ECEN 667 Power System Stability

Lecture 4: Modeling Transmission Lines, Transient Stability Overview

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- Start reading Chapters 3
- Homework 1 is assigned today. It is due on Thursday September 12
- Reference for modeling three-phase lines is W. Kersting, *Distribution System Modeling and Analysis*, 4th Edition, CRC Press, 2018

EMTP Network Solution

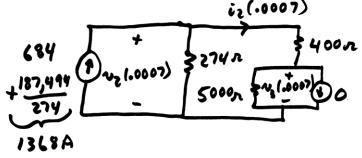
- The EMTP network is represented in a manner quite similar to what is done in the dc power flow or the transient stability network power balance equations or geomagnetic disturbance modeling (GMD)
- Solving set of dc equations for the nodal voltage vector
 W with

$\mathbf{V} = \mathbf{G}^{-1}\mathbf{I}$

where **G** is the bus conductance matrix and **I** is a vector of the Norton current injections

EMTP Network Solution

- The EMTP network is represented in a manner quite similar to what is done in the dc power flow or the transient stability network power balance equations or geomagnetic disturbance modeling (GMD)
- Solving set of dc equations for the nodal voltage vector
 W with


$\mathbf{V} = \mathbf{G}^{-1}\mathbf{I}$

where **G** is the bus conductance matrix and **I** is a vector of the Norton current injections

EMTP Network Solution

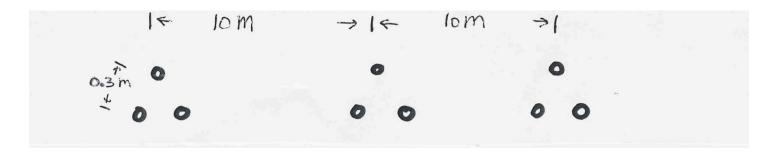
- Fixed voltage nodes can be handled in a manner analogous to what is done for the slack bus: just change the equation for node i to $V_i = V_{i,fixed}$
- Because of the time delays associated with the transmission line models **G** is often quite sparse, and can often be decoupled
- Once all the nodal voltages are determined, the internal device currents can be set
 i₁(.....)
 - E.g., in example 2.1 one we know v₂ we can determine v₃

Three-Phase EMTP

- What we just solved was either just for a single phase system, or for a balanced three-phase system
 That is, per phase analysis (positive sequence)
- EMTP type studies are often done on either balanced systems operating under unbalanced conditions (i.e., during a fault) or on unbalanced systems operating under unbalanced conditions
 - Lightning strike studies
- In this introduction to EMTP will just covered the balanced system case (but with unbalanced conditions)
 - Solved with symmetrical components

Modeling Transmission Lines

• Undergraduate power classes usually derive a per phase model for a uniformly transposed transmission line $L = \frac{\mu_0}{2\pi} \ln \frac{D_m}{R_b} = 2 \times 10^{-7} \ln \frac{D_m}{R_b} \text{ H/m}$ $= \frac{2\pi\varepsilon}{R_b}$


$$C = \frac{1}{\ln \frac{D_m}{R_b^c}}$$

$$D_{m} = \left[d_{ab} d_{ac} d_{bc} \right]^{\frac{1}{3}} \qquad R_{b} = \left(r' d_{12} \cdots d_{1n} \right)^{\frac{1}{n}}$$
$$R_{b}^{c} = \left(r d_{12} \cdots d_{1n} \right)^{\frac{1}{n}} \text{ (note r NOT r')}$$
$$\varepsilon \text{ in air } = \varepsilon_{o} = 8.854 \times 10^{-12} \text{ F/m}$$

Modeling Transmission Lines

Calculate the per phase inductance and capacitance per km of a balanced 3φ, 60 Hz, line with horizontal phase spacing of 10m using three conductor bundling with a spacing between conductors in the bundle of 0.3m. Assume the line is uniformly transposed and the conductors have a 1.5 cm radius and resistance = 0.06 Ω/km

Modeling Transmission Lines

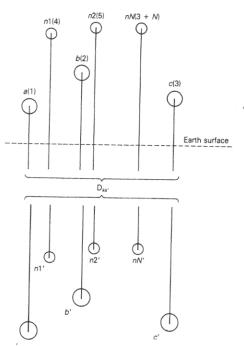
$$D_{m} = (10 \times 10 \times 20)^{\frac{1}{3}} = 12.6m$$

$$R_{b} = (0.78 \times 0.015 \times 0.3 \times 0.3)^{\frac{1}{3}} = 0.102m$$

$$L = 2 \times 10^{-7} \ln \frac{12.6}{0.102} = 9.63 \times 10^{-7} \text{H/m} = 9.63 \times 10^{-4} \text{H/km}$$

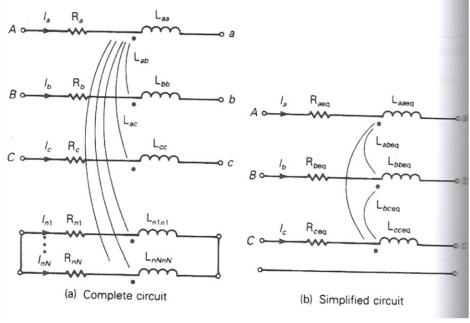
$$R_{b}^{c} = (0.015 \times 0.3 \times 0.3)^{\frac{1}{3}} = 0.1105m$$

$$C = \frac{2\pi \times 8.854 \times 10^{-12}}{\ln^{12.6}} = 1.17 \times 10^{-11} \text{F/m} = 1.17 \times 10^{-8} \text{F/km}$$


- Resistance is $0.06/3=0.02\Omega/km$
 - Divide by three because three conductors per bundle

