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Announcements

RSVP to Alex at zandra23@ece.tamu.edu for the
TAMU ECE Energy and Power Group (EPG)
picnic. It starts at 5pm on September 27, 2019

Be reading Chapters 1 and 2

Homework 1 is assigned today. It is due on
Thursday September 12

Classic reference paper on EMTP is H.W.
Dommel, "Digital Computer Solution of
Electromagnetic Transients in Single- and
Multiphase Networks," IEEE Trans. Power App.
and Syst., vol. PAS-88, pp. 388-399, April 1969
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Electromagnetic Transients

T

* The modeling of very fast power system dynamics
(much less than one cycle) is known as electromagnetics
transients program (EMTP) analysis

— Covers issues such as lightning propagation and switching
Surges
e Concept originally developed by Prof. Hermann
Dommel for his PhD in the 1960's (now emeritus at
Univ. British Columbia)

— After his PhD work Dr. Dommel worked at BPA where he was
joined by Scott Meyer in the early 1970's

— Alternative Transients Program (ATP) developed in response
to commercialization of the BPA code



Power System Time Frames

Lightning Propagation

Switching

Surges

Inverter-based Controls

Stator Transients and

Subsynchronous Resonance

Transient Stability

Governor and Load
Frequency Control

Boiler Dynamics; Voltage Stability

Power Flow
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Image source: P.W. Sauer, M.A. Pai, Power System Dynamics and Stability, 1997, Fig 1.2, modified
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Transmission Line Modeling

T
In power flow and transient stability transmission

lines are modeled using a lumped parameter

approach
— Changes in voltages and current in the line are assumed
to occur instantaneously

— Transient stability time steps are usually a few ms (1/4
cycle is common, equal to 4.167ms for 60Hz)

In EMTP time-frame this is no longer the case;
speed of light is 300,000km/sec or 300km/ms or

300m/us

— Change in voltage and/or current at one end of a
transmission cannot instantaneously affect the other end



Need for EMTP
T

* The change 1sn’t really instantaneous because of
propagation delays, which are near the speed of

light; there also wave reflection issues
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Incremental Transmission

iIne M i
Line Modeling T
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X=d X=0

Define the
ol receiving end as

AV = R'AXI + L'Ax —
" ot bus m (x=0) and
., 0 the sending end as
Ai =G'Ax(v+Av)+C Axa(v+AV) bus k (x=d)



Where We Will End Up
T

« Goal Is to come up with model of transmission line
sultable for numeric studies on this time frame

‘}  Both ends of

vh
+ .
2 ~+ the line are
Va 4 ¢ Im Vn represented

by Norton

J_ 1y Lt B dJ equivalents
P/ Assumption is we

don’t care about

1 d what occurs along
To%kITTL ] the line
c p



Incremental Transmission
Line Modeling T

We are looking to determine v(x,t) and i(X,t)

Substitute Av = Ax(R’i + L’%)

Into the equation for Al and divide both by Ax

ﬂ = G’V+G’(R’Axi + L’Axgjﬁl’@
AX ot ot

) _ . -
+C’ R’Axg+ L’Ax8—2I
ot ot |




Incremental Transmission
Line Modeling T

Taking the limit we get

AX — 0 AX OX ot
lim A o ’ oV
AX — OAX &:GVJFCE

Some authors have a negative sign with these equations; it
just depends on the direction of increasing X; note values
are function of both x and t



Special Case 1

C'= G' =0 (neglect shunts)

v(x,t)=Vv(0,t)+R'x; + L'xgl

This just gives a lumped parameter model, with all
electric field effects neglected

10

o
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Special Case 2: Wave Equation

T
The lossless line (R'=0, G'=0), which gives
N8 a o
OX ot ox ot
This is the wave equation with a general solution of
i(x,t)=—f (x=v.t)— f (x+v,t z. 1s the
( ) 1( i ) 2( i ) characteristic
1 and v, Is the
z.=~L'/C", v, = '
c NI velocity of

propagation
11



Special Case 2: Wave Equation
T
« This can be thought of as two waves, one traveling in
the positive x direction with velocity v;, and one in the
opposite direction

