ECEN 615 Methods of Electric Power Systems Analysis

Lecture 16: Sensitivity Methods, Least Squares

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- Read Chapter 9 from the book
- Homework 4 is due on Thursday October 31.

Line Outage Distribution Factors (LODFs)

- Power system operation is practically always limited by contingencies, with line outages comprising a large number of the contingencies
- Desire is to determine the impact of a line outage (either a transmission line or a transformer) on other system real power flows without having to explicitly solve the power flow for the contingency
- These values are provided by the LODFs
- The LODF d_{ℓ}^{k} is the portion of the pre-outage real power line flow on line k that is redistributed to line ℓ as a result of the outage of line k

Best reference is Chapter 7 of the course book

LODF Evaluation

A M

4

We simulate the impact of the outage of line k by adding the basic transaction $w_k = \{i', j', \Delta t_k\}$

and selecting Δt_k in such a way that the flows on the dashed lines become exactly zero

In general this Δt_k is not equal to the original line flow

LODF Evaluation

• We select Δt_k to be such that

$$f_k + \Delta f_k - \Delta t_k = 0$$

where Δf_k is the active power flow change on the line k due to the transaction w_k

• The line k flow from w_k depends on its PTDF

$$\Delta f_k = \varphi_k^{(w_k)} \Delta t_k$$

it follows that $\Delta t_k = \frac{f_k}{1 - \varphi_k^{(w_k)}} = \frac{f_k}{1 - \left(\psi_k^{i'} - \psi_k^{j'}\right)}$

• For the rest of the network, the impacts of the outage of line k are the same as the impacts of the additional basic transaction w_k

$$\Rightarrow \Delta f_{\ell} = \varphi_{\ell}^{(w_k)} \Delta t_k = \frac{\varphi_{\ell}^{(w_k)}}{1 - \varphi_k^{(w_k)}} f_k$$

• Therefore, by definition the LODF is

$$d_{\ell}^{k} = \frac{\Delta f_{\ell}}{f_{k}} = \frac{\varphi_{\ell}^{(w_{k})}}{1 - \varphi_{k}^{(w_{k})}}$$

• Assume we wish to calculate the values for the outage of line 4 (between buses 2 and 3); this is line k

Say we wish to know the change in flow on the line 3 (Buses 3 to 4). PTDFs for a transaction from 2 to 3 are 0.7273 on line 4 and 0.0909 on line 3

• Hence we get

$$\Delta t_k = \frac{f_k}{1 - \varphi_k^{(w_k)}} = \frac{128}{1 - 0.7273} = 469.4$$

$$d_{3}^{4} = \frac{\Delta f_{3}}{f_{4}} = \frac{\varphi_{3}^{(w_{4})}}{1 - \varphi_{4}^{(w_{4})}} = \frac{0.0909}{1 - 0.7273} = 0.333$$
$$\Delta f_{3} = (0.333) f_{4} = 0.333 \times 128 = 42.66 \text{MW}$$

Five Bus Example Compensated

Here is the system with the compensation added to bus 2 and removed at bus 3; we are canceling the impact of the line 4 flow for the reset of the network.

• Below we see the network with the line actually outaged

The line 3 flow changed from 63 MW to 106 MW, an increase of 43 MW, matching the LODF value

Developing a Critical Eye

• In looking at the below formula you need to be thinking about what conditions will cause the formula to fail $\Rightarrow \Delta f_{\ell} = \varphi_{\ell}^{(w_k)} \Delta t_k = \frac{\varphi_{\ell}^{(w_k)}}{1 - \varphi_{k}^{(w_k)}} f_k$

Here the obvious situation is when the denominator is zero

- That corresponds to a situation in which the contingency causes system islanding
 - An example is line 6 (between buses 4 and 5)
 - Impact modeled by injections at the buses within each viable island

Calculating LODFs in PowerWorld

- Select Tools, Sensitivities, Line Outage Distribution Factors
 - Select the Line using dialogs on right, and click Calculate LODFS; below example shows values for line 4

