ECEN 615 Methods of Electric Power Systems Analysis

Lecture 8: Advanced Power Flow, Gaussian Elimination, Sparse Systems

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- Read Chapter 7 from the book
- Homework 2 is due on Thursday September 26

Bus Branch versus Node Breaker

• Due to a variety of issues during the 1970's and 1980's the real-time operations and planning stages of power systems adopted different modeling approaches

Real-Time Operations

Use detailed node/breaker model EMS system as a set of integrated applications and processes Real-time operating system

Real-time databases

Planning

Use simplified bus/branch model PC approach Use of files Stand-alone applications

Entire data sets and software tools developed around these two distinct power system models

Circuit Breakers and Disconnects

- Circuit breakers are devices that are designed to clear fault current, which can be many times normal operating current
 - AC circuit breakers take advantage of the current going through zero twice per cycle
 - Transmission faults can usually be cleared in less than three cycles
- Disconnects cannot clear fault current, and usually not normal current. They provide a visual indication the line is open. Can be manual or motorized.
- In the power flow they have essentially no impedance; concept of a zero branch reactance (ZBR)

Google View of a 345 kV Substation

Substation Configurations

- Several different substation breaker/disconnect configurations are common:
- Single bus: simple but a fault any where requires taking out the entire substation; also doing breaker or disconnect maintenance requires taking out the associated line

Fig B: Single Bus

Substation Configurations, cont.

- Main and Transfer Bus:
 Now the breakers can be taken out for maintenance without taking out a line, but protection
 is more difficult, and a fault
 on one line will take out at least two
- Double Bus Breaker: Now each line is fully protected when a breaker is out, so high reliability, but more costly

Fig D: Double Bus Double Breaker

Ring Bus, Breaker and Half

- As the name implies with a ring bus the breakers form a ring; number of breakers is same as number of devices; any breaker can be removed for maintenance
- The breaker and half has two buses and uses three breakers for two devices; both breakers and buses can be removed for maintenance

Fig G: Breaker and Half

EMS and Planning Models

- EMS Model
 - Used for real-time operations
 - Called full topology model
 - Has node-breaker detail

- Planning Model
 - Used for off-line analysis
 - Called consolidated model by PowerWorld
 - Has bus/branch detail

Node-Breaker Consolidation

- One approach to modeling systems with large numbers of ZBRs (zero branch reactances, such as from circuit breakers) is to just assume a small reactance and solve
 - This results in lots of buses and branches, resulting in a much larger problem
 - This can cause numerical problems in the solution
- The alterative is to consolidate the nodes that are connected by ZBRs into a smaller number of buses
 - After solution all nodes have the same voltage; use logic to determine the device flows

Node-Breaker Example

Case name is **FT_11Node**. PowerWorld consolidates nodes (buses) into super buses; available in the Model Explorer: Solution, Details, Superbuses.

Node-Breaker Example

Explore 4		дX	X Superbuses X Branches Input X Branches State X Remotely Regulated Buses X Bus Zero-Impedance Branch Group													
Explore Fields			📴 🛅 1計 1:03 +23 🏘 🌺 Records - Set - Columns - 📴 - 龖 - 🕎 - 🍞 競 - 🎇 f(X) - 田 Options -													
#	Bus Pairs A Fitter Advanced V Subnet V Find Remove Quick Fitter *															
III Data Maintainers																
> 🖭	> 💾 Injection Groups Superbuses															
> 💾 Interfaces Sub Name Primary Bus # Buses # CBs # Open CBs Buses Has Been Gen MW #							Gen MW 🔺	Gen Myar	Load Myar	Load MW	Switched					
III	Islands								Co	nsolidated					Shunts Mvar	
#	Multi-Section Lines		1 Sub2	10	2	2	1 0	10-11	NO							
#	MW Transactions		2 Sub2	1	1	() (1	NO				50.00	120.00		
> 🖭	Nomograms	_	3 Sub1	4	4	4 4	4 C	3-6	NO		82.76	40.82	0.00	100.00		
#	Owners		4 Sub3	7	4	1 3	3 (2,7-9	NO		140.00	30.37				
III	Substations															
III	Super Areas															
Itelines between Areas																
Tielines between Balancing Aut																
#	III Tielines between Zones Buses Gens Loads Switched Shunts Breakers, Disconnects, etc Tie Lines															
H	Transfer Directions		Number	Name	Sub Num	Area Name	Nom kV	PU Volt	Volt (kV)	Angle (De	g) Load MW	Load Myar	Gen MW	Gen Mva	Switched	Act G
	Zones														Shunts Mva	ar N
✓ Solution Details			1 1	1	2	2 Home	138.00	0.982	91 135.64	1 -3	.64 120.	00 50.0	00			
III	I Bus Zero-Impedance Branch Gr															
III III	Fast Decoupled BP Matrix															
#	Fast Decoupled BPP Matrix															
III	Mismatches															
III III	Outages															
H	Post Power Flow Solution Action	0														
Power Flow Jacobian																
III III III III III III III III III II	Remotely Regulated Buses	× <	:													>
Open New Explorer			Search				Search Now	Options •								

