7 X|X|F|F|F|X
The original zero-nonzero The post- elimination zero

structure nonzero pattern

Example: 7 by 7 Matrix Reordering
T

We next reorder the rows and the columns of A so as to
result in the pattern shown in (c)

For this reordering, we obtain no fills, as shown in the
table of factors given in (d)

In this way, we preserve the original sparsity of A

Example: 7 by 7 Matrix Reordered

Structure

Xl 4 1 5116|732
4 | X | X | X
51 X[X | X]| X
11 X | X | X | X X | X
6 X | X | X X | X
/ X | X | X
3 X | X[X[X]| X
2 X[X X | X

The reordered system

&4 5|16 3|2
4 | X | X | X

DX | X | X | X

1 X[X]| X | X X | X
6 X| X | X X | X
I X | X
3 X | X X | X
2 X | X X | X

The post- elimination
reordered system

o

Sparse Matrix Reordering
T
« There is no computationally efficient way to optimally

reorder a sparse matrix; however there are very
efficient algorithms to greatly reduce the fills

« Two steps here: 1) order the matrix, 2) add fills

« A quite common algorithm combines ordering the
matrix with adding the fills

* The two methods discussed here were presented in the
1963 paper by Sato and Tinney from BPA; known as
Tinney Scheme 1 and Tinney Scheme 2 since they are
more explicitly described in Tinney’s 1967 paper

~ 1967 paper also has Tinney Scheme 3 (briefly covered)

Tinney Scheme 1

T
« Easy to describe, but not really used since the number
of fills, while reduced, is still quite high

* |In graph theory the degree (or valence or valency) of a
vertex Is the number of edges incident to the vertex

* Order the nodes (buses) by the number of incident
branches (i.e., its valence) those with the lowest
valence are ordered first
~ Nodes with just one incident line result in no new fills

— Obviously in a large system many nodes will have the same
number of incident branches; ties can be handled arbitrarily

Tinney Scheme 1, Cont.

AlM
e Once the nodes are reordered, the fills are added
— Common approach to ties is to take the lower numbered node first

« A shortcoming of this method is as the fills are added
the valence of the adjacent nodes changes

\2V3 8N7 Nolde Valince
§!

A 5
Tinney 1 orderis 1,2,3,7,5,6,8,4

oo NO Ol b WN
WNhWWkAPEPR

Number of new branches iIs 2 (4-8, 4-6)

Tinney Scheme 2
T
« The Tinney Scheme 2 usually combines adding the fills

with the ordering in order to update the valence on-the-
fly as the fills are added

* As before the nodes are chosen based on their valence,
but now the valence is the actual valence they have
with the added lines (fills)

— This is also known as the Minimum Degree Algorithm (MDA)
— Ties are again broken using the lowest node number

« This method is quite effective for power systems, and Is
highly recommended; however it Is certainly not
guaranteed to result in the fewest fills (i.e. not optimal)

9

Tinney Scheme 2 Example

o

Consider the previous network:

VN

A 5

Nodes 1,2,3 are chosen as before. But once these
nodes are eliminated the valence of 4is 1, so it Is
chosen next. Then 5 (with a new valence of 2 tied with
7), followed by 6 (new valence of 2), 7 then 8.

10

Coding Tinney 2
T
The following slides show how to code Tinney 2
for an n by n sparse matrix A

* First we setup linked lists grouping all the nodes by
their original valence

e vcHead is a pointer vector [0..mvValence]

— If a node has no connections its incidence is O

— Theoretically mvValence should be n-1, but in practice a
much smaller number can be used, putting nodes with
valence values above this into the vcHead[mvValence] is

11

Coding Tinney 2, cont.
T
« Setup a boolean vectors chosenNode[1..n] to

Indicate which nodes are chosen and BSWR[1..n]
as a sparse working row; initialize both to all false

« Setup an integer vector rowPerm|[1..n] to hold the
permuted rows; initialize to all zeros
 Fori:=1ton Do Begin
— Choose node from valence data structure with the lowest

current valence: let this be node k

Go through vcHead from lastchosen level (last chosen level may
need to be reduced by one during the following elimination
process;

