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Announcements

• Read Chapter 9 from the book

• Homework 4 is due on Thursday October 31.  
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Nonlinear Formulation

• A regular ac power system is nonlinear, so we need to 

use an iterative solution approach.  This is similar to 

the Newton power flow.  Here assume m 

measurements and n state variables (usually bus 

voltage magnitudes and angles) Then the Jacobian is 

the H matrix
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Measurement Example

• Assume we measure the real and reactive power 

flowing into one end of a transmission line; then the 

zi-fi(x) functions for these two are

– Two measurements for four unknowns

• Other measurements, such as the flow at the other end, 

and voltage magnitudes, add redundancy
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SE Iterative Solution Algorithm

• We then make an initial guess of x, x(0) and iterate, 

calculating Dx each iteration

1 1
1

1 1

( 1) ( )

( )

( )

T T

m m

k k

z f

z f


 



 
 

 D    
 
 

  D

x

x H R H H R

x

x x x

This is exactly the least 

squares form developed 

earlier with HTR-1H an n 

by n matrix.  This could be 

solved with

Gaussian elimination, but 

this isn't preferred

because the problem is

often ill-conditioned
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Keep in mind that H is no 

longer constant, but varies 

as x changes.  often ill-

conditioned
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Nonlinear SE Solution Algorithm, 
Book Figure 9.11
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Example: Two Bus Case

• Assume a two bus case with a generator supplying a 

load through a single line with x=0.1 pu.  Assume 

measurements of the p/q flow on both ends of the line 

(into line positive), and the voltage magnitude at both 

the generator and the load end.  So B12 = B21=10.0
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We need to assume a reference angle 

unless we directly measuring phase 
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Example: Two Bus Case

• Let  .
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Example: Two Bus Case

• With a flat start guess we get
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Example: Two Bus Case
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Assumed SE Measurement 
Accuracy

• The assumed measurement standard deviations can 

have a significant impact on the resultant solution, or 

even whether the SE converges

• The assumption is a Gaussian (normal) distribution of 

the error with no bias  
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SE Observability

• In order to estimate all n states we need at least n 

measurements. However, where the measurements are 

located is also important, a topic known as observability

– In order for a power system to be fully observable usually we 

need to have a measurement available no more than one bus 

away

– At buses we need to have at least measurements on all the 

injections into the bus except one (including loads and gens)

– Loads are usually flows on feeders, or the flow into a 

transmission to distribution transformer

– Generators are usually just injections from the GSU

11
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Pseudo Measurements

• Pseudo measurements are used at buses in which there 

is no load or generation; that is, the net injection into 

the bus is know with high accuracy to be zero

– In order to enforce the net power balance at a bus we need to 

include an explicit net injection measurement

• To increase observability sometimes estimated values 

are used for loads, shunts and generator outputs

– These “measurements” are represented as having a higher 

much standard deviation   
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SE Observability Example
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SE Bad Data Detection

• The quality of the measurements available to an SE 

can vary widely, and sometimes the SE model itself is 

wrong.  Causes include

– Modeling Errors: perhaps the assumed system topology is 

incorrect, or the assumed parameters for a transmission line 

or transformer could be wrong

– Data Errors: measurements may be incorrect because of in 

correct data specifications, like the CT ratios or even flipped 

positive and negative directions

– Transducer Errors: the transductors may be failing or may 

have bias errors

– Sampling Errors: SCADA does not read all values 

simultaneously and power systems are dynamic
14
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SE Bad Data Detection

• The challenge for SE is to determine when there is 

likely a bad measurement (or multiple ones), and then 

to determine the particular bad measurements

• J(x) is random number, with a probability density 

function (PDF) known as a chi-squared distribution, 

2(K), where K is the degrees of freedom, K=m-n

• It can be shown the expected mean for J(x) is K, with a 

standard deviation of

– Values of J(x) outside of several standard deviations indicate 

possible bad measurements, with the measurement residuals 

used to track down the likely bad measurements

• SE can be re-run without the bad measurements  
15
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Example SE Application: PJM and 
MISO

• PJM provides information about their EMS model in 

– www.pjm.com/-/media/documents/manuals/m03a.ashx

Data here is 

from the Sept 

2018 (Rev 16) 

document

16

http://www.pjm.com/-/media/documents/manuals/m03a.ashx
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Example SE Application: PJM and 
MISO

• PJM measurements are required for 69 kV and up

• PJM SE is triggered to execute every minute

• PJM SE solves well over 98% of the time

• Below reference provides info on MISO SE from 

March 2015

– 54,433 buses

– 54,415 network branches

– 6332 generating units

– 228,673 circuit breakers

– 289,491 mapped points

https://www.naspi.