Note there is ambiguity on how much power is flowing in each device in the ring bus (assuming each device really has essentially no impedance)

Linear System Solution: Introduction

- A problem that occurs in many is fields is the solution of linear systems Ax = b where A is an n by n matrix with elements a_{ij}, and x and b are n-vectors with elements x_i and b_i respectively
- In power systems we are particularly interested in systems when n is relatively large and A is sparse
 - How large is large is changing
- A matrix is sparse if a large percentage of its elements have zero values
- Goal is to understand the computational issues (including complexity) associated with the solution of these systems

Introduction, cont.

- Sparse matrices arise in many areas, and can have domain specific structures
 - Symmetric matrices
 - Structurally symmetric matrices
 - Tridiagnonal matrices
 - Banded matrices
- A good (and free) book on sparse matrices is available at www-

users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

- ECEN 615 is focused on problems in the electric power domain; it is not a general sparse matrix course
 - Much of the early sparse matrix work was done in power! 13

Gaussian Elimination

- A M
- The best known and most widely used method for solving linear systems of algebraic equations is attributed to Gauss
- Gaussian elimination avoids having to explicitly determine the inverse of **A**, which is O(n³)
- Gaussian elimination can be readily applied to sparse matrices
- Gaussian elimination leverages the fact that scaling a linear equation does not change its solution, nor does adding on linear equation to another

$$2x_1 + 4x_2 = 10 \rightarrow x_1 + 2x_2 = 5$$

Gaussian Elimination, cont.

- Gaussian elimination is the elementary procedure in which we use the first equation to eliminate the first variable from the last n-1 equations, then we use the new second equation to eliminate the second variable from the last n-2 equations, and so on
- After performing n-1 such eliminations we end up with a triangular system which is easily solved in a backward direction

Example 1

• We need to solve for \mathbf{x} in the system

$$\begin{bmatrix} 2 & 3 & -1 & 0 \\ -6 & -5 & 0 & 2 \\ 2 & -5 & 6 & -6 \\ 4 & 2 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 20 \\ -45 \\ -3 \\ 30 \end{bmatrix}$$

- The three elimination steps are given on the next slides; for simplicity, we have appended the r.h.s. vector to the matrix
- First step is set the diagonal element of row 1 to 1 (i.e., normalize it)

• Eliminate x₁ by subtracting row 1 from all the rows below it

multiply row 1 by $\frac{1}{2}$	1	<u>3</u> 2	$-rac{1}{2}$	0	10
multiply row 1 by 6 and add to row 2	0	4	- 3	$\frac{1}{2}$	15
multiply row 1 by -2 and add to row 3	0	- 8	- 7	- 6	- 23
multiply row 1 by – 4 and add to row 4	0	- 4	7	- 3	- 10

A M

• Eliminate x_2 by subtracting row 2 from all the rows below it

multiply row 2 by $\frac{1}{4}$	1	3 2	$-rac{1}{2}$	0	10
multiply row 2 by 8		1	3	1	15
and add to row 3	U	I	4	2	4
multiply row 2 by 4	0	0	1	- 2	7
and add to row 4	0	0	1	- 1	5

• Elimination of x_3 from row 3 and 4

• Then, we solve for x by "going backwards", i.e., using back substitution:

 $x_{4} = -2$

$$x_{3} - 2x_{4} = 7 \implies x_{3} = 3$$

$$x_{2} - \frac{3}{4}x_{3} + \frac{1}{2}x_{4} = \frac{15}{4} \implies x_{2} = 7$$

$$x_{1} + \frac{3}{2}x_{2} - \frac{1}{2}x_{3} = 10 \implies x_{1} = 1$$

Triangular Decomposition

A]M

- In this example, we have:
 - triangularized the original matrix by
 Gaussian elimination using column elimination
 - then, we used back substitution to solve the triangularized system
 - The following slides present a general scheme for triangular decomposition by Gaussian elimination
 - The assumption is that **A** is a nonsingular matrix (hence its inverse exists)
 - Gaussian elimination also requires the diagonals to be nonzero; this can be achieved through ordering
 - If **b** is zero then we have a trivial solution $\mathbf{x} = \mathbf{0}$