O 🖫	- 👺 🎼 🚟 🔚	🏗 🗐 🛞 🐺 -	₽		-			Line Outage D	istribution Factor	s (LODFs) - Ca	se: B5_Dist	Fact_PTDF.P	WB Status: Initia	lized Simul	ator 18 Beta
File	Case Information	n Draw Oneli	ines Tools	Optio	ns Add Ons	Window									
Edit Mo Run Mo	de X Abort Ge Log te Log	Single Solution - Full <u>N</u> ewton Powe	Simulator Options r Flow Tools	D	Contingence Analysis	df ↓ dx ↓ ↑ ↓ y Sensitivities Run	∲ <u>F</u> ault An	alysis 👻 ep Simulation g Replicator	85% 110% Limit Monitoring	Difference Flows ▼	<u>S</u> cale Case Other	Model Explorer	Connections	Other 👻	Equivaler ModifyCi Renumbe Edit M
Output	Option	Linear Calculation Met	hod	💌 Sor	Sort by 🔿 Name 💿 Number										
Single LODF		Linearized AC													
0100	- Maulx				Search For Near Bus										
Action Outage Sensitivities		Lossless DC		1(0	ne) [138 kV]									1 (Or	e) [138 kV] O
		C Lossless DC With P	hase Shifters	2 (1	2 (Two) [138 k/] [3 (Three) [138 k/]										
Clos	ure Sensitivities			- 3 (II 4 (Fr	nree) [138 KV] nur) [138 kV]										
C	alculate LODFs	Advanced LODF Calculation 5 (F			ve) [34.5 kV]										
DC Model Options															
LODFs	Interface LODFs														
: 開 語 非 58 - 59															
	From Number From	Name To Number	To Name	Circuit	% LODF	MW From	MW To	CTG MW From	CTG MW To						
1	2 Two	1	1 One	1	100.0	51.6	-51.6	180.0	-180.0						
2	1 One	3	3 Three		66.7	26.3	-26.3	111.9	-111.9						
3	1 One	4	4 Four		33.3	63.3	-63.3	106.1	-106.1						
4	2 Two		3 Three		-100.0	128.4	-128.4	0.0	0.0						
- 5	4 Four	3 Three		1	33.3	-36.7	36.7	6.1	-6.1						
S Five		4 Four		1	0.0	-100.0	100.0	-100.0	100.0						

Blackout Case LODFs

- One of the issues associated with the 8/14/03 blackout was the LODF associated with the loss of the Hanna-Juniper 345 kV line (21350-22163) that was being used in a flow gate calculation was not correct because the Chamberlin-Harding 345 kV line outage was missed
 - With the Chamberlin-Harding line assumed in-service the value was 0.362
 - With this line assumed out-of-service (which indeed it was) the value increased to 0.464