— Set rowPerm[i] = k; set chosenNode[Kk] = true
12

Coding Tinney 2, cont.
T

- Modify sparse matrix A to add fills between all of k’s adjacent
nodes provided
1. abranch doesn’t already exist

2. both nodes have not already been chosen (their chosenNode
entries are false)

« These fills are added by going through each element in row k; for
each element set the BSWR elements to true for the incident nodes;
add fills if a connection does not already exist (this requires adding
two new elements to A)

—Again go through row k updating the valence data structure
for those nodes that have not yet been chosen

« These values can either increase or go down by one (because of the
elimination of node k)

13

Coding Tinney 2, cont.
T

« This continues through all the nodes; free all vectors
except for rowPerm

« At this point in the algorithm the rowPerm vector
contains the new ordering and matrix A has been
modified so that all the fills have been added

— The order of the rows in A has not been changed, and its
columns are no longer sorted

14

Coding Tinney 2, cont
Al

Sort the rows of A to match the order In rowPerm

— Surprising sorting A is of computational order equal to the
number of elements in A

Go through A putting its elements into column linked lists; these
columns will be ordered by row

Then through the columns linked lists in reverse order given by
rowPerm

— That is For i := n downto 1 Do Begin
pl := TSparmatLL(colHead[rowPerm[i]).Head,;

That’s it — the matrix A 1s now readying for factoring

Pivoting may be required, but usually 1sn’t needed in
the power flow
15

Some Example Values for Tinney 2

o

Number of | Nonzeros Total Percent
buses before fills nonzeros nonzeros
37 63 72 135 9.86%
118 478 168 646 4.64%
18,190 64,948 31,478 96,426 0.029%
62,605 228,513 201,546 430,059 0.011%

16

Tinney Scheme 3

Al
* “Number the rows so that at each step of the process
the next row to be operated upon is the one that will

introduce the fewest new nonzero terms.”

* “If more than one row meets this criterion, select any
one. This involves a trial simulation of every feasible
alternative of the elimination process at each step.
Input information 1s the same as for scheme 2).”

* Tinney 3 takes more computation and in general does
not give fewer fills than the quicker Tinney 2

* Tinney got into the NAE in 1998

These are direct quotes from the Tinney-Walker 1967 IEEE Proceedings Paper 17

Sparse Forward Substitution with a
Permutation Vector

o

Pass In b In bvector

Fori:=1ton Do Begin
k = rowPerm[i]; // this is the only change, except using k
pl ;= rowHead[k]; //the row needs to be ordered correctly!
While p1 <> rowDiag[k] Do Begin
bvector[k] = bvector[k] — pl.value*bvector[pl.col];
pl := pl.next;
End,;
End,;

18

Sparse Backward Substitution with
Permutation Vector

A

Pass in b in bvector
For i :=n downto 1 Do Begin
K = rowPerm([i];
pl := rowDiag[Kk].next;
While p1 <> nil Do Begin
bvector[k] = bvector[k] — pl.value*bvector[pl.col];

pl := pl.next;
End,;
bvector[k] := bvector[k]/rowDiag[Kk].value;
End,;

* Note, numeric problems such as matrix singularity are

Indicated with rowDiag[k].value being zero! 19

Sparse Vector Methods
T

« Sparse vector methods are useful for cases In

solving Ax=b in which

~ A'ls sparse

~ b is sparse

— only certain elements of x are needed
 In these right circumstances sparse vector methods

can result in extremely fast solutions!

« A common example is to find selected elements of
the inverse of A, such as diagonal elements.

20

Sparse Vector Methods
Al

« Often times multiple solutions with varying b
values are required

— A only needs to be factored once, with its factored form
used many times

« Key reference is

W.F. Tinney, V. Brandwajn, and S.M. Chan, "Sparse Vector
Methods", IEEE Transactions on Power Apparatus and
Systems, vol. PAS-104, no. 2, February 1985, pp. 295-300

21