Triangular Decomposition

• We form the matrix $\mathbf{A}_{\mathbf{a}}$ using \mathbf{A} and \mathbf{b} with

$$\mathbf{A}_{a} = \begin{bmatrix} \mathbf{A} \vdots \mathbf{b} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_{1} \\ a_{21} & a_{22} & \cdots & a_{2n} & b_{2} \\ a_{31} & a_{32} & \cdots & a_{3n} & b_{3} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_{n} \end{bmatrix}$$

and show the steps of the triangularization scheme

• Step 1: normalize the first equation

$$a_{1j}^{(1)} = \frac{a_{1j}}{a_{11}} \qquad j = 2, ..., n$$
$$b_{1}^{(1)} = \frac{b_{1}}{a_{11}}$$

• Step 2: a) eliminate x₁ from row 2:

$$a_{2j}^{(1)} = a_{2j} - a_{21}a_{1j}^{(1)}, \quad j = 2, ..., n$$

 $b_{2}^{(1)} = b_2 - a_{21}b_{1}^{(1)}$

• Step 2: b) normalize the second equation

$$a_{2j}^{(2)} = \frac{a_{2j}^{(1)}}{a_{22}^{(1)}}, \quad j = 3, ..., n$$
$$b_{2}^{(2)} = \frac{b_{2}^{(1)}}{a_{22}^{(1)}}$$

and we end up at the end of step 2 with

1	$a_{12}^{(1)}$	$a_{13}^{(1)}$	• • •	$a_{1n}^{(1)}$	$b_{1}^{(1)}$
0	1	$a_{23}^{(2)}$	• • •	$a_{2n}^{(2)}$	$b_{2}^{(2)}$
<i>a</i> ₃₁	<i>a</i> ₃₂	a ₃₃	• • •	a_{3n}	b ₃
• •	•	• •	•	-	• •
a_{n1}	a_{n2}	a_{n3}	• • •	a_{nn}	\boldsymbol{b}_n

• Step 3: a) eliminate x₁ and x₂ from row 3:

$$a {}^{(1)}_{3j} = a_{3j} - a_{31} a {}^{(1)}_{1j} \qquad j = 2, ..., n$$

$$b {}^{(1)}_{3} = b_{3} - a_{31} b {}^{(1)}_{1}$$

$$a {}^{(2)}_{3j} = a {}^{(1)}_{3j} - a {}^{(1)}_{32} a {}^{(2)}_{2j} \qquad j = 3, ..., n$$

$$b {}^{(2)}_{3} = b {}^{(1)}_{3} - a {}^{(1)}_{32} b {}^{(2)}_{2}$$

Step 3: b) normalize the third equation:

٠

$$a_{3j}^{(3)} = \frac{a_{3j}^{(2)}}{a_{33}^{(2)}} \qquad j = 4, ..., n$$
$$b_{3}^{(3)} = \frac{b_{3}^{(2)}}{a_{33}^{(2)}}$$

and we have the system at the end of step 3

• In general, we have for step k:
a) eliminate
$$x_1, x_2, ..., x_{k-1}$$
 from row k:
 $a_{kj}^{(m)} = a_{kj}^{(m-1)} - a_{km}^{(m-1)} a_{mj}^{(m)}$ $j = m+1, ..., n$
 $b_k^{(m)} = b_k^{(m-1)} - a_{km}^{(m-1)} b_m^{(m)}$ $m = 1, 2, ..., k-1$

b) normalize the kth equation:

$$a_{kj}^{(k)} = \frac{a_{kj}^{(k-1)}}{a_{kk}^{(k-1)}} \quad j = k+1, ..., n$$

$$b_{k}^{(k)} = \frac{b_{k}^{(k-1)}}{a_{kk}^{(k-1)}}$$

ЛM

Triangular Decomposition: Upper Triangular Matrix

• and proceed in this manner until we obtain the upper triangular matrix (the nth derived system):

