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Announcements

• Read Chapter 7 from the book

• Homework 2 is due on Thursday September 26
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Bus Branch versus Node Breaker

• Due to a variety of issues during the 1970’s and 1980’s 

the real-time operations and planning stages of power 

systems adopted different modeling approaches

Planning
Use simplified bus/branch model

PC approach

Use of files

Stand-alone applications

Real-Time Operations
Use detailed node/breaker model

EMS system as a set of integrated 
applications and processes

Real-time operating system

Real-time databases

Entire data sets and software tools developed around 

these two distinct power system models
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Circuit Breakers and Disconnects

• Circuit breakers are devices that are designed to clear 

fault current, which can be many times normal 

operating current

– AC circuit breakers take advantage of the current going 

through zero twice per cycle

– Transmission faults can usually be cleared in less than three 

cycles

• Disconnects cannot clear fault current, and usually not 

normal current.  They provide a visual indication the 

line is open.  Can be manual or motorized.

• In the power flow they have essentially no impedance; 

concept of a zero branch reactance (ZBR)
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Google View of a 345 kV Substation
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Substation Configurations

• Several different substation breaker/disconnect 

configurations are common:

• Single bus: simple but a fault

any where requires taking out the 

entire substation; also doing breaker

or disconnect maintenance requires

taking out the associated line

Source: http://www.skm-eleksys.com/2011/09/substation-bus-schemes.html

http://4.bp.blogspot.com/-9g6rjqRAD0I/ToXk6oQSRUI/AAAAAAAAApY/-4th5mJTvDY/s1600/SingleBus.png
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Substation Configurations, cont.

• Main and Transfer Bus: 

Now the breakers can be taken

out for maintenance without

taking out a line, but protection

is more difficult, and a fault

on one line will take out at least two

• Double Bus Breaker:

Now each line is fully protected

when a breaker is out, so high

reliability, but more costly

Source: http://www.skm-eleksys.com/2011/09/substation-bus-schemes.html

http://3.bp.blogspot.com/-yBG8xB2VDog/ToXlwGl-CbI/AAAAAAAAApc/4v4fTK9Ixbc/s1600/MainandTransferBus.png
http://3.bp.blogspot.com/-9Se44Ew3i_c/ToXmQZRcZzI/AAAAAAAAApg/al1E7kRV1L0/s1600/DoubleBusDoubleBreaker.png
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Ring Bus, Breaker and Half

• As the name implies with a ring

bus the breakers form a ring;

number of breakers is same as 

number of devices; any breaker can

be removed for maintenance

• The breaker and half has two buses

and uses three breakers for two

devices; both breakers and buses

can be removed for maintenance

Source: http://www.skm-eleksys.com/2011/09/substation-bus-schemes.html
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EMS and Planning Models

• EMS Model

– Used for real-time operations

– Called full topology model

– Has node-breaker detail

• Planning Model

– Used for off-line analysis

– Called consolidated model by 

PowerWorld

– Has bus/branch detail

50 MW

20 Mvar

-30 MW

-18 Mvar

-40 MW

-10 Mvar

10 MW

3 Mvar
10 MW

5 Mvar

-30 MW

-18 Mvar

-40 MW

-10 Mvar

10 MW

3 Mvar

10 MW

5 Mvar
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Node-Breaker Consolidation

• One approach to modeling systems with large 

numbers of ZBRs (zero branch reactances, such as 

from circuit breakers) is to just assume a small 

reactance and solve

– This results in lots of buses and branches, resulting in a 

much larger problem

– This can cause numerical problems in the solution

• The alterative is to consolidate the nodes that are 

connected by ZBRs into a smaller number of buses

– After solution all nodes have the same voltage; use logic 

to determine the device flows
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Node-Breaker Example

Case name is FT_11Node.  PowerWorld consolidates nodes 

(buses) into super buses; available in the Model Explorer: 

Solution, Details, Superbuses.
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Node-Breaker Example

Note there is ambiguity on how much power is flowing in each 

device in the ring bus (assuming each device really has essentially 

no impedance)
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Linear System Solution: Introduction

• A problem that occurs in many is fields is the solution 

of linear systems Ax = b where A is an n by n matrix 

with elements aij, and x and b are n-vectors with 

elements xi and bi respectively

• In power systems we are particularly interested in 

systems when n is relatively large and A is sparse
– How large is large is changing 

• A matrix is sparse if a large percentage of its elements 

have zero values

• Goal is to understand the computational issues 

(including complexity) associated with the solution of 

these systems 
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Introduction, cont.

