Name: _____

ECEN 667

Exam #1 Thursday, October 17, 2017 75 Minutes

Closed book, closed notes One 8.5 by 11 inch note sheet allowed Calculators allowed

 1. _____ / 24

 2. _____ / 24

 3. _____ / 28

 4. _____ / 24

Total _____ / 100

1. (20 points total)

Assume a 200 Ω resistor is connected in series with a 0.1 H inductor and an open switch, and the series combination is connected to a voltage source of v(t) = 1000cos(2 π 60t). If the switch is closed at time t=0, using the trapezoidal integration method with a time step of 0.0001 seconds, determine the current flowing in this series circuit at t=0.0002 seconds.

2. (24 points total)

For the EXAC2 exciter model shown below, assume that the initial conditions are $E_{FD}=2.93$, $I_{FD}=2.93$, and the exciter's input is the terminal voltage of 1.0548 pu. For parameters assume is $T_R=0.05$, $T_C=1$, $T_B=2$, $K_A=50$, $T_A=0.1$, $K_B=1$, $K_L=1$, $V_{LR}=10$, $T_E=0.1$, $K_H=0$, $K_E=1$, $K_D=0$, $T_F=1.2$, $K_F=0.02$, $K_C=0.5$. The saturation values are $S_E(2.5) = 0.02$, and $S_E(3.0) = 0.1$. Hence for a saturation function assume $S_E(V_E) = 0.1222 \times (V_E - 2.095)^2$.

Determine the initial value for V_{REF} where V_{ERR} = V_{REF} - V_{T} ; (you may assume $V_{s}\!\!=\!\!0)$

To simplify the problem you may assume that for the initial I_N value $f(I_N)$ can be approximated as being on the segment with $F_{EX} = 1 - 0.577 * K_C * I_{FD} / V_E$.

3. (28 points total) (True/false)

Two points each. Circle T if statement is true, F if statement is False.

Т	F	1.	With the GENROU model we always have $X''_d = X''_q$.
Т	F	2.	Explicit numerical integration methods have the advantage of always being numerically stable.
Т	F	3.	In EMTP analysis much of the system can be treated as decoupled because of the transmission line propagation delays.
Т	F	4.	In transient stability the stator transients are typically ignored.
Т	F	5.	When converting synchronous machine models to per unit the time constants are independent of the assumed MVA base.
Т	F	6.	In contrast to EMTP applications, transient stability applications require a slack bus to insure total generation is always equal to total load plus losses
Т	F	7.	With salient pole machines saturation is often ignored on the direct axis because of its relatively large air gap compared to the quadrature axis.
Т	F	8.	When using Carson's method to determine the inductance of untransposed multi-phase transmission lines, the inductance is independent of the ground resistivity.
Т	F	9.	While perhaps interesting from a theoretical perspective, machine magnetic saturation is seldom encountered in practice.
Т	F	10.	There is not a unique way to implement non-windup limits for a lead-lag block.
Т	F	11.	Compensation can be used to allow an exciter to regulate a voltage other than its terminal voltage.
Т	F	12	Per unit values are always dimensionless.
Т	F	13	In a large interconnection, such as the Eastern Interconnect, in the first few seconds following a generator loss contingency the frequencies at the buses in the system can vary from each other.
Т	F	14	While one of the oldest synchronous machine models, the classical model is still widely used in commercial transient stability studies in North America.

4. (24 points total)

A 60 Hz generator is supplying 400 MW and 0 Mvar to an infinite bus (measured at the infinite bus) with 1.0 per unit voltage at the infinite bus through two parallel transmission lines. Each transmission line has a per unit impedance (100 MVA base) of 0.09j. The per unit transient reactance for the generator is 0.0375j (on a 100 MVA base), the per unit inertia constant for the generator (H) is 10 seconds, and damping is 0 per unit.

At time = 0 one of the transmission lines experiences a balanced three phase short to ground one third (1/3) of the way down the line from the generator to the infinite bus (i.e., model the line with 1/3 its original impedance on the generator side and 2/3 on the infinite bus side).

- a. Using the classical generator model discussed in class (constant voltage behind transient reactance), determine the prefault internal voltage magnitude and angle of the generator.
- b. Express the system dynamics during the fault as a set of first order differential equations.
- c. Using a second order Runge-Kutta method, determine the generator internal angle at the end of the second time step. Use a time step of 0.02 seconds.