2000 Bus LODF Example

💽 🖺 - 👺 퉵 👯 🚊 🚟 🔳 😣 🎇 - -File Case Information Draw Onelines Options Add Ons Window Tools df dx T 🗙 Abort ***** Edit Mode $\langle \rangle$ 212 ΔX 📙 Log Solve -Time Step Simulation... Other Modify Case Contingency Solve Power Simulator RAS + CTG Sensitivities Limit Difference Scale Model Connections Run Mode Script Line Loading Replicator... Renumber Restore -Flow - Newton Options... Analysis... Case Info Monitoring.. Case * Case Explorer... Mode Loa Power Flow Tools Run Mode Other Tools Edit Mode Output Option Linear Calculation Method Sort by O Name O Number Single LODF 3048 Linearized AC O LODF Matrix Search For Near Bus Select Far Bus, CKT Lossless DC Action 3041 (SILVER 0) [230.0 kV] 1079 (ODESSA 1 8) [500.0 kV] CKT 1 Outage Sensitivities 3042 (SILVER 1) [115.0 kV] 1079 (ODESSA 1 8) [500.0 kV] CKT 2 O Lossless DC With Phase Shifters O Closure Sensitivities 3043 (SILVER 2) [13.80 kV] 3046 (ROSCOE 5 0) [230.0 kV] CKT 1 3044 (SILVER 3) [13.80 kV] 3046 (ROSCOE 5 0) [230.0 kV] CKT 2 Line Closure Options 3045 (SILVER 4) [13.80 kV] 5045 (STEPHENVILLE 0) [500.0 kV] CKT 1 5045 (STEPHENVILLE 0) [500.0 kV] CKT 2 3046 (ROSCOE 5 0) [230.0 kV] 3047 (ROSCOE 5 1) [115.0 kV] 5120 (BROWNWOOD 0) [500.0 kV] CKT Calculate based on post-closure flow (LCDF) 5394 (ALBANY 1 0) [500.0 kV] CKT 1 O Calculate based on pre-closure flow (MLCDF) 3049 (ANSON 0) [115.0 kV] 3050 (DEL RIO 0) [230.0 kV 3051 (DEL RIO 1) [115.0 kV] Calculate LODFs Advanced LODF Calculation 3052 (HUNT 0) [115.0 kV] 3053 (WINGATE 0) [230.0 kV] DC Model Options... 3054 (WINGATE 1) [115.0 kV]

Line Outage Distribution Factors (LODFs) - Case: ECE615_2000.PWB Status: Initialized | Simulator 20

LODES Interface LODEs

5013	Interface LODE	s										
🔝 🛅 🏗 👫 🎎 🕺 🛔 🌺 🗮 🛱 Records * Geo * Set * Columns * 国 * 鬱* 鬱* 🍞 庚 * 讖 f(x) * 田 Options *												
	From Number	From Name	To Number	To Name	Circuit	% LODF	MW From	MW To	CTG MW From	CTG MW To		
1	3048	ROSCOE 5 2	5120	BROWNWOOD	1	-100.0	519.5	-516.1	0.0	3.4		
2	5045	STEPHENVILLE	5120	BROWNWOOD	1	61.6	-403.1	405.1	-83.3	85.3		
3	3048	ROSCOE 5 2	5045	STEPHENVILLE	1	37.6	1070.1	-1057.9	1265.6	-1253.4		
4	3048	ROSCOE 5 2	5045	STEPHENVILLE	2	37.6	1070.1	-1057.9	1265.6	-1253.4		
5	5120	BROWNWOOD	5239	GOLDTHWAITE	1	-34.0	82.4	-82.3	-94.2	94.2		
6	5451	COPPERAS CO	5239	GOLDTHWAITE	1	21.2	-907.1	912.2	-797.0	802.1		
7	3048	ROSCOE 5 2	5394	ALBANY 1 0	1	14.6	-152.9	153.2	-76.8	77.1		
8	5137	WACO 1 0	5388	WACO 2 0	1	-12.3	426.7	-426.3	362.9	-362.6		
9	5236	OLNEY 1 0	5394	ALBANY 1 0	1	-12.2	-720.5	726.8	-784.1	790.4		
10	5137	WACO 1 0	5451	COPPERAS CO	1	12.0	-674.5	679.6	-611.9	617.0		
11	5260	GLEN ROSE 1 0	5045	STEPHENVILLE	1	-11.5	-1590.6	1603.3	-1650.6	1663.3		
12	5239	GOLDTHWAITE	6210	MARBLE FALLS	1	-10.5	-808.9	816.3	-863.2	870.7		
13	5358	RIESEL 1 0	5179	CORSICANA 2 (1	-10.1	1275.3	-1266.9	1222.6	-1214.3		
14	5388	WACO 2 0	5317	GRANBURY 1 0	1	-9.6	-8.1	8.1	-58.2	58.2		
15	5279	TEMPLE 1 0	5358	RIESEL 1 0	1	-7.6	334.3	-333.4	294.9	-294.1		
16	5410	KILLEEN 3 0	5451	COPPERAS COV	1	7.6	19.4	-19.4	58.6	-58.6		
17	5317	GRANBURY 1 0	5260	GLEN ROSE 1 0	1	-7.5	-2609.4	2612.1	-2648.4	2651.1		
18	5131	BELTON 0	5279	TEMPLE 1 0	1	-7.2	594.2	-593.4	556.8	-556.1		
19	5018	JACKSBORO 1	5413	PALO PINTO 1 (1	6.9	729.1	-727.3	764.9	-763.1		
20	5380	ENNIS 0	5384	DALLAS 3 0	1	-6.8	1015.6	-1013.0	980.0	-977.4		
21	5131	BELTON 0	5410	KILLEEN 3 0	1	6.8	313.3	-313.1	348.6	-348.4		