• Sparse matrices arise in many areas, and can have 

domain specific structures

– Symmetric matrices

– Structurally symmetric matrices

– Tridiagnonal matrices

– Banded matrices

• A good (and free) book on sparse matrices is available 

at www-

users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

• ECEN 615 is focused on problems in the electric power 

domain; it is not a general sparse matrix course

– Much of the early sparse matrix work was done in power!
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Gaussian Elimination

• The best known and most widely used method for 

solving linear systems of algebraic equations is 

attributed to Gauss

• Gaussian elimination avoids having to explicitly 

determine the inverse of A, which is O(n3)

• Gaussian elimination can be readily applied to 

sparse matrices

• Gaussian elimination leverages the fact that scaling 

a linear equation does not change its solution, nor 

does adding on linear equation to another

1 2 1 22 4 10 2 5x x x x        
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Gaussian Elimination, cont.

• Gaussian elimination is the elementary procedure in 

which we use the first equation to eliminate the first 

variable from the last n-1 equations, then we use the 

new second equation to eliminate the second variable 

from the last n-2 equations, and so on

• After performing n-1 such eliminations we end up with 

a triangular system which is easily solved in a 

backward direction
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Example 1

• We need to solve for x in the system

• The three elimination steps are given on the next 

slides; for simplicity, we have appended the r.h.s. 

vector to the matrix 

• First step is set the diagonal element of row 1 to 1 (i.e., 

normalize it)

1

2

3

4

2 3 1 0 20

6 5 0 2 45

2 5 6 6 3

4 2 2 3 30

x

x

x

x

     
      
    

      
    

    
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Example 1, cont.

• Eliminate x1 by subtracting row 1 from all the rows 

below it

 
1

1
2

multiply row by 

     

 

1  2

3

multiply row by

and add to row

    1  4

 4

multiply row by

and add to row

  

 

1 6 

2

multiply row by  

and add to row

3 1
1 0 10

2 2

0 4 3

0 8 7 6 23

0 4 7 3 10

1
15

2





   

  

 
 
 
 
 
 
 
 
 
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Example 1, cont.

• Eliminate x2 by subtracting row 2 from all the 

rows below it

    
1

2
4

multiply row by

    2 8

3

multiply row by

and add to row  

    

  

2 4

4

multiply row by

and add to row









 
 
 
 
 
 
 
 
 

3 1
1 0 10

2 2

0 1

0 0 1 2 7

0 0 1 1 5

3 1 15

4 2 4
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Example 1, cont.

• Elimination of  x3 from row 3 and 4

 

 

3 

4

subtract row

from row









 
 
 
 
 
 
 
 
 

3 1
1 0 10

2 2

0 1

0 0 1 2 7

0 0 0 1 2

3 1 15

4 2 4
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Example 1, cont.

• Then, we solve for  x by “going backwards”,    i.e., 

using back substitution: 

     
2 3 4 2

3 1 15
7

4 2 4
x x x x

 
4

2x

   
3 4 3

2 7 3    x x x

    
1 2 3 1

3 1
10 1

2 2
x x x x
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Triangular Decomposition

• In this example, we have:
– triangularized the original matrix by  

Gaussian elimination using column elimination

– then, we used back substitution to solve the       

triangularized system

• The following slides present a general scheme for 

triangular decomposition by Gaussian elimination

• The assumption is that A is a nonsingular matrix 

(hence its inverse exists)

• Gaussian elimination also requires the diagonals to be 

nonzero; this can be achieved through ordering

• If b is zero then we have a trivial solution x = 0
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Triangular Decomposition

• We form the matrix Aa using A and b with

and show the steps of the triangularization scheme

 
 
 
 
 
 
 
 
 
 
 
 
 

11 12 1 1

21 22 2 2

31 32 3 3

1 2

n

n

n

n n nn n

a a a b

a a a b

a a a b

a a a b

   

  

   

   



 a  A A b
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Triangular Decomposition, Step 1

• Step 1: normalize the first equation 


1(1)

1

11

 1(1)

1

 11

= 2 ...