Untransposed Lines with Ground Conductors

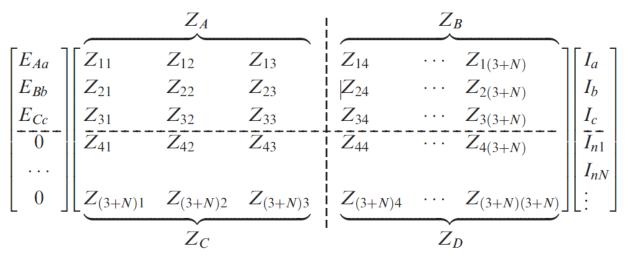
- To model untransposed lines, perhaps with grounded neutral wires, we use the approach of Carson (from 1926) of modeling the earth return with equivalent conductors located in the ground under the real wires
 - Earth return conductors have the same
 GMR of their above ground conductor
 (or bundle) and carry the opposite current
- Distance between conductors is


$$D_{kk'} = 658.5 \sqrt{\rho/f} \,\mathrm{m}$$

where ρ is the earth resistivity in Ω -m with 100 Ω -m a typical value

Untransposed Lines with Ground Conductors

- The resistance of the equivalent conductors is $R_{k'}=9.869\times10^{-7}\times f \Omega/m$ with f the frequency, which is also added in series to the R of the actual conductors
- Conductors are mutually coupled; we'll be assuming three phase conductors and N grounded neutral wires
- Total current in all conductors sums to zero

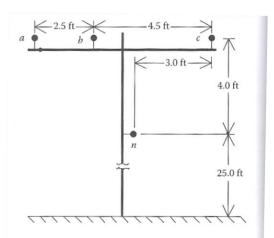

Untransposed Lines with Ground Conductors

- The relationships between voltages and currents per $\begin{bmatrix} E_{Aa} \\ E_{Bb} \\ E_{Cc} \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \left(\mathbf{R} + j\omega \mathbf{L} \right) \begin{bmatrix} I_a \\ I_b \\ I_c \\ I_{nl} \\ \vdots \\ InN \end{bmatrix}$ unit length is
- Where the diagonal resistance are the conductor resistance plus $R_{k'}$ and the off-diagonals are all $R_{k'}$
- resistance plus $\mathbf{K}_{\mathbf{k}'}$ and $\mathbf{L}_{\mathbf{k}m} = 2 \times 10^{-7} \ln \left(\frac{D_{\mathbf{k}m'}}{D_{\mathbf{k}m}} \right)$ The inductances are $L_{\mathbf{k}m} = 2 \times 10^{-7} \ln \left(\frac{D_{\mathbf{k}m'}}{D_{\mathbf{k}m}} \right)$ with $\mathbf{D}_{\mathbf{k}\mathbf{k}'}$ just the $\mathbf{D}_{\mathbf{k}\mathbf{k}'} = \mathbf{D}_{\mathbf{k}\mathbf{k}'}$ GMR for the conductor (or bundle)

Untransposed Lines with Ground Conductors

• This then gives an equation of the form

• Which can be reduced to just the phase values


$$\mathbf{E}_{p} = \left[\mathbf{Z}_{A} - \mathbf{Z}_{B}\mathbf{Z}_{D}^{-1}\mathbf{Z}_{C}\right]\mathbf{I}_{p} = \mathbf{Z}_{p}\mathbf{I}_{p}$$

• We'll use \mathbf{Z}_{p} with symmetrical components

- Given a 60 Hz overhead distribution line with the tower configuration (N=1 neutral wire) with the phases using Linnet conductors and the neutral 4/0 6/1 ACSR, determine Z_p in ohms per mile
 - Linnet has a GMR = 0.0244ft, and R = 0.306Ω /mile

- 4/0 6/1 ACSR has GMR=0.00814 ft and R=0.592 Ω /mile
- $R_{k'}=9.869 \times 10^{-7} \times f \Omega/m$ is 0.0953 Ω /mile at 60 Hz
- Phase R diagonal values are $0.306 + 0.0953 = 0.401 \Omega$ /mile
- Ground is 0.6873 Ω /mile

• Example inductances are worked with $\rho = 100\Omega$ -m

$$D_{kk'} = 658.5 \sqrt{\frac{100}{60}} m = 850.1m = 2789 \text{ ft}$$
$$L_{km} = 2 \times 10^{-7} \ln\left(\frac{D_{km'}}{D_{km}}\right) \approx 2 \times 10^{-7} \ln\left(\frac{D_{kk'}}{D_{km}}\right)$$

• Note at 2789 ft, $D_{kk'}$ is much, much larger than the distances between the conductors, justifying the above assumption

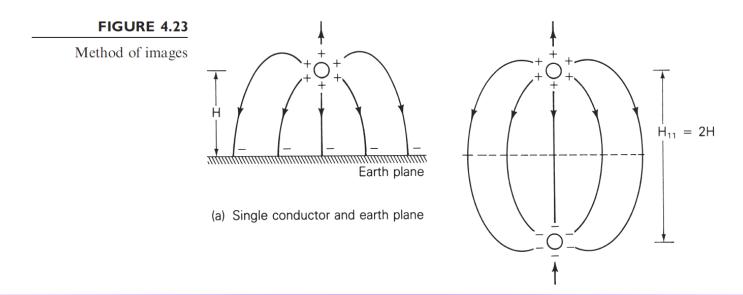
• Working some of the inductance values

$$L_{aa} = 2 \times 10^{-7} \ln \left(\frac{2789}{0.0244}\right) = 2.329 \times 10^{-6} \,\mathrm{H/m}$$

Phases a and b are separated by
 2.5 feet, while it is 5.66 feet between
 phase a and the ground conductor

$$L_{ab} = 2 \times 10^{-7} \ln\left(\frac{2789}{2.5}\right) = 1.403 \times 10^{-6} \,\text{H/m}$$
$$L_{an} = 2 \times 10^{-7} \ln\left(\frac{2789}{5.66}\right) = 1.240 \times 10^{-6} \,\text{H/m}$$