-6.7

-6.1

-6.1

5.7

-5.0

-4.8

4.8

4.7

4.5

4.5

4.5

-4.5

4.5

-4.4

-4.3

911.4

691.2

-691.2

-313.3

-621.5

811.4

823.3

1947.4

57.4

64.1

-48.1

-28.6

-757.1

612.7

-1285.7

-910.0

693.0

693.0

313.9

622.8

1295.0

-809.1

.819.4

-57.0

-63.7

48.2

28.6

757.7

-608.6

-1930.7

876.5

-722.7

-722.7

-283.4

-647.3

-1310.8

836.4

847.8

1970.8

80.6

87.3

-71.2

-5.4

-779.8

590.1

LODF is for line between 3048 and 5120; values will be proportional to the PTDF values

Clear LODF Matrix Results

un Mode

5380 ENNIS 0

5236 OLNEY 1 0

5236 OLNEY 1 0

5179 CORSICANA 2 (1

5018 JACKSBORO 1 (1

5413 PALO PINTO 1 (1

5484 CROSS PLAINS 1

5120 BROWNWOOE 1

5204 POOLVILLE 0

8082 FRANKLIN 0

5196 BRYSON 1.0

5204 POOLVILLE 0

5015 KELLER 2 0

5073 BANGS 0

5073 BANGS 0

5179 CORSICANA 2 (

5018 JACKSBORO 1

5018 JACKSBORO 1

5047 MANSFIELD 0

5055 GRAHAM 0

5021 ALEDO 1.0

5055 GRAHAM 0

5196 BRYSON 1 0

5334 CLYDE 0

5361 BRIDGEPORT 0

5484 CROSS PLAINS

5121 BROWNWOOD

5121 BROWNWOOD

5361 BRIDGEPORT 0

6107 ROCKDALE 1.0

-875.0

724.4

724.4

284.0

648.6

1320.2

-834.2

-843.9

-1954.1

-80.2

-86.8

71.3

5.4

780.4

-586.1

2000 Bus LODF Example

Image visualizes the PTDFs between buses 3048 and 5120

- LODFs can also be used to represent multiple device contingencies, but it is usually more involved than just adding the effects of the single device LODFs
- Assume a simultaneous outage of lines k_1 and k_2
- Now setup two transactions, w_{k1} (with value Δt_{k1}) and w_{k2} (with value Δt_{k2}) so

$$\begin{split} f_{k1} + \Delta f_{k1} + \Delta f_{k2} - \Delta t_{k1} &= 0 \\ f_{k2} + \Delta f_{k1} + \Delta f_{k2} - \Delta t_{k2} &= 0 \\ f_{k1} + \varphi \,^{(w_{k1})}_{k1} \Delta t_{k1} + \varphi \,^{(w_{k2})}_{k1} \Delta t_{k2} - \Delta t_{k1} &= 0 \\ f_{k2} + \varphi \,^{(w_{k1})}_{k2} \Delta t_{k1} + \varphi \,^{(w_{k2})}_{k2} \Delta t_{k1} - \Delta t_{k2} &= 0 \end{split}$$