=

j

j

a
a j , ,n

a

b
b

a
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Triangular Decomposition, Step 2

• Step 2: a) eliminate x1 from row 2:

• Step 2: b) normalize the second equation

,(1) (1)

2 2 21 1 2 ...j j ja = a a a j = , ,n

  (1) (1)

2 2 21 1b = b a b

,

(1)

2(2)

2 (1)

22

3 ...
j

j

a
a = j = , ,n

a
(1)

 2(2)

2 (1)

22

b
b =

a
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Triangular Decomposition, Step 2

and we end up at the end of step 2 with 

 
 
 
 
 
 
 
 
 
 
  

(1) (1) (1) (1)

12 13 1 1

(2) (2) (2)

23 2 2

31 32 33 3 3

1 2 3

1

1

n

n

n

n n n nn n

a a a b

0 a a b

a a a a b

a a a a b



26

Triangular Decomposition, Step 3

• Step 3: a) eliminate x1 and x2 from row 3: 

• Step 3: b) normalize the third equation:

2            ( ) (1) (1) (2)

3 3 32 2 3 ...j j ja a   a  a j = , ,n

           (1) (1)

3 3 31 1 2j j ja = a   a  a j = , ... ,n  

       (1) (1)

3 3 31 1b = b a  b

   (2) (1) (1) (2)

3 3 32 2b = b   a  b

        

(2)

3(3)

3 (2)

33

4 ...
 j

 j

a
a =   j = , ,n

a

 

(2)

 3(3)

3 (2)

33

b
b =

a
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Triangular Decomposition, Step 3

and we have the system at the end of step 3

 
 
 
 
 
 
 
 
 
 
 

(1) (1) (1) (1) (1)

12 13 14 1 1

(2) (2) (2) (2)

21 24 2 2

(3) (3) (3)

34 3 3

41 42 43 44 4 4

1 2 3 4

1

1

1

n

n

n

n

n n n n nn n

a a a a b

0 a a a b

0 0 a a b

a a a a a b

a a a a a b
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Triangular Decomposition, Step k

• In general, we have for step k:

a) eliminate   from row k:

b) normalize the kth equation:

 1 1
1 ...

(m) (m ) (m ) (m)

kj kj km mja = a a a      j = m + , ,n

, , ,
1 2 1

...
k

x x x 

 1 1
1 2 ... 1

(m) (m ) (m ) (m)

k k km mb = b a b m = , , , k -





1

1
= = 1 ...

(k )
 kj(k)

 kj
(k )
 kk

j
a

a k + , ,n
a





1

1
=

(k )
k(k)

 k (k )
kk

b
b

a
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Triangular Decomposition:
Upper Triangular Matrix

• and proceed in this manner until we obtain the upper 

triangular matrix (the nth derived system):

 
 
 
 
 
 
 
 
 
 
 

(1) (1) (1) (1) (1)
12 13 14 1n 1

(2)(2) (2) (2)
21 24 2 2

(3)(3) (3)
34 3 3

(4) (4)
4 4

1

1

1

1

1

n

n

n

(n)
n

a a a a b

0 a a a b

0 0 a a b

0 0 0 a b

0 0 0 0 b
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Triangular Decomposition

• Note that in the scheme presented, unlike in the 

first example, we triangularly decompose the 

system by eliminating row-wise rather than 

column-wise
– In successive rows we eliminate (reduce to 0) each 

element to the left of the diagonal rather than those 

below the diagonal

– Either could be used, but row-wise operations will 

work better for power system sparse matrices
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Solving for X

• To compute x we perform back substitution 

   

   

 


  

1 1

1 1 1

1

=

= = 1 2 ... 1

n n

n- n- n- ,n n

n
k k

k k k j j
j=k+

x b a x

x b a x k n , n , ,

 


n

n n
x b 
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Upper Triangular Matrix

• The triangular decomposition scheme applied to the 

matrix A results in the upper triangular matrix U with 

the elements

• The following theorem is important in the development 

of the sparse computational scheme 









1 =

(i)

ij ij

i j

u = a j > i

0 j < i
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LU Decomposition Theorem

• Any nonsingular matrix A has the following 

factorization:

where U could be the upper triangular matrix 

previously developed (with 1’s on its diagonals) and L

is a lower triangular matrix defined by

A = LU






1

=

(j )

i j

ij

a

0

j i

j i
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LU Decomposition Application

• As a result of this theorem we can rewrite

• Can also be set so U has non unity diagonals

• Once A has been factored, we can solve for x by 

first solving for y, a process known as forward 

substitution, then solving for x in a process known 

as back substitution

• In the previous example we can think of L as a 

record of the forward operations preformed on b.  