» The values of f, and f, depend upon the boundary
(terminal) conditions

Boundaries
i(x,t)=—f (x—vt)—fy(x+v.t are receiving
() == xvpt) = et s
V(X,t)=Zcfl(X—th)—Zsz(X+th) and the

sending end

1
z, =~JL'IC", Vp:\/TC’ with x=d

12



Calculating v,

Al
* To calculate v, for a line in air we go back to the
definition of L' and C'

L' = goln(D) C'= 2”50
T \r In/r
1

V. =

) 1 1
" JLe D i D,
ﬂOgoln[% In[%

With r'=0.78r this Is very close to the speed of light
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Important Insight

T
« The amount of time for the wave to go between the
terminals 1s d/v,= t seconds
— To an observer traveling along the line with the wave,
x+v,t, will appear constant
« What appears at one end of the line impacts the
other end t seconds later
Both sides of
i(x,t):—fl(x—vpt)— fz(x+vpt) the bottom
equation are
V(X’t) = e fl(x _th) —Zc 1 (X +th) cgnstant
v(X,t)+z.(x,t) = -2z, fz(x+vpt) when x+v,tis

constant
14



Determining the Constants

Al
 |f just the terminal characteristics are desired, then an
approach known as Bergeron's method can be used.

« Knowing the values at the receiving end m (x=0) we get

i(x,t):—fl(x—vpt)— fz(x+vpt) T
v(X,t) =z, fl(x—vpt)—ZCfZ(X+th) used to

im (1) =i(0,t)=—f,(~v, t) =, (v, t) eliminate f,

Vi, (t) =z, 1‘1(—vIo t)— z.f, (vp t)
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Determining the Constants

A

Eliminating f, we get
Vi, (t) = Z, f1(—Vp t)— z.f, (vp t)

fo(~v, t)= Vr;iw + 1, (v t)

im(t):—\;—m—Zfz(vpt)
C

16



Determining the Constants

T
* To solve for f, we need to look at what is going on
at the sending end (i.e., k at which x=d) t = d/v,

seconds In the past

et o)

i (t—\?) =—f,(2d —v,t) = f(v,t)

p

Vi (t —VdJ =Z, f1(2d —vpt)— z.f, (vpt)

p
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Determining the Constants

o

 Dividing v, by z,, and then adding It with I, gives

3 [t —d}r\’k[t —dj =21, (vt)
Vo | ozl v,

* Then substituting for f, in i, gives

i (t)= —V”‘Z(t) +i, (t _\?}zlvk (t —\?]

P c P
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Equivalent Circuit Representation

o

* The receiving end can be represented in circuit form as

im@):—ﬂ%(04—h(f—fij+ka{F—fij -y

v, ) z, v,

‘m  Sincet = d/v, 1, just depends
+ on the voltage and current at
Z. Z(, e the other end of the line from
- T seconds In the past. Since
these are known values, it

looks like a time-varying

current source 19



Repeating for the Sending End

AJM
* The sending end has a similar representation
Ch mn
+
2 -+ Both ends of
? 5 ‘ Im Ve the line are
| represented
Ik :im t—i _ivm t_i bYNorton
Vp ) Zc Vi equivalents
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Lumped Parameter Model

Al
 In the special case of constant frequency, book shows
the derivation of the common lumped parameter model

This is used In
power flow and
() transient

h_ g stability; in
(%) EMTP the
frequency is not
constant

B
|
t’.
- |
:‘ .
1
Q
5

[ 9
+ 27d +
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Including Line Resistance
T
« An approach for adding line resistance, while keeping
the simplicity of the lossless line model, is to just to
place %2 of the resistance at each end of the line
— Another, more accurate approach, is to place % at each end,
and %2 in the middle
« Standalone resistance, such as modeling the resistance
of a switch, Is just represented as an algebraic equation

1

ik,m — E(Vk _Vm)

22



Numerical Integration with

Trapezoidal Meth
apezoidal Method T
* Numerical integration is often done using the
trapezoidal method discussed last time

— Here we show how it can be applied to inductors and
capacitors

« For a general function the trapezoidal approach is

X =1(x(t))
x(t + At) = x(t) + Azt[ f(x()+ F(X(t+At))]

« Trapezoidal integration introduces error on the order of
At3, but it is numerically stable

23



Trapezoidal Applied to Inductor
with Resistance

AlM
 For alossless inductor,
v=Ll @ 5 BV )=
dt dt L

. At
i(t+ At) =i(t) +Z(v(t) +V(t+At))