Even though the distances are worked here in feet, the result is in H/m because of the units on μ_0

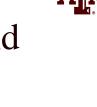


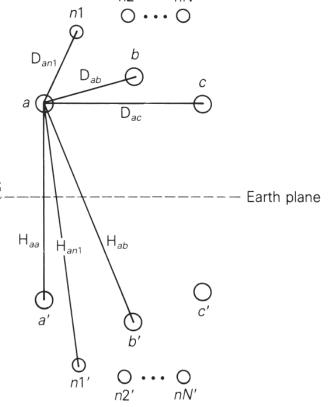
- Continue to create the 4 by 4 symmetric **L** matrix
- Then $\mathbf{Z} = \mathbf{R} + j\omega \mathbf{L}$
- Partition the matrix and solve $\mathbf{Z}_p = \left[\mathbf{Z}_A \mathbf{Z}_B \mathbf{Z}_D^{-1} \mathbf{Z}_C \right]$
- The result in Ω /mile is

 $\mathbf{Z}_{p} = \begin{bmatrix} 0.4576 + 1.0780 & 0.1560 + j0.5017 & 0.1535 + j0.3849 \\ 0.1560 + j0.5017 & 0.4666 + j1.0482 & 0.1580 + j0.4236 \\ 0.1535 + j0.3849 & 0.1580 + j0.4236 & 0.4615 + j1.0651 \end{bmatrix}$

Modeling Line Capacitance

- For capacitance the earth is typically modeled as a perfectly conducting horizontal plane; then the earth plane is replaced by mirror image conductors
 - If conductor is distance H above ground, mirror image conductor is distance H below ground, hence their distance apart is 2H

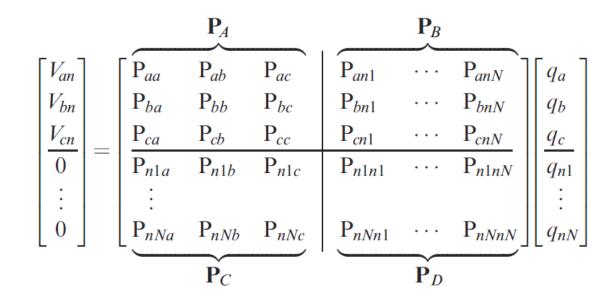



Modeling Line Capacitance

• The relationship between the voltage to neutral and charges are then given as

$$V_{kn} = \frac{1}{2\pi\varepsilon} \sum_{m=a}^{nN} q_m \ln \frac{H_{km}}{D_{km}} = \sum_{m=a}^{nN} q_m P_{km}$$
$$P_{km} = \frac{1}{2\pi\varepsilon} \ln \frac{H_{km}}{D_{km}}$$

- P's are called potential coefficients
- Where D_{km} is the distance between the conductors, H_{km} is the distance to a mirror image conductor and $D_{kk} = R_b^c$



Modeling Line Capacitance

A M

• Then we setup the matrix relationship

• And solve $\mathbf{V}_p = \begin{bmatrix} \mathbf{P}_A - \mathbf{P}_B \mathbf{P}_D^{-1} \mathbf{P}_C \end{bmatrix} \mathbf{Q}_p$ $\mathbf{C}_p = \begin{bmatrix} \mathbf{P}_A - \mathbf{P}_B \mathbf{P}_D^{-1} \mathbf{P}_C \end{bmatrix}^{-1}$

Continuing the Previous Example

- In example 4.1, assume the below conductor radii For the phase conductor $R_b^c = 0.0300$ ft For the neutral conductor $R_n^c = 0.0235$ ft
- Calculating some values

$$\varepsilon_{0} = 8.85 \times 10^{-12} \,\mathrm{F/m} = 1.424 \times 10^{-2} \,\mu\mathrm{F/mile}$$

$$P_{aa} = \frac{1}{2\pi\varepsilon_{0}} \ln\left(\frac{2 \times 29.0}{0.0300}\right) = 11.177 \ln\left(\frac{2 \times 29.0}{0.0300}\right) = 84.57 \,\mathrm{mile/\muF}$$

$$P_{ab} = 11.177 \ln\left(\frac{58.05}{2.5}\right) = 35.15 \,\mathrm{mile/\muF}$$

$$P_{an} = 11.177 \ln\left(\frac{54.148}{5.6569}\right) = 25.25 \,\mathrm{mile/\muF}$$

Continuing the Previous Example

• Solving we get

$$\mathbf{P}_{p} = \begin{bmatrix} \mathbf{P}_{A} - \mathbf{P}_{B} \mathbf{P}_{D}^{-1} \mathbf{P}_{C} \end{bmatrix} = \begin{bmatrix} 77.12 & 26.79 & 15.84 \\ 26.79 & 75.17 & 19.80 \\ 15.87 & 19.80 & 76.29 \end{bmatrix} \text{ mile/}\mu\text{F}$$
$$\mathbf{C}_{p} = \begin{bmatrix} \mathbf{P}_{p} \end{bmatrix}^{-1} = \begin{bmatrix} 0.0150 & -0.0049 & -0.0018 \\ -0.0049 & 0.0158 & -0.0030 \\ -0.0018 & -0.0030 & 0.0137 \end{bmatrix} \mu\text{F/mile}$$

Frequency Dependence

- We might note that the previous derivation for L assumed a frequency. For steady-state and transient stability analysis this is just the power grid frequency
- As we have seen in EMTP there are a number of difference frequencies present, particularly during transients
 - Coverage is beyond the scope of this class
 - An early paper is J.K. Snelson, "Propagation of Travelling on Transmission Lines: Frequency Dependent Parameters," IEEE Trans. Power App. and Syst., vol. PAS-91, pp. 85-91, 1972