- A M
- Hence we can calculate the simultaneous impact of multiple outages; details for the derivation are given in C.Davis, T.J. Overbye, "Linear Analysis of Multiple Outage Interaction," *Proc. 42nd HICSS*, 2009
- Equation for the change in flow on line ℓ for the outage of lines k_1 and k_2 is

$$\Delta f_{\ell} = \begin{bmatrix} d_{\ell}^{k1} & d_{\ell}^{k2} \end{bmatrix} \begin{bmatrix} 1 & -d_{k1}^{k2} \\ -d_{k2}^{k1} & 1 \end{bmatrix}^{-1} \begin{bmatrix} f_{k1} \\ f_{k2} \end{bmatrix}$$

• Example: Five bus case, outage of lines 2 and 5 to flow on line 4.

$$\Delta f_{\ell} = \begin{bmatrix} d_{\ell}^{k_{1}} & d_{\ell}^{k_{2}} \end{bmatrix} \begin{bmatrix} 1 & -d_{k_{1}}^{k_{2}} \\ -d_{k_{2}}^{k_{1}} & 1 \end{bmatrix}^{-1} \begin{bmatrix} f_{k_{1}} \\ f_{k_{2}} \end{bmatrix}$$
$$\Delta f_{\ell} = \begin{bmatrix} 0.4 & 0.25 \end{bmatrix} \begin{bmatrix} 1 & -0.75 \\ -0.6 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.336 \\ -0.331 \end{bmatrix} = 0.005$$

AM

Line Closure Distribution Factors (LCDFs)

LCDF Definition

- The line closure distribution factor (LCDF), LCDF_{ℓ,k}, for the closure of line k (or its addition if it does not already exist) is the portion of the line active power flow on line k that is distributed to line ℓ due to the closure of line k
- Since line k is currently open, the obvious question is, "what flow on line k?"
- Answer (in a dc power flow sense) is the flow that will occur when the line is closed (which we do not know)

LCDF Evaluation

• We simulate the impact of the closure of line k by imposing the additional basic transaction

$$w_{k} = \left\{ i', j', \Delta t_{k} \right\}$$

on the base case network and we select Δt_k so that

$$\Delta t_k = -f_k$$

LCDF Evaluation

- A M
- For the other parts of the network, the impacts of the addition of line k are the same as the impacts of adding the basic transaction w_k

$$\Delta f_{\ell} = \varphi_{\ell}^{(w_k)} \Delta t_k = -\varphi_{\ell}^{(w_k)} f_k$$

• Therefore, the definition is

$$LCDF_{\ell,k} = \frac{\Delta f_{\ell}}{f_k} = -\varphi_{\ell}^{(w_k)}$$

• The post-closure flow f_k is determined (in a dc power flow sense) as the flow that would occur from the angle difference divided by $(1 + \varphi_k^{(w_k)})$

Outage Transfer Distribution Factor

- The outage transfer distribution factor (OTDF) is defined as the PTDF with the line k outaged
- The OTDF applies only to the post-contingency configuration of the system since its evaluation explicitly considers the line k outage

$$\left(\boldsymbol{\varphi}_{\ell}^{(w)} \right)^{k}$$

• This is a quite important value since power system operation is usually contingency constrained

Outage Transfer Distribution Factor (OTDF)

ĀМ

OTDF Evaluation

OTDF Evaluation

• Since
$$\Delta f_{\ell}^{(1)} = \varphi_{\ell}^{(w)} \Delta t$$

and
$$\Delta f_k = \varphi_k^{(w)} \Delta t$$

then $\Delta f_{\ell}^{(2)} = d_{\ell}^k \Delta f_k = d_{\ell}^k \varphi_k^{(w)} \Delta t$

so that

$$\Delta f_{\ell} = \Delta f_{\ell}^{(1)} + \Delta f_{\ell}^{(2)} = \left[\varphi_{\ell}^{(w)} + d_{\ell}^{k} \varphi_{k}^{(w)} \right] \Delta t$$
$$\left(\varphi_{\ell}^{(w)} \right)^{k} = \varphi_{\ell}^{(w)} + d_{\ell}^{k} \varphi_{k}^{(w)}$$