Define 

Then 

Ax = LUx = b

y = Ux

Ly = b
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LDU Decomposition

• In the previous case we required that the diagonals 

of U be unity, while there was no such restriction 

on the diagonals of L 

• An alternative decomposition is

where D is a diagonal matrix, and the lower triangular 

matrix is modified to require unity for the diagonals 

with  

A = LDU

L = LD
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Symmetric Matrix Factorization

• The LDU formulation is quite useful for the case of a 

symmetric matrix 

• Hence only the upper triangular elements and the 

diagonal elements need to be stored, reducing storage 

by almost a factor of 2 

T

T T T

T

T



 



A A

A = LDU U DL A

U L

A = U DU
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Symmetric Matrix Factorization

• There are also some computational benefits from 

factoring symmetric matrices.  However, since 

symmetric matrices are not common in power 

applications, we will not consider them in-depth

• However, topologically symmetric sparse matrices 

are quite common, so those will be our main focus
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Pivoting

• An immediate problem that can occur with 

Gaussian elimination is the issue of zeros on the 

diagonal; for example

• This problem can be solved by a process known as 

“pivoting,” which involves the interchange of 

either both rows and columns (full pivoting) or just 

the rows (partial pivoting)

– Partial pivoting is much easier to implement, and actually 

can be shown to work quite well

0 1

2 3

 
 
 

A =
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Pivoting, cont.

• In the previous example the (partial) pivot would just be 

to interchange the two rows

obviously we need to keep track of the interchanged 

rows!

• Partial pivoting can be helpful in improving numerical 

stability even when the diagonals are not zero

– When factoring row k interchange rows so the new diagonal is 

the largest element in column k for rows j  >= k

2 3

0 1

 
 
 

A =
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LU Algorithm Without Pivoting
Processing by row

• We will use the more common approach of having ones on 

the diagonals of L.  Also in the common, diagonally 

dominant power system problems pivoting is not needed

Below algorithm is in row form (useful with sparsity!)

For i := 2 to n Do Begin  // This is the row being processed

For j := 1 to i-1 Do Begin  // Rows subtracted from row i

A[i,j] = A[i,j]/A[j,j]  // This is the scaling 

For k := j+1 to n Do Begin  // Go through each column in i

A[i,k] = A[i,k] - A[i,j]*A[j,k]

End;

End;

End;



41

LU Example

• Starting matrix

• First row is unchanged; start with i=2

• Result with i=2, j=1; done with row 2

20 12 5

5 12 6

4 3 8

  
 
  
   

A =

20 12 5

0.25 9 7.25

4 3 8

  
 
  
   

A =
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LU Example, cont.

• Result with i=3, j=1;

• Result with i=3, j=2; done with row 3; done!

20 12 5

0.25 9 7.25

0.2 5.4 7

  
 
  
   

A =

20 12 5

0.25 9 7.25

0.2 0.6 2.65

  
 
  
   

A =
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LU Example, cont.

• Original matrix is used to hold L and U

20 12 5

0.25 9 7.25

0.2 0.6 2.65

1 0 0

0.25 1 0

0.2 0.6 1

20 12 5

0 9 7.25

0 0 2.65

  
 
   
   

 
 

  
   

  
 

  
  

A = LU

L

U

With this approach

the original A matrix

has been replaced

by the factored values!
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Forward Substitution

Forward substitution solves              with values in b

being over written (replaced by the y values)

For i := 2 to n Do Begin  // This is the row being processed

For j := 1 to i-1 Do Begin 

b[i] = b[i] - A[i,j]*b[j]    // This is just using the L matrix

End;

End;

b = Ly
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Forward Substitution Example

10

Let  = 20

30

1 0 0

From before 0.25 1 0

0.2 0.6 1

[1] 10

[2] 20 ( 0.25)*10 22.5

[3] 30 ( 0.2)*10 ( 0.6)*22.5 45.5

y

y

y

 
 
 
  

 
 

  
   



   

     

b

L
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Backward Substitution

• Backward substitution solves              (with values of y

contained in the b vector as a result of the forward 

substitution)

For i := n to 1 Do Begin  // This is the row being processed

For j := i+1 to n Do Begin 

b[i] = b[i] - A[i,j]*b[j]    // This is just using the U matrix

End;

b[i] = b[i]/A[i,i]    // The A[i,i] values are <> 0 if it is nonsingular

End

y = Ux
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Backward Substitution Example

 

 

10

Let  = 22.5

45.5

20 12 5

From before 0 9 7.25

0 0 2.65

[3] (1/ 2.65)*45.5 17.17

[2] (1/ 9)* 22.5 ( 7.25)*17.17 16.33

[1] (1/ 20)* 10 ( 5)*17.17 ( 12)*16.33 14.59

x

x

x

 
 