Power System Overvoltages

- Line switching can cause transient overvoltages
 - Resistors (200 to 800Ω) are preinserted in EHV circuit breakers to reduce over voltages, and subsequently shorted
- Common overvoltage cause is lightning strikes
 - Lightning strikes themselves are quite fast, with rise times of 1 to 20 μ s, with a falloff to $\frac{1}{2}$ current within less than 100 μ s
 - Peak current is usually less than 100kA
 - Shield wires above the transmission line greatly reduce the current that gets into the phase conductors
 - EMTP studies can show how these overvoltage propagate down the line

Insulation Coordination

- Insulation coordination is the process of correlating electric equipment insulation strength with expected overvoltages
- The expected overvoltages are time-varying, with a peak value and a decay characteristic
- Transformers are particularly vulnerable
- Surge arrestors are placed in parallel (phase to ground) to cap the overvoltages
 - They have high impedance during normal voltages, and low impedance during overvoltages; airgap devices have been common, though gapless designs are also used

Transient Stability Overview

A M

- In next several lectures we'll be deriving models used primarily in transient stability analysis (covering from cycles to dozens of seconds)
- Goal is to provide a good understanding of 1) the theoretical foundations, 2) applications and 3) some familiarity the commercial packages
- Next several slides provide an overview using PowerWorld Simulator
 - Learning by doing!

PowerWorld Simulator

- Class will make extensive use of PowerWorld Simulator. If you do not have a copy of v21, the free 42 bus student version is available for download at http://www.powerworld.com/gloveroverbyesarma
- Start getting familiar with this package, particularly the power flow basics. Transient stability aspects will be covered in class
- Free training material is available at

http://www.powerworld.com/training/online-training

Power Flow to Transient Stability

- With PowerWorld Simulator a power flow case can be quickly transformed into a transient stability case
 - This requires the addition of at least one dynamic model
- PowerWorld Simulator supports many more than one hundred different dynamic models. These slides cover just a few of them
 - Default values are provided for most models allowing easy experimentation
 - Creating a new transient stability case from a power flow case would usually only be done for training/academic purposes; for commercial studies the dynamic models from existing datasets would be used.

Power Flow vs. Transient Stability

- Power flow determines quasi-steady state solution and provides the transient stability initial conditions
- Transient stability is used to determine whether following a contingency the power system returns to a steady-state operating point
 - Goal is to solve a set of differential and algebraic equations, $d\mathbf{x}/dt = \mathbf{f}(\mathbf{x},\mathbf{y}), \ \mathbf{g}(\mathbf{x},\mathbf{y}) = \mathbf{0}$
 - Starts in steady-state, and hopefully returns to steady-state. _
 - Models reflect the transient stability time frame (up to dozens of seconds), with some values assumed to be slow enough to hold constant (LTC tap changing), while others are still fast enough to treat as algebraic (synchronous machine stator dynamics, voltage source converter dynamics).

First Example Case

- Open the case Example_13_4_NoModels
 - Cases are on the class website
- Add a dynamic generator model to an existing "no model" power flow case by:
 - In run mode, right-click on the generator symbol for bus 4, then select "Generator Information Dialog" from the local menu
 - This displays the Generator Information Dialog, select the "Stability" tab to view the transient stability models; none are initially defined.
 - Select the "Machine models" tab to enter a dynamic machine model for the _ generator at bus 4. Click "Insert" to enter a machine model. From the Model Type list select GENCLS, which represents a simple "Classical" machine model. Use the default values. Values are per unit using the 29 generator MVA base.

Adding a Machine Model

💭 Generat	or Information	for Present				- 🗆	×
Bus Number	4	~	Find By Number	Status O Open			
Bus Name	Bus 4	~	Find By Name	Closed			
ID	1	[Find	Energized	fline)		
Area Name	Home (1)			YES (O)	-		
Labels	no labels			Fuel Type	Unknown		\sim
	Generator MVA B	ase 100.00		Unit Type	UN (Unknown)	\sim
Power and Vo	oltage Control Co	osts OPF Fa	ults Owners, A	rea, etc. Cu	tom Stability		
Machine Mod	dels Exciters G	overnors Stabiliz	ers Other Mode	els Step-up T	ransformer T	erminal and State	
Ins	ert De	elete Gen MVA	Base 100.0	Show	Block Diagram	Create VCurve	
Type Active	e - GENCLS	✓ ✓ Active	(only one may be	e active) Se	t to Defaults		
Parameters						_	
PU values	shown/entered us	ing device base of	100.0 MVA $$				
н	3.00000						
D	0.00000						
Ra	0.00000						
Xdp	0.20000						
RComp	0.00000						
XComp	0.00000						
, and the second s	•••••••••						
ОК	<u>S</u> ave	Save to Aux		Cancel	Help	Print	

The GENCLS model represents the machine dynamics as a fixed voltage magnitude behind a transient impedance Ra + jXdp.