$$\begin{bmatrix} 1 & a { \begin{pmatrix} 1 \\ 12 \end{pmatrix}} & a { \begin{pmatrix} 1 \\ 13 \end{pmatrix}} & a { \begin{pmatrix} 1 \\ 14 \end{pmatrix}} & \cdots & a { \begin{pmatrix} 1 \\ 1n \end{pmatrix}} & b { \begin{pmatrix} 1 \\ 1 \end{pmatrix}} \\ 0 & 1 & a { \begin{pmatrix} 2 \\ 21 \end{pmatrix}} & a { \begin{pmatrix} 2 \\ 24 \end{pmatrix}} & \cdots & a { \begin{pmatrix} 2 \\ 2n \end{pmatrix}} & b { \begin{pmatrix} 2 \\ 2 \end{pmatrix}} \\ 0 & 0 & 1 & a { \begin{pmatrix} 3 \\ 34 \end{pmatrix}} & \cdots & a { \begin{pmatrix} 3 \\ 3n \end{pmatrix}} & b { \begin{pmatrix} 3 \\ 3 \end{pmatrix}} \\ 0 & 0 & 0 & 1 & \cdots & a { \begin{pmatrix} 4 \\ 4n \end{pmatrix}} & b { \begin{pmatrix} 4 \\ 4 \end{pmatrix}} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & b { \begin{pmatrix} n \\ n \end{pmatrix}} \\ \end{bmatrix}$$

Triangular Decomposition

- Note that in the scheme presented, unlike in the first example, we triangularly decompose the system by eliminating row-wise rather than column-wise
 - In successive rows we eliminate (reduce to 0) each element to the left of the diagonal rather than those below the diagonal
 - Either could be used, but row-wise operations will work better for power system sparse matrices

Solving for X

• To compute x we perform back substitution

$$x_{n} = b_{n}^{(n)}$$

$$x_{n-1} = b_{n-1}^{(n-1)} - a_{n-1,n}^{(n-1)} x_{n}$$

:
$$x_{k} = b \frac{(k)}{k} - \sum_{i=k+1}^{n} a_{kj}^{(k)} x_{j}$$

$$k = n - 1, n - 2, ..., 1$$

Upper Triangular Matrix

• The triangular decomposition scheme applied to the matrix **A** results in the upper triangular matrix **U** with the elements

$$u_{ij} = \begin{cases} 1 & i = j \\ a_{ij}^{(i)} & j > i \\ 0 & j < i \end{cases}$$

• The following theorem is important in the development of the sparse computational scheme

LU Decomposition Theorem

• Any nonsingular matrix **A** has the following factorization:

$\mathbf{A} = \mathbf{L}\mathbf{U}$

where **U** could be the upper triangular matrix previously developed (with 1's on its diagonals) and **L** is a lower triangular matrix defined by

$$\ell_{ij} = \begin{cases} a_{ij}^{(j-1)} & j \leq i \\ a_{ij} & j > i \\ 0 & 0 \end{cases}$$

LU Decomposition Application

• As a result of this theorem we can rewrite Ax = LUx = b

Define $\mathbf{y} = \mathbf{U}\mathbf{x}$

Then $\mathbf{L}\mathbf{y} = \mathbf{b}$

- Can also be set so **U** has non unity diagonals
- Once A has been factored, we can solve for x by first solving for y, a process known as forward substitution, then solving for x in a process known as back substitution
- In the previous example we can think of **L** as a record of the forward operations preformed on **b**.

LDU Decomposition

- In the previous case we required that the diagonals of **U** be unity, while there was no such restriction on the diagonals of **L**
- An alternative decomposition is

$\mathbf{A} = \tilde{\mathbf{L}}\mathbf{D}\mathbf{U}$

with $\mathbf{L} = \tilde{\mathbf{L}}\mathbf{D}$

where \mathbf{D} is a diagonal matrix, and the lower triangular matrix is modified to require unity for the diagonals

Symmetric Matrix Factorization

• The LDU formulation is quite useful for the case of a symmetric matrix

$$A = AT$$

$$A = \tilde{L}DU = UTD\tilde{L}T = AT$$

$$U = \tilde{L}T$$

$$A = UTDU$$

• Hence only the upper triangular elements and the diagonal elements need to be stored, reducing storage by almost a factor of 2

Symmetric Matrix Factorization

- There are also some computational benefits from factoring symmetric matrices. However, since symmetric matrices are not common in power applications, we will not consider them in-depth
- However, topologically symmetric sparse matrices are quite common, so those will be our main focus

Pivoting

• An immediate problem that can occur with Gaussian elimination is the issue of zeros on the diagonal; for example

$$\mathbf{A} = \begin{vmatrix} 0 & 1 \\ 2 & 3 \end{vmatrix}$$

- This problem can be solved by a process known as "pivoting," which involves the interchange of either both rows and columns (full pivoting) or just the rows (partial pivoting)
 - Partial pivoting is much easier to implement, and actually can be shown to work quite well

Pivoting, cont.

