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Announcements

• RSVP to Alex at zandra23@ece.tamu.edu for the 

TAMU ECE Energy and Power Group (EPG) 

picnic.  It starts at 5pm on September 27, 2019

• Be reading Chapters 1 and 2

• Homework 1 is assigned today.  It is due on 

Thursday September 12

• Classic reference paper on EMTP is H.W. 

Dommel, "Digital Computer Solution of 

Electromagnetic Transients in Single- and 

Multiphase Networks," IEEE Trans. Power App. 

and Syst., vol. PAS-88, pp. 388-399, April 1969
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Electromagnetic Transients

• The modeling of very fast power system dynamics 

(much less than one cycle) is known as electromagnetics 

transients program (EMTP) analysis

– Covers issues such as lightning propagation and switching 

surges

• Concept originally developed by Prof. Hermann 

Dommel for his PhD in the 1960's (now emeritus at 

Univ. British Columbia)

– After his PhD work Dr. Dommel worked at BPA where he was 

joined by Scott Meyer in the early 1970's

– Alternative Transients Program (ATP) developed in response 

to commercialization of the BPA code
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Power System Time Frames

Image source: P.W. Sauer, M.A. Pai, Power System Dynamics and Stability, 1997, Fig 1.2, modified
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Transmission Line Modeling

• In power flow and transient stability transmission 

lines are modeled using a lumped parameter 

approach

– Changes in voltages and current in the line are assumed 

to occur instantaneously

– Transient stability time steps are usually a few ms (1/4 

cycle is common, equal to 4.167ms for 60Hz)

• In EMTP time-frame this is no longer the case; 

speed of light is 300,000km/sec or 300km/ms or 

300m/ms

– Change in voltage and/or current at one end of a 

transmission cannot instantaneously affect the other end 
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Need for EMTP

• The change isn’t really instantaneous because of 

propagation delays, which are near the speed of 

light; there also wave reflection issues

Red is the vs end, green 

the v2 end



6

   

i
v R xi L x

t

i G x v v C x v v
t


     




         



Incremental Transmission 

Line Modeling

Define the 

receiving end as 

bus m (x=0) and 

the sending end as 

bus k (x=d)
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Where We Will End Up

• Goal is to come up with model of transmission line 

suitable for numeric studies on this time frame
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Substitute 
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We are looking to determine v(x,t) and i(x,t)
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Incremental Transmission 

Line Modeling

Taking the limit we get

Some authors have a negative sign with these equations; it 

just depends on the direction of increasing x; note values 

are function of both x and t
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C' = G' = 0 (neglect shunts)

   
dt

di
xLxRtvtxv i  ,0,

10

Special Case 1

This just gives a lumped parameter model, with all 

electric field effects neglected
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The lossless line (R'=0, G'=0), which gives

,
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This is the wave equation with a general solution of 

Special Case 2: Wave Equation
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Special Case 2: Wave Equation

• This can be thought of as two waves, one traveling in 

the positive x direction with velocity vp, and one in the 

opposite direction

• The values of f1 and f2 depend upon the boundary 

(terminal) conditions
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end with x=0

and the 

sending end 

with x=d
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Calculating vp

• To calculate vp for a line in air we go back to the 

definition of L' and C'
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With r'=0.78r this is very close to the speed of light
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Important Insight

• The amount of time for the wave to go between the 

terminals is d/vp= t seconds

– To an observer traveling along the line with the wave, 

x+vpt, will appear constant 

• What appears at one end of the line impacts the 

other end t seconds later
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constant 
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Determining the Constants

• If just the terminal characteristics are desired, then an 

approach known as Bergeron's method can be used.  

• Knowing the values at the receiving end m (x=0) we get
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Determining the Constants

• Eliminating f1 we get
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Determining the Constants

• To solve for f2 we need to look at what is going on 

at the sending end (i.e., k at which x=d) t = d/vp

seconds in the past
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Determining the Constants

• Dividing vk by zc, and then adding it with ik gives

• Then substituting for f2 in im gives
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Equivalent Circuit Representation

• The receiving end can be represented in circuit form as
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Since t = d/vp, Im just depends 

on the voltage and current at 

the other end of the line from 

t seconds in the past. Since 

these are known values, it  

looks like a time-varying 

current source
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Repeating for the Sending End

• The sending end has a similar representation
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Lumped Parameter Model

• In the special case of constant frequency, book shows 

the derivation of the common lumped parameter model

This is used in 

power flow and 

transient 

stability; in 

EMTP the 

frequency is not 

constant
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Including Line Resistance

• An approach for adding line resistance, while keeping 

the simplicity of the lossless line model, is to just to 

place ½ of the resistance at each end of the line

– Another, more accurate approach, is to place ¼ at each end, 

and ½ in the middle

• Standalone resistance, such as modeling the resistance 

of a switch, is just represented as an algebraic equation

 ,k m k m

1
i v v

R
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Numerical Integration with 
Trapezoidal Method