Press "Ok" when done to save the data and close the dialog

Transient Stability Form Overview

- Most of the PowerWorld Simulator transient stability functionality is accessed using the Transient Stability Analysis form. To view this form, from the ribbon select "Add Ons", "Transient Stability"
- Key pages of form for quick start examples (listed under "Select Step")
 - Simulation page: Used for specifying the starting and ending time for the simulation, the time step, defining the transient stability fault (contingency) events, and running the simulation
 - Options: Various options associated with transient stability
 - Result Storage: Used to specify the fields to save and where
 - Plots: Used to plot results
 - Results: Used to view the results (actual numbers, not plots)

Transient Stability Overview Form

🔘 Transient Stability Analysis									- 🗆 ×
Simulation Status Not Initialized									
		- (
Run Transient Stability Pause		e Reference For Conti	ngency: Find				~		
Select Step	Simulation			Add	Delete	Rename	Clone Contingency		
Simulation Options	Control Definitions	Violations							
> · Result Storage	Simulation Time Va	lues			Summary Re	sults			
> · Plots	Start Time (second	s) 0.000 🚔				neration Load	l l		
 Results from RAM Transient Limit Monitors 	End Time (seconds		Specify Time Sta	ep in	Tripped				
> · States/Manual Control			Cycles						
> Validation	Time Step (cycles)	0.500	Cycles		Islanded				
···· SMIB Eigenvalues	Categories		Ch	nange					
Modal Analysis									
Dynamic Simulator Options	Transient Continge							Transient Contingency Monitor Vio	
	Insert Clear A			Shift (second				Limit Monitor Name	Contingency Name
	: 🛄 🔲 🏗 非 🎎 🕫 🛤 艷 Records - Set - Columns - 📴 - 👹 - 👹 - 🌹 腆 - 龖 f(x)								
		Object Pretty		Time	Time	(Object	None	Defined
	hlama			(Cycles)	(Seconds)			_	
	None			Defined					
Process Contingencies									
One Contingency at a time Multiple Contingencies	<						>	<	>
O multiple Contingencies									
Save All Settings To Load	All Settings From	Show Transient Conto	ur Toolbar	Auto Insert	Critica	l Clearing Time C	alculator		Help Close

AM

Infinite Bus Modeling

- Before doing our first transient stability run, it is useful to discuss the concept of an infinite bus. An infinite bus is assumed to have a fixed voltage magnitude and angle; hence its frequency is also fixed at the nominal value.
 - In real systems infinite buses obviously do not exist, but they can be a useful concept when learning about transient stability.
 - By default PowerWorld Simulator does NOT treat the slack bus as an infinite bus, but does provide this as an option.
 - For this first example we will use the option to treat the slack bus as an infinite bus. To do this select "Options" from the "Select Step" list. This displays the option page. Select the "Power System Model" tab, and then set Infinite Bus Modeling to "Model the power flow slack bus(es) as infinite buses" if it is not already set to do so.

Transient Stability Options Page

Ower t Stability Analysis ystem tus vot Initialized Indel age	Abort Restore Reference For Contingency: Find Options Note: Changes made to option entries are saved immediately a General Power System Model Remedial Actions Result O		
 Results from RAM Transient Limit Monitors States/Manual Control Validation SMIB Eigenvalues Modal Analysis Dynamic Simulator Options 	Common Load Modeling Compatibility Options Power System Values 60.000 • Nominal System Frequency (Hz) 60.000 • Initial System Frequency (Hz) 60.000 • When Using Playin Models Set Initial Hz to First Value System MVA Base 100.01 Network Equations Solution Options 0.100 0 • Solution Tolerance (MVA) 0.100 0 • Maximum Iterations 5 • Abort after number of failed solutions 0 • ✓ Use Voltage Extrapolation 1.0 • Inner Loop Mismatch Scalar 1.0 • Handling of Initial Limit Violations 0 • O Abort Abort	Integration Method Second Order Runge-Kutta Euler Infinite Bus Modeling No infinite buses (recommended setting) Model power flow slack buses as infinite buses Frequency Measurement Options Bus Frequency Measurement Ime Constant (Sec.) Minimum PU voltage for relay frequency measurement Calculate Bus ROCOF (Rate of Change of Freq) Use Parallel Code	Island Synchronization Angle Options Set to Degree Value Set if > Degree Value No Change Degree Value Ono Change Degree Value Ono Change Begree Value Ono Change Degree Value Ono Change Degree Value Ono Change Begree Value Ono Change Hz Value Degree Value Ono Change Hz Value Ono Change Begree Value Ono Change Hz Value Ono Change Begree Value Ono Change Begree Value Ono Change Begree Value Ono Change
Process Contingencies One Contingency at a time Multiple Contingencies Save All Settings To Load	Run without Changing Limits All Settings From Show Transient Contour Toolbar	Auto Insert Critical Clearing Time Calculator	Help

This page is also used to specify the nominal system frequency A_{A}

Specifying the Contingency Event

- To specify the transient stability contingency go back to the "Simulation" page and click on the "Insert Elements" button. This displays the Transient Stability Contingency Element Dialog, which is used to specify the events that occur during the study.
- Usually start at time > 0 to showcase runs flat
- The event for this example will be a self-clearing, balanced 3-phase, solid (no impedance) fault at bus 1, starting at time = 1.00 seconds, and clearing at time = 1.05 seconds.
 - For the first action just choose all the defaults and select "Insert." Insert will add the action but not close the dialog.
 - For second action change the Time to 1.05 seconds the Type to "Clear Fault." Select "OK," which saves the action and closes the dialog.

Inserting Transient Stability Contingency Elements

	Transient Stability Analysis
Click to	Simulation Status Not Initialized
•	Run Transient Stability Pause Abort Restore Reference For Contingency: Find My Transient Contingency ✓
insert	Select Step Simulation Add Delete Rename Clone C
new	Options Control Definitions Violations Simulation Time Values Summary Results
	> Plots Generation Load
elements	Start Time (seconds) 0.000 • Specify Time Step in 0.000 • 0.000 • Transient Limit Monitors End Time (seconds) 5.000 • O Seconds Tripped 0.00 0.00
	> · States/Manual Control Time Step (cycles) 0.500 ► Ocycles Islanded 0.00 0.00
Summary	SMIB Eigenvalues Categories Change
of all	Dynamic Simulator Options
01 all	Insert Clear All Insert Apply/Clear/Open Time Shift (seconds) 0.000
elements	: 📰 📰 計》 1:00 +00 → 20 → 20 → 20 → 20 → 20 → 20 → 2
in -	Object Pretty Time Time Object (Cycles) (Seconds)
111	1 Bus Bus 1 60.0 1.000000 Bus '1' 2 Bus Bus 1 63.0 1.050000 Bus '1'
contingency	
and time of	
action	
	Process Contingencies One Contingency at a time
	Multiple Contingencies
	Save All Settings To Load All Settings From Show Transient Contour Toolbar Auto Insert Critical Clearing Time Calculator