« This can be represented as a Norton equivalent with
current into the equivalent defined as positive (the last
two terms are the current source)

v(t+At) i)+ v(t)
2L/ At 2L/ At

i(t+ Ab) =

24



Trapezoidal Applied to Inductor
with Resistance

AlM
e [For an Inductor In series with a resistance we have
di
V=IR+L—
dt -
+
a__Ri.iy i(0)=i° & R
dt L L L

25



Trapezoidal Applied to Inductor with

Resistance T
| . At R.. . 1 |
-+ 40 i)+ 5| i)+ V) s aio

. 1 becomes a
-G+ A+ +At)} Norton
equivalent. A

similar
expression will
be developed
for capacitors

26



RL Example

A]M
Assume a series RL circuit with an open switch with
R=200Q and L = 0.3H, connected to a voltage source

with v =133,000/2 cos(27760t) o C
Assume the switch is closed at t=0 = R
The exact solution is v L

-

| = —712.4¢7%"" 1 578.81/2 cos (2760t — 29.5°)

. di
V=IR+ Ld—l R/L=667, so the
di nq dc offset decays
—=——i+=v i(0)=i’ quickly

27



RL Example Trapezoidal Solution

o

*
2L _2%03 _

At 0.0001
At =.0001sec Jloooed) 200
t=0 i(0)=0 1179570 Gooo s
t =.0001 p’
1(0) + VO —RIO) _ 31.35A ((.000)= (0.6 A

6000

. . 187957 31.35x6000
- i(.0001) = =220
Numeric solution: i( ) 5200 5200

Exact solution:
i(.0001) = —712.4e~%7" 1 578.82 cos(2ﬂ60 x.0001— 29.5%)

= 60.65A

=—666.4+727.0

=60.6A 28



RL Example Trapezoidal Solution

e

t =.0002 (.o002) 2004

l%?,SS'L ¥ {000 &(o.‘
Solving for i(.0002) v ™ Theres?
+(-?.ow‘0.‘

29.94

1(.0002) = 117.3A
Exact solution
1(.0002) = 117.3A

29



Full Solution Over Three Cycles

1000

800

600

400

200

-200

-400

-600

-800

-1000

0 0.01

0.02

0.05

e De[taT=0.0001

Exact

o
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A Favorite Problem: R=0 Case, with

3,200
3,000
2,800
2,600
2,400
2,200
2,000

é 1,800
£ 1,600
1,400
1,200
1,000
800

600

400

200

0 =

v(t) = Sin(2*p1*60)

PWFullMatrixGrid Variables

i

0

0.005

0.01 0.015 0.02 0.025 0.03 0.035 0.04

Column 1

0.045 0.05

A
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Lumped Capacitance Model

T
« The trapezoidal approach can also be applied to model
lumped capacitors

(0 —c

dt
 Integrating over a time step gives

1 et+at.
va+AD=W0+EL it)

« Which can be approximated by the trapezoidal as

At
V(t+At) = v(t)+z(|(t+At)+|(t))

32



Lumped Capacitance Model
T
 Hence we can derive a circuit model similar to
what was done for the inductor

14 )
-

dat
VB T o

—v(t)—%i(t)
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Example 2.1: Line Closing

28,0001 ¢ec .
¢ Y

g + lengtn d Z100me'
3

\ ‘V| ng G’:O VL

i _ -

+ .
iy

Hoon

Dt c,000] sec

L' =1.5x10°H /mi
C'=0.02x10"%F /mi

Switch iIs closed at
time t = 0.0001 sec

o
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Example 2.1: Line Closing

T
Initial conditions: 1, =1,=v, =V, =0
for t <.0001 sec
L' 1 :
Z.=,—=274Q0 v, = =182,574mi / sec
C' " JLe
d4 =.00055sec 1L
Vo AL =5000Q2

Because of finite propagation speed, the receiving end
of the line will not respond to energizing the sending

end for at least 0.00055 seconds
35



Example 2.1: Line Closing

£y [4c+.0001)

)

Note we have two separate circuits, coupled together
only by past values

o

36



Example 2.1: t=0.0001
T

Need: il(—.00045), Vl(—.OOO45), iz(—.OOO45),
v, (~.00045), i,(0), v4(0), v,(.0001)

I
Vi

I,

(—
(—
(- 00045)
(:

v, (.0001) = 230, ooo\E cos(2760x.0001) =187,661V

37



Example 2.1: t=0.0001

C’ (.0 00‘)

Sending

o
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Example 2.1: t=0.0001

Am
i1(.0001) = 685A - Instantaneously
v1(.0001) =187,661V changed from zero
i»(.0001)=0 at t =.0001 sec.
V,(.0001) =0

v3(.0001) =0

39



Example 2.1: t=0.0002

Need:

i, (—00035
(—.00035
(—.0003
(_

)
)
)
00035)
)
)
)

Vi

o1

2
Vs

(N

0
0
0
0
(.0001) =0
V5(.0001) =0
v, (.0002

187,261V

Al
Circuit Is essentially
the same

i,(.0002)
v1(.0002)
i,(.0002)
v,(.0002)

(.0002)

683 A
187,261V

0.
0.
V3 0.

Wave is traveling
down the line
40



Example 2.1: t=0.0002 to 0.006

T
d_ .00055 At=.0001
Vo
t =0 t = 0001« Switch closed
tj =.0001 t =.0002
=.0002 =.0003
=.0003 =.0004
=.0004 =.0005
— 0005 =.0006 « With interpolation

_ 0007 « Teceiving end

=.0006 .
will see wave



Example 2.1: t=0.0007
T

Need: 11(.00015) i1(.0001) = 685 A
v;(.00015), v, (.00015) i1(.0002) = 683A

i,(.0006), v4(.0006), v,(.0007)

(linear interpolation) .00015-.0001

0002 —.0001
% (i1(.0002) - i1 (.0001))

¢, ~
(s . (+00015)

T8 Tttt eeeils L3y p
— ,

0001

42



Example 2.1: t=0.0007

For t. = .0006 (t = .0007 sec) at the sending end

This current

source will stay
i1(.0007) = 662A zero until we get a

v1(.0007)=181,293V response from the
recelving end, at

about 2t seconds

A

43



Example 2.1: t=0.0007

For t; = .0006 (t = .0007 sec) at the receiving end
;l(.ooﬂ)

(Y oon

man
':;_{;;; SOROL
1303A

V,(.0007) = 356,731V
i,(.0007)=66A

o
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Example 2.1: First Three Cycles

AT
PWFullMatrixGrid Variables Red iS the

sending

end voltage (in

kv), while green

IS the receiving
end voltage.

Note the

approximate

voltage

T "o e = doubling at the
receiving end

45



Example 2.1: First Three Cycles
T

oo 7\ 7\ )

[\ [\ / Graph shows
\ fr\ [~ the current (in
[ \ [ \ [ :

o [ [ / amps) into the
N / \ \ / RL load over
o | 1/ \\\ / \\\ // the first three
ol A \ / / cycles.

-350 \ J \ / \

200 \ \ / \./

-450 V\\ \/ \/

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Column 1

To get a ballpark value on the expected current, solve the

simple circuit assuming the transmission line is just an inductol

- 230,000//3 =311/ —-20.6°, hence a peak value of 439 amps

|
load ,rms 400 + 19424— 1565
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Three Node, Two Line Example

M
| Graph shows the
) \ voltages for 0.02
tlg\\ /;/;27‘%\“\ seconds for the
AV 7 \ Example 2.1 case
2 N\ S extended to
W //) connect another
A\ 4 120 mile line to
ASN J</ the receiving end
e T T e e oo with an identical

Column 1

Note that there Is no longer an initial
overshoot for the receiving (green) end
since wave continues into the second line

load

47



Example 2.1 with Capacitance

Al
Below graph shows example 2.1 except the RL load is
replaced by a 5 uF capacitor (about 100 Mvar)

Graph on left is unrealistic case of no line resistance
Graph on right has R=0.1 Q/mile

~———
p—
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EMTP Network Solution
T

 The EMTP network Is represented in a manner quite
similar to what Is done in the dc power flow or the
transient stability network power balance equations or

geomagnetic disturbance modeling (GMD)

« Solving set of dc equations for the nodal voltage vector
V with

V=Gl

where G 1s the bus conductance matrix and | 1s a
vector of the Norton current injections

49