• Numerical integration is often done using the 

trapezoidal method discussed last time

– Here we show how it can be applied to inductors and 

capacitors

• For a general function the trapezoidal approach is 

• Trapezoidal integration introduces error on the order of 

t3, but it is numerically stable
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Trapezoidal Applied to Inductor 
with Resistance

• For a lossless inductor, 

• This can be represented as a Norton equivalent with 

current into the equivalent defined as positive (the last 

two terms are the current source)
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Trapezoidal Applied to Inductor 
with Resistance

• For an inductor in series with a resistance we have
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RL Example

• Assume a series RL circuit with an open switch with 

R= 200W and L = 0.3H, connected to a voltage source 

with 

• Assume the switch is closed at t=0

• The exact solution is 

 133,000 2 cos 2 60v t

 667712.4 578.8 2 cos 2 60 29.5ti e t    

  01
0

di
v iR L

dt

di R
i v i i

dt L L

 

   

R/L=667, so the 

dc offset decays

quickly
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RL Example Trapezoidal Solution
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t = .0002

i(.0002) = 117.3A

Exact solution

i(.0002) = 117.3A

Solving for i(.0002)

RL Example Trapezoidal Solution
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Full Solution Over Three Cycles
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A Favorite Problem: R=0 Case, with 
v(t) = Sin(2*pi*60)

PWFullMatrixGrid Variables
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Lumped Capacitance Model

• The trapezoidal approach can also be applied to model 

lumped capacitors

• Integrating over a time step gives

• Which can be approximated by the trapezoidal as
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Lumped Capacitance Model

• Hence we can derive a circuit model similar to 

what was done for the inductor

( ) ( )
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Example 2.1: Line Closing

Switch is closed at

time t = 0.0001 sec



35

Initial conditions: i1 = i2 = v1 = v2 =0

for t < .0001 sec

' 1
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' ' '

.00055sec 2
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c p
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z v mi
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
 W



Example 2.1: Line Closing

Because of finite propagation speed, the receiving end 

of the line will not respond to energizing the sending 

end for at least 0.00055 seconds
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Example 2.1: Line Closing

Note we have two separate circuits, coupled together 

only by past values
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Example 2.1: t=0.0001
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Example 2.1: t=0.0001

Sending

End

Receiving

End
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Circuit is essentially 

the same

Wave is traveling

down the line
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Example 2.1: t=0.0002 to 0.006

With interpolation

receiving end 

will see wave
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Need:  
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Example 2.1: t=0.0007
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(linear interpolation)
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For ti = .0006 (t = .0007 sec) at the sending end

 

  Vv

Ai

293,1810007.

6620007.

1

1





Example 2.1: t=0.0007

This current 

source will stay 

zero until we get a 

response from the 

receiving end, at 

about 2t seconds
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 

  Ai

Vv

660007.
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2

2





Example 2.1: t=0.0007

For ti = .0006 (t = .0007 sec) at the receiving end
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Example 2.1: First Three Cycles

Red is the

sending

end voltage (in 

kv), while green

is the receiving 

end voltage.  

Note the 

approximate 

voltage 

doubling at the 

receiving end
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Example 2.1: First Three Cycles
Column 2

Column 2

Column 1

0.050.0450.040.0350.030.0250.020.0150.010.0050
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Graph shows 

the current (in 

amps) into the 

RL load over 

the first three 

cycles.  

,

, /
. ,  hence a peak value of 439 amps

. .
load rms

230 000 3
I 311 20 6

400 j94 2 j56 5
    

 

To get a ballpark value on the expected current, solve the 

simple circuit assuming the transmission line is just an inductor 
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Three Node, Two Line Example
PWFullMatrixGrid Variables
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Graph shows the 

voltages for 0.02 

seconds for the 

Example  2.1 case 

extended to 

connect another 

120 mile line to 

the receiving end 

with an identical 

load
Note that there is no longer an initial 

overshoot for the receiving (green) end 

since wave continues into the second line
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Example 2.1 with Capacitance

• Below graph shows example 2.1 except the RL load is 

replaced by a 5 mF capacitor (about 100 Mvar)

• Graph on left is unrealistic case of no line resistance

• Graph on right has R=0.1 W/mile
PWFullMatrixGrid Variables
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EMTP Network Solution

• The EMTP network is represented in a manner quite 

similar to what is done in the dc power flow or the 

transient stability network power balance equations or 

geomagnetic disturbance modeling (GMD)

• Solving set of dc equations for the nodal voltage vector 

V with 

V = G-1I 

where G is the bus conductance matrix and I is a 

vector of the Norton current injections 