Event Contingency Dialog

Transient Sta	ability Cont	tingency Elen	nent Dialog									_		×
Description	1.000: [Bus	s Bus 3] FAULT 3	3PB SOLID					,	~					
	Insert	Save	Delete	1										
Object Type		Choose the Ele	ement											
O Branch/Tran	sformer	 Sort by C 	Name 💿 N	umber										
Bus		Filter Advan	ced 🗸 Bus	~										\sim
Generator		× Use	Area/Zone Filters	Quick	Define	Remove								
O Switched Sh	unt	1 (Bus 1) 2 (Bus 2)												
ODC Line		3 (Bus 3)												
	oup	4 (Bus 4)	[13.80 kV]											
O Transformer	r													
Area														
Time Contemporation Type Clear Fault Open	:	Parameters Fault Type Fault Across	Balanced 3 P Solid	hase		× ×								
		not used				0.00								
		Calculate Eff	ective Impedanc Fault	e from Se	equerica	letworks								
Comment:														
🗸 ОК]		7 Hel	p	×	Cancel								
		Avai	lable	eler	ner	t tvi	be v	will	var	v wi	th d	iffe	rent	ob

Determining the Results to View

- For large cases, transient stability solutions can generate huge amounts of data. PowerWorld Simulator provides easy ways to choose which fields to save for later viewing. These choices can be made on the "Result Storage" page.
- For this example we'll save the generator 4 rotor angle, speed, MW terminal power and Mvar terminal power.
- From the "Result Storage" page, select the generator tab and double click on the specified fields to set their values to "Yes".

Result Storage Page

ЯM

Result	💽 Transient Stability Analysis 📃 💷 💌
	Simulation Status Not Initialized
Storage >	Run Transient Stability Pause Abort For Contingency: My Transient Contingency Run Transient Stability Pause Abort For Contingency: My Transient Contingency
Diolage	Select Step Result Storage
Storage Page	Implation Where to Save/Store Results Save Results Every n Timesteps: Implation Implation Implation Implation Implation Save Results Every n Timesteps: Implation Implation Implation
	✓ Generator ✓ Save the Results stored to RAM in the PWB file
	Bus Store to RAM Options Save to Hard Drive Options
	Branch Note: All fields that are specified in a plot series of defined plot will also be stored to RAM.
	C Transmission Line Store Results for Open Devices Set All to NO for All Types Set Save All by Type
	Zone Generator Bus Load Branch DC Transmission Line Area Zone
Generator Tab	Save D Hard Drive Option Image: Control Image: Control

Double Click on Fields (which sets them to yes) to Store Their Values,

Saving Changes and Doing Simulation

- The last step before doing the run is to specify an ending time for the simulation, and a time step.
- Go to the "Simulation" page, verify that the end time is 5.0 seconds, and that the Time Step is 0.5 cycles
 - PowerWorld Simulator allows the time step to be specified in either seconds or cycles, with 0.25 or 0.5 cycles recommended
- Before doing your first simulation, save all the changes made so far by using the main PowerWorld Simulator Ribbon, select "Save Case As" with a name of "Example_13_4_WithCLSModel_ReadyToRun"
- Click on "Run Transient Stability" to solve.

Doing the Run

	Transient Stability Analysis		
$C1^{1}$	Simulation Status Finished at 5.000		
Click	Run Transient Stability Pause		
to run the specified contingency	Select Step	Simulation Add Delete Rename Control Definitions Violations Simulation Time Values Simulation Time Values Start Time (seconds) 0.000 x Specify Time Step in End Time (seconds) 5.000 x Seconds Image: Time Step (cycles) 0.500 x Seconds Categories Change	
contingency		Transient Contingency Elements Insert Clear All Insert Apply and Clear Fault Time Shift (seconds) 0.000 Image: Imag	Option FAULT 3F CLEARFA

Once the contingency runs the "Results" page may be opened

Transient Stability Results

- Once the transient stability run finishes, the "Results" page provides both a minimum/maximum summary of values from the simulation, and time step values for the fields selected to view.
- The Time Values and Minimum/Maximum Values tabs display standard PowerWorld Simulator case information displays, so the results can easily be transferred to other programs (such as Excel) by right-clicking on a field and selecting "Copy/Paste/Send"

Continuing PowerWorld Simulator Example

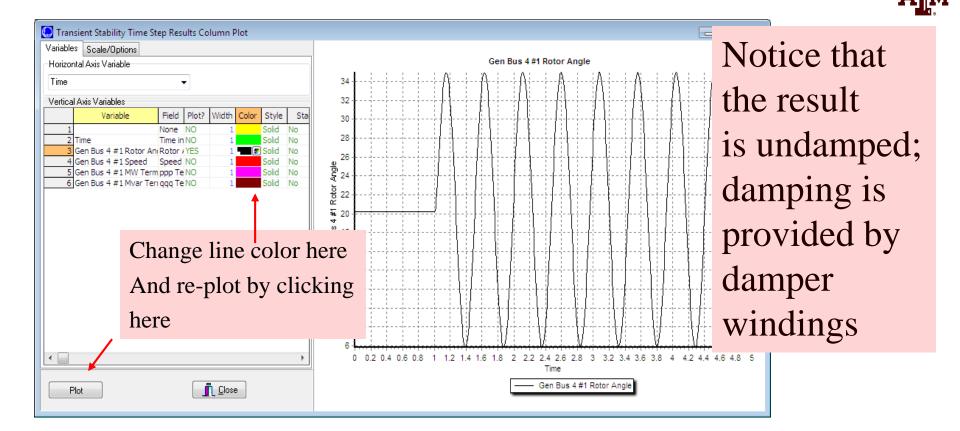
- Class will make extensive use of PowerWorld Simulator. If you do not have a copy of v19, the free 42 bus student version is available for download at http://www.powerworld.com/gloveroverbyesarma
- Start getting familiar with this package, particularly the power flow basics. Transient stability aspects will be covered in class
- Open Example_13_4_WithCLSModelReadyToRun
 - Cases are on the class website