 
  

  
 

  
  

 

   

     

y

U
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Computational Complexity

• Computational complexity indicates how the number 

of numerical operations scales with the size of the 

problem

• Computational complexity is expressed using the “Big 

O” notation; assume a problem of size n

– Adding the number of elements in a vector is O(n)

– Adding two n by n full matrices is O(n2)

– Multiplying two n by n full matrices is O(n3)

– Inverting an n by n full matrix, or doing Gaussian 

elimination is O(n3)

– Solving the traveling salesman problem by brute-force 

search is O(n!)
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Computational Complexity

• Knowing the computational complexity of a problem 

can help to determine whether it can be solved (at least 

using a particular method)

– Scaling factors do not affect the computation complexity

• an algorithm that takes n3/2 operations has the same computational 

complexity of one the takes n3/10 operations (though obviously the 

second one is faster!)

• With O(n3) factoring a full matrix becomes 

computationally intractable quickly!

– A 100 by 100 matrix takes a million operations (give or take)

– A 1000 by 1000 matrix takes a billion operations 

– A 10,000 by 10,000 matrix takes a trillion operations!
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Sparse Systems

• The material presented so far applies to any arbitrary 

linear system

• The next step is to see what happens when we apply 

triangular factorization to a sparse matrix

• For a sparse system, only nonzero elements need to be 

stored in the computer since no arithmetic operations 

are performed on the 0’s

• The triangularization scheme is adapted to solve sparse 

systems in such a way as to preserve the sparsity as 

much as possible
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Sparse Matrix History

• A nice overview of sparse matrix history is by Iain Duff 

at http://www.siam.org/meetings/la09/talks/duff.pdf

• Sparse matrices developed simultaneously in several 

different disciplines in the early 1960’s with power 

systems definitely one of the key players (Bill Tinney

from BPA)

• Different disciplines claim credit since they didn’t 

necessarily know what was going on in the others
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Sparse Matrix History

• In power systems a key N. Sato, W.F. Tinney, “Techniques for 

Exploiting the Sparsity of the Network Admittance Matrix,” 

Power App. and Syst., pp 944-950, December 1963

• In the paper they are proposing solving systems with up to 1000 buses 

(nodes) in 32K of memory!

• You’ll also note that in the discussion by El-Abiad, Watson, and Stagg 

they mention the creation of standard test systems with between 30 and 

229 buses (this surely included the now famous 118 bus system)

• The BPA authors talk “power flow” and the discussors talk “load flow.” 

• Tinney and Walker present a much more detailed approach in 

their 1967 IEEE Proceedings paper titled “Direct Solutions of 

Sparse Network Equations by Optimally Order Triangular 

Factorization”
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Sparse Matrix Computational Order

• The computational order of factoring a sparse matrix, or 

doing a forward/backward substitution depends on the 

matrix structure

– Full matrix is O(n3)

– A diagonal matrix is O(n); that is, just invert each element

• For power system problems the classic paper is 

F. L. Alvarado, “Computational complexity in power 

systems,” IEEE Transactions on Power Apparatus and 

Systems, ,May/June 1976

– O(n1.4) for factoring, O(n1.2) for forward/backward

– For a 100,000 by 100,000 matrix changes computation for 

factoring  from 1 quadrillion to 10 million!
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Inverse of a Sparse Matrix

• The inverse of a sparse matrix is NOT in general a 

sparse matrix

• We never (or at least very, very, very seldom) explicitly 

invert a sparse matrix

– Individual columns of the inverse of a sparse matrix can be 

obtained by solving x = A-1b with b set to all zeros except for a 

single nonzero in the position of the desired column

– If a few desired elements of A-1 are desired (such as the 

diagonal values) they can usually be computed quite efficiently 

using sparse vector methods (a topic we’ll be considering soon)

• We can’t invert a singular matrix (with sparse or not)
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Computer Architecture Impacts

• With modern computers the processor speed is many 

times faster than the time it takes to access data in main 

memory

– Some instructions can be processed in parallel 

• Caches are used to provide quicker access to more 

commonly used data

– Caches are smaller than main memory

– Different cache levels are used with the quicker caches, like 

L1, have faster speeds but smaller sizes; L1 might be 64K, 

whereas the slower L2 might be 1M

• Data structures can have a significant impact on sparse 

matrix computation