• Say we would like to know the PTDF on line 1 for a transaction between buses 2 and 3 with line 2 out

• Hence we want to calculate these values without having to explicitly outage line 2

Hence the value we are looking for is 0.2 (20%)

- Evaluating: the PTDF for the bus 2 to 3 transaction on line 1 is 0.2727; it is 0.1818 on line 2 (from buses 1 to 3); the LODF is on line 1 for the outage of line 2 is 0.4
 Hence (φ^(w)_ℓ)^k = φ^(w)_ℓ + d^k_ℓφ^(w)_k
- Hence $(\varphi_{\ell}) \varphi_{\ell} + \alpha_{\ell} \varphi_{k}$ $0.2727 + (-0.4) \times (0.1818) = 0.200$

• For line 4 (buses 2 to 3) the value is $0.7273 + (0.4) \times (0.1818) = 0.800$

August 14, 2003 OTDF Example

- A M
- Flowgate 2264 monitored the flow on Star-Juniper 345
 kV line for contingent loss of Hanna-Juniper 345 kV
 normally the LODF for this flowgate is 0.361
 - flowgate had a limit of 1080 MW
 - at 15:05 EDT the flow as 517 MW on Star-Juniper, 1004 MW on Hanna-Juniper, giving a flowgate value of 520+0.361*1007=884 (82%)
 - Chamberlin-Harding 345 opened at 15:05, but was missed
 - At 15:06 EDT (after loss of Chamberlin-Harding 345) #2265
 had an incorrect value because its LODF was not updated.
 - Value should be 633+0.463*1174=1176 (109%)
 - Value was 633 + 0.361*1174 = 1057 (98%)

UTC Revisited

- We can now revisit the uncommitted transfer capability (UTC) calculation using PTDFs and LODFs
- Recall trying to determine maximum transfer between two areas (or buses in our example)
- For base case maximums are quickly determined with PTDFs $(a_{max} - a_{n}(\theta))$

$$u_{m,n}^{(0)} = \min_{\varphi_{\ell}^{(w)} > 0} \left\{ \frac{f_{\ell}^{max} - f_{\ell}^{(0)}}{\varphi_{\ell}^{(w)}} \right\}$$

UTC Revisited

• For the contingencies we use

$$u_{m,n}^{(1)} = \min_{\left(\varphi_{\ell}^{(w)}\right)^{k} > 0} \left\{ \frac{f_{\ell}^{max} - f_{\ell}^{(0)} - d_{\ell}^{k} f_{\ell}^{(0)}}{\left(\varphi_{\ell}^{(w)}\right)^{k}} \right\}$$

• Then as before
$$u_{m,n} = min\left\{u_{m,n}^{(0)}, u_{m,n}^{(1)}\right\}$$

We would need to check all contingencies! Also, this is just a linear estimate and is not considering voltage violations.

$$w = \{2, 3, \Delta t\} \qquad f^{(0)} = [42, 34, 67, 118, 33, 100]^{T}$$
$$f^{max} = [150, 400, 150, 150, 150, 1,000]^{T}$$

Therefore, for the base case

$$u_{2,2}^{(0)} = \min_{\varphi_{\ell}^{(w)} > 0} \left\{ \frac{f \underset{\ell}{\overset{max}{\ell}} - f \underset{\ell}{\overset{(0)}{\ell}}}{\varphi_{\ell}^{(w)}} \right\}$$

$$= \min\left\{\frac{150-42}{0.2727}, \frac{400-34}{0.1818}, \frac{150-67}{0.0909}, \frac{150-118}{0.7273}, \frac{150-33}{0.0909}\right\}$$

= 44.0

• For the contingency case corresponding to the outage of the line 2 $u_{2,3}^{(1)} = \min_{\left(\varphi_{\ell}^{(w)}\right)^{2} > 0} \left\{ \frac{f_{\ell}^{max} - f_{\ell}^{(0)} - d_{\ell}^{2} f_{2}^{(0)}}{\left(\varphi_{\ell}^{(w)}\right)^{2}} \right\}$