Results: Time Values

Lotaof	Transient Stability Analysis
Lots of	Simulation Status Finished at 5.000
options	Run Transient Stability Pause Abort Restore Reference For Contingency: My Transient Contingency
are	Select Step Results from RAM Simulation Time Values Minimum/Maximum Values Summary Events Solution Details
available	Definitions Generator Bus Load Switched Shunt Branch DC Transmission Line VSC DC Line Multi-Termi Violations
for	▷ Options ▷ Result Storage Object then Field Time Records ▼ Set ▼ Columns ▼ B
showing	Plots Column Filtering #1 Rotor #1 Speed #1 MW #1 Mvar Results from RAM Filter Modify Angle #1 Column Filtering Terminal
and	▷ · States/Manual Control □ □ □ 0 20:10 00 100 50:500 ▷ · States/Manual Control □ Use Area/Zone Filters 2 0.008 20:18 60 100 58:5305 ○ Validation □ Use Area/Zone Filters 3 0.017 20:18 60 100 58:5305
filtering	SMIB Eigenvalues 4 0.025 20.18 60 100 58.5305 Choose Fields to Display 5 0.033 20.18 60 100 58.5305 6 0.042 20.18 60 100 58.5305
the	Image: Accel MW 7 0.05 20.18 60 100 58.5305 Image: Field Current 8 0.058 20.18 60 100 58.5305
results.	Image: Field Voltage (pu) 9 0.067 20.18 60 100 58.5305 Image: Weak Input 10 0.075 20.18 60 100 58.5305 Image: Weak Input 11 0.083 20.18 60 100 58.5305
	Image: Model Model 12 0.092 20.18 60 100 58.5305 Image: MWW Terminal 13 0.1 20.18 60 100 58.5305
	Rotor Angle 14 0.108 20.18 60 100 58.5305 Rotor Angle, No Shift 15 0.117 20.18 60 100 58.5305

By default the results are shown for each time step. Results can be saved saved every "n" timesteps using an option on the Results Storage Page

Results: Minimum and Maximum Values


- -Transient Stability Analysis Simulation Status Finished at 5,000 Run Transient Stability Pause Abort For Contingency: My Transient Contingency • Select Step Minimum Results Simulation Time Values From RAM Minimum/Maximum Values Summary Events Solution Details . • Options -Result Storage and Buses Generators - Store to RAM Options Records - Set - Columns - 🔤 - 🎆 - 💏 - 🎀 f(x) 🌐 IPT. ⇒|* *.0 .00 MA MA III Options -Generator Bus maximum Time Min Volt Time Max Volt Max-Min V Number Name Area Name Original Volt Min Volt Max Volt -Load 1.0477 1.0188 1.0616 1 Bus 1 1.158 4,792 0. Home Branch 1.0000 1.058 2 Bus 2 Home 1.0000 1.058 1.0000 0. DC Transmission Line values are 3 Bus 3 1.0303 1.0082 4.525 1.0409 4,792 0. Home Area 4 Bus 4 3.575 4.808 Home 1.0971 1.0630 1.1143 0. Zone available Save to Hard Drive Option: . ⊕ Plots Besults for all - Minimum/Maximum Values Buses generators Generators Summary Events and buses Solution Details Transient Limit Monitors • Validation SMIB Eigenvalues 111 Process Contingencies One Contingency at a time • Multiple Contingencies Close Save All Settings To Load All Settings From

Quickly Plotting Results

- Time value results can be quickly plotted by using the standard case information display plotting capability.
 - Right-click on the desired column
 - Select Plot Columns
 - Use the Column Plot Dialog to customize the results.
 - Right-click on the plot to save, copy or print it.
- More comprehensive plotting capability is provided using the Transient Stability "Plots" page; this will be discussed later.

Generator 4 Rotor Angle Column Plot

Starting the event at t = 1.0 seconds allows for verification of an initially stable operating point. The small angle oscillation indicates the system is stable, although undamped.

Changing the Case

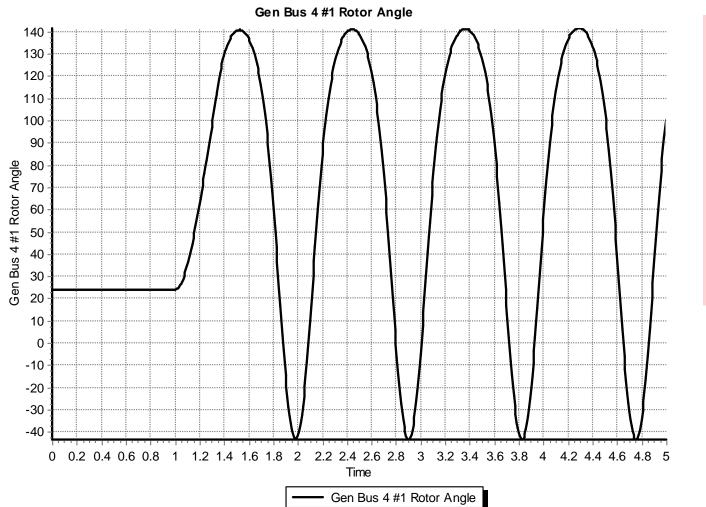
- PowerWorld Simulator allows for easy modification of the study system. As a next example we will duplicate example 13.4 from earlier editions of the Glover/Sarma Power System Analysis and Design Book.
- Back on the one-line, right-click on the generator and use the Stability/Machine models page to change the Xdp field from 0.2 to 0.3 per unit.
- On the Transient Stability Simulation page, change the contingency to be a solid three phase fault at Bus 3, cleared by opening both the line between buses 1 and 3 and the line between buses 2 and 3 at time = 1.34 seconds.

Changing the Contingency Elements

	ranch Bus 1 TO Bus 3 CKT 1] OPEN BO	TH V
Object Type Simulation	Sort by Name Number	
 Bus Generator 	Search For Near Bus	Select Far Bus, CKT
Load	1 (Bus 1) [138 kV] 2 (Bus 2) [138 kV]	2 (Bus 2) [138 kV] CKT 1 3 (Bus 3) [138 kV] CKT 1
 Switched Shunt AC Line/Transformer DC Line 	3 (Bus 3) [138 kV] 4 (Bus 4) [13.8 kV]	4 (Bus 4) [13.8 kV] CKT 1
Time	1.34000	
Time (Seconds)	1.34000	
Time (Seconds)	Parameters	
Time (Seconds)	Parameters Which End	
Time (Seconds)	Parameters Which End Both Ends Fault Across Solid	
Time (Seconds)	Parameters Which End	
Time (Seconds)	Parameters Which End Both Ends Fault Across Solid	

Change object type to AC Line/Transformer, select the right line, and change the element type to "Open".

Changing the Contingency Elements


Transient Stability Analysis									
Simulation Status Finished at 5.00)								
Run Transient Stability Pause									
Select Step	Simulation Add Delete Rename								
Simulation	Control Definitions Violations								
Definitions									
Violations									
Start rine (seconds)									
▷ · Result Storage	▷ Options ▷ Result Storage End Time (seconds) 5.000 Seconds								
▷ · Plots	Time Step (cycles) 0.500								
▲ · Results from RAM									
▲ · Time Values	Categories Change								
Generator									
Bus									
Load									
···· Switched Shunt									
Branch									
···· DC Transmission Line	Transient Contingency Elements								
VSC DC Line	Insert Clear All Insert Apply and Clear Fault Time Shift (seconds) 0.000 🚔								
Multi-Terminal DC Recc Multi-Terminal DC Con\									
Area	: 鬥 非 1:0 +20 桷 艪	Options *							
Zone	Object Pretty Time Time Object	Description	Enabled						
Interface	(Cycles) (Seconds)	2 cochpaon							
Injection Group	1 Bus Bus 3 60.0 1.0000 Bus '3'	FAULT 3PB SOLID	CHECK						
▷ · Minimum/Maximum Values	2 Line Bus 1 TO Bus 3 CKT 1 80.4 1.3400 Branch '1' '3' '1'	OPEN BOTH	CHECK						
Summary	3 Line Bus 2 TO Bus 3 CKT 1 80.4 1.3400 Branch '2' '3' '1'	OPEN BOTH	CHECK						
Events									
Colution Dotate									

Contingency Elements displays should eventually look like this. Note fault is at bus 3, not at bus 1.

Case Name: Example_13_4_Bus3Fault

Results: On Verge of Instability

Also note that the oscillation frequency has decreased

A More Realistic Generator Model

- The classical model is consider in section 5.6 of the book, as the simplest but also the hardest to justify
 - Had been widely used, but is not rapidly falling from use
- PowerWorld Simulator includes a number of much more realistic models that can be easily used
 - Coverage of these models is beyond the scope of this intro
- To replace the classical model with a detailed solid rotor, subtransient model, go to the generator dialog Machine Models, click "Delete" to delete the existing model, select "Insert" to display the Model Type dialog and select the GENROU model; accept the defaults.

GENROU Model

Generator Information for Current Case							
Bus Number	4	Find By Number	Status				
Bus Name	Bus 4 🗸	Find By Name	Open	Generator MVA Base			
ID	1	Find	Closed	100.00			
Area Name	ea Name (1) Fuel Type Unknown						
Labels	Labels no labels Unit Type UN (Unknown)						
Power and Vo	Power and Voltage Control Costs OPF Faults Owners, Area, etc. Custom Stability						
Machine Mod	els Exciters Governors Stabiliz	ers Other Models Step	-up Transformer Te	rminal and State			
	nsert Delete Gen N	IVA Base 100.0	Show Diagram	Set to Default			
Type Acti	ve - GENROU 🔹 🔽 Act	ve (only one may be active	e) Defaults:				
Parameters							
PU values s	hown/entered using device base of	100.0 MVA 👻					
н	3.0000 👗 Xdpp=Xqpp 0	. 1800 📥 S(1.2)	0.0000 🚔				
D	0.0000 🛋 XI 0	. 1500 🚔 RComp	0.0000				
Ra	0.0000 🚔 Tdop 7	.0000 🚔 XComp	0.0000				
xd	2.1000 Tqop 0	.7500					
Xq	0.5000 Tdopp 0	.0350					
Xdp	0.2000 Tqopp 0	.0500					
Хар		.0000					
		Ganal Que					
🗸 ок	<u>S</u> ave	Cancel ? Hel	p Print				

The GENROU model provides a good approximation for the behavior of a synchronous generator over the dynamics of interest during a transient stability study (up to about 10 Hz). It is used to represent a solid rotor machine with three damper windings.