- In the previous example the (partial) pivot would just be to interchange the two rows

$$\tilde{\mathbf{A}} = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$

obviously we need to keep track of the interchanged rows!

- Partial pivoting can be helpful in improving numerical stability even when the diagonals are not zero
 - When factoring row k interchange rows so the new diagonal is the largest element in column k for rows j >= k

LU Algorithm Without Pivoting Processing by row

• We will use the more common approach of having ones on the diagonals of **L**. Also in the common, diagonally dominant power system problems pivoting is not needed Below algorithm is in row form (useful with sparsity!)

For i := 2 to n Do Begin // This is the row being processed
For j := 1 to i-1 Do Begin // Rows subtracted from row i
A[i,j] = A[i,j]/A[j,j] // This is the scaling
For k := j+1 to n Do Begin // Go through each column in i
A[i,k] = A[i,k] - A[i,j]*A[j,k]
End;

End;

End;

LU Example

• Starting matrix

$$\mathbf{A} = \begin{bmatrix} 20 & -12 & -5 \\ -5 & 12 & -6 \\ -4 & -3 & 8 \end{bmatrix}$$

- First row is unchanged; start with i=2
- Result with i=2, j=1; done with row 2

$$\mathbf{A} = \begin{bmatrix} 20 & -12 & -5 \\ -0.25 & 9 & -7.25 \\ -4 & -3 & 8 \end{bmatrix}$$

LU Example, cont.

• Result with i=3, j=1;

$$\mathbf{A} = \begin{bmatrix} 20 & -12 & -5 \\ -0.25 & 9 & -7.25 \\ -0.2 & -5.4 & 7 \end{bmatrix}$$

• Result with i=3, j=2; done with row 3; done!

$$\mathbf{A} = \begin{bmatrix} 20 & -12 & -5 \\ -0.25 & 9 & -7.25 \\ -0.2 & -0.6 & 2.65 \end{bmatrix}$$

• Original matrix is used to hold L and U

$$\mathbf{A} = \begin{bmatrix} 20 & -12 & -5 \\ -0.25 & 9 & -7.25 \\ -0.2 & -0.6 & 2.65 \end{bmatrix} = \mathbf{LU}$$
$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ -0.25 & 1 & 0 \\ -0.2 & -0.6 & 1 \end{bmatrix}$$
With the has by
$$\mathbf{U} = \begin{bmatrix} 20 & -12 & -5 \\ 0 & 9 & -7.25 \\ 0 & 0 & 2.65 \end{bmatrix}$$

With this approach the original **A** matrix has been replaced by the factored values!

Forward substitution solves $\mathbf{b} = \mathbf{L}\mathbf{y}$ with values in \mathbf{b} being over written (replaced by the \mathbf{y} values)

For i := 2 to n Do Begin // This is the row being processed
For j := 1 to i-1 Do Begin
b[i] = b[i] - A[i,j]*b[j] // This is just using the L matrix
End;

End;

Forward Substitution Example

Let $\mathbf{b} = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$ From before $\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ -0.25 & 1 & 0 \\ -0.2 & -0.6 & 1 \end{bmatrix}$ y[1] = 10y[2] = 20 - (-0.25) * 10 = 22.5

y[3] = 30 - (-0.2) * 10 - (-0.6) * 22.5 = 45.5

Backward Substitution

- Backward substitution solves y = Ux (with values of y contained in the b vector as a result of the forward substitution)

For i := n to 1 Do Begin // This is the row being processed

- For j := i+1 to n Do Begin
 - b[i] = b[i] A[i,j]*b[j] // This is just using the U matrix

End;

b[i] = b[i]/A[i,i] // The A[i,i] values are <> 0 if it is nonsingular End

Backward Substitution Example

Let
$$\mathbf{y} = \begin{bmatrix} 10\\ 22.5\\ 45.5 \end{bmatrix}$$

From before $\mathbf{U} = \begin{bmatrix} 20 & -12 & -5 \\ 0 & 9 & -7.25 \\ 0 & 0 & 2.65 \end{bmatrix}$

x[3] = (1/2.65) * 45.5 = 17.17 x[2] = (1/9) * (22.5 - (-7.25) * 17.17) = 16.33x[1] = (1/20) * (10 - (-5) * 17.17 - (-12) * 16.33) = 14.59

Computational Complexity

- Computational complexity indicates how the number of numerical operations scales with the size of the problem
- Computational complexity is expressed using the "Big O" notation; assume a problem of size n
 - Adding the number of elements in a vector is O(n)
 - Adding two n by n full matrices is $O(n^2)$
 - Multiplying two n by n full matrices is $O(n^3)$
 - Inverting an n by n full matrix, or doing Gaussian elimination is O(n³)
 - Solving the traveling salesman problem by brute-force search is O(n!)

Computational Complexity

- Knowing the computational complexity of a problem can help to determine whether it can be solved (at least using a particular method)
 - Scaling factors do not affect the computation complexity
 - an algorithm that takes n³/2 operations has the same computational complexity of one the takes n³/10 operations (though obviously the second one is faster!)
- With O(n³) factoring a full matrix becomes computationally intractable quickly!
 - A 100 by 100 matrix takes a million operations (give or take)
 - A 1000 by 1000 matrix takes a billion operations
 - A 10,000 by 10,000 matrix takes a trillion operations!

Sparse Systems

- The material presented so far applies to any arbitrary linear system
- The next step is to see what happens when we apply triangular factorization to a sparse matrix
- For a sparse system, only nonzero elements need to be stored in the computer since no arithmetic operations are performed on the 0's
- The triangularization scheme is adapted to solve sparse systems in such a way as to preserve the sparsity as much as possible

Sparse Matrix History

- A nice overview of sparse matrix history is by Iain Duff at http://www.siam.org/meetings/la09/talks/duff.pdf
- Sparse matrices developed simultaneously in several different disciplines in the early 1960's with power systems definitely one of the key players (Bill Tinney from BPA)
- Different disciplines claim credit since they didn't necessarily know what was going on in the others

Sparse Matrix History

- In power systems a key N. Sato, W.F. Tinney, "Techniques for Exploiting the Sparsity of the Network Admittance Matrix," Power App. and Syst., pp 944-950, December 1963
 - In the paper they are proposing solving systems with up to 1000 buses (nodes) in 32K of memory!
 - You'll also note that in the discussion by El-Abiad, Watson, and Stagg they mention the creation of standard test systems with between 30 and 229 buses (this surely included the now famous 118 bus system)
 - The BPA authors talk "power flow" and the discussors talk "load flow."
- Tinney and Walker present a much more detailed approach in their 1967 IEEE Proceedings paper titled "Direct Solutions of Sparse Network Equations by Optimally Order Triangular Factorization"

Sparse Matrix Computational Order

- The computational order of factoring a sparse matrix, or doing a forward/backward substitution depends on the matrix structure
 - Full matrix is $O(n^3)$
 - A diagonal matrix is O(n); that is, just invert each element
- For power system problems the classic paper is F. L. Alvarado, "Computational complexity in power systems," *IEEE Transactions on Power Apparatus and Systems*, ,May/June 1976
 - $O(n^{1.4})$ for factoring, $O(n^{1.2})$ for forward/backward
 - For a 100,000 by 100,000 matrix changes computation for factoring from 1 quadrillion to 10 million!

Inverse of a Sparse Matrix

- The inverse of a sparse matrix is NOT in general a sparse matrix
- We never (or at least very, very, very seldom) explicitly invert a sparse matrix
 - Individual columns of the inverse of a sparse matrix can be obtained by solving $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ with \mathbf{b} set to all zeros except for a single nonzero in the position of the desired column
 - If a few desired elements of A⁻¹ are desired (such as the diagonal values) they can usually be computed quite efficiently using sparse vector methods (a topic we'll be considering soon)
- We can't invert a singular matrix (with sparse or not)

Computer Architecture Impacts

- With modern computers the processor speed is many times faster than the time it takes to access data in main memory
 - Some instructions can be processed in parallel
- Caches are used to provide quicker access to more commonly used data
 - Caches are smaller than main memory
 - Different cache levels are used with the quicker caches, like L1, have faster speeds but smaller sizes; L1 might be 64K, whereas the slower L2 might be 1M
- Data structures can have a significant impact on sparse matrix computation