The limiting value is line 4

$$\frac{f_{\ell}^{max} - f_{\ell}^{(0)} - d_{\ell}^{2} f_{2}^{(0)}}{\left(\varphi_{\ell}^{(w)}\right)^{2}} = \frac{150 - 118 - 0.4 \times 34}{0.8}$$

Hence the UTC is limited by the contingency to 23.0

Additional Comments

- Distribution factors are defined as small signal sensitivities, but in practice, they are also used for simulating large signal cases
- Distribution factors are widely used in the operation of the electricity markets where the rapid evaluation of the impacts of each transaction on the line flows is required
- Applications to actual system show that the distribution factors provide satisfactory results in terms of accuracy
- For multiple applications that require fast turn around time, distribution factors are used very widely, particularly, in the market environment
- They do not work well with reactive power!

Least Squares

- So far we have considered the solution of Ax = b in which A is a square matrix; as long as A is nonsingular there is a single solution
 - That is, we have the same number of equations (m) as unknowns (n)
- Many problems are overdetermined in which there more equations than unknowns (m > n)
 - Overdetermined systems are usually inconsistent, in which no value of x exactly solves all the equations
- Underdetermined systems have more unknowns than equations (m < n); they never have a unique solution but are usually consistent

Method of Least Squares

- The least squares method is a solution approach for determining an approximate solution for an overdetermined system
- If the system is inconsistent, then not all of the equations can be exactly satisfied
- The difference for each equation between its exact solution and the estimated solution is known as the error
- Least squares seeks to minimize the sum of the squares of the errors
- Weighted least squares allows differ weights for the equations

Least Squares Solution History

- The method of least squares developed from trying to estimate actual values from a number of measurements
- Several persons in the 1700's, starting with Roger Cotes in 1722, presented methods for trying to decrease model errors from using multiple measurements
- Legendre presented a formal description of the method in 1805; evidently Gauss claimed he did it in 1795
- Method is widely used in power systems, with state estimation the best known application, dating from Fred Schweppe's work in 1970

Least Squares and Sparsity

- In many contexts least squares is applied to problems that are not sparse. For example, using a number of measurements to optimally determine a few values
 - Regression analysis is a common example, in which a line or other curve is fit to potentially many points)
 - Each measurement impacts each model value
- In the classic power system application of state estimation the system is sparse, with measurements only directly influencing a few states
 - Power system analysis classes have tended to focus on solution methods aimed at sparse systems; we'll consider both sparse and nonsparse solution methods

Least Squares Problem

• Consider $\mathbf{A}\mathbf{x} = \mathbf{b}$ $\mathbf{A} \in \mathbb{R}^{m \times n}, \ \mathbf{x} \in \mathbb{R}^{n}, \ \mathbf{b} \in \mathbb{R}^{m}$

or

Least Squares Solution

- A M
- We write $(\mathbf{a}^i)^T$ for the row i of **A** and \mathbf{a}^i is a column vector
- Here, $m \ge n$ and the solution we are seeking is that which minimizes $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_p$, where *p* denotes some norm
- Since usually an overdetermined system has no exact solution, the best we can do is determine an **x** that minimizes the desired norm.

Choice of p

- We discuss the choice of *p* in terms of a specific example
- Consider the equation Ax = b with

 $A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \qquad \text{with } b_1 \ge b_2 \ge b_3 \ge 0$ (hence three equations and one unknown)

• We consider three possible choices for *p*:

Choice of p

(*i*)
$$p = 1$$

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{1}$$
 is minimized by $x^{*} = b_{2}$

(*ii*)
$$p = 2$$

 $\|Ax - b\|_{2}$ is minimized by $x^{*} = \frac{b_{1} + b_{2} + b_{3}}{3}$

(*iii*) $p = \infty$

 $\|\mathbf{A}\mathbf{x}-\mathbf{b}\|_{\infty}$ is minimized by $x^* = \frac{b_1 + b_3}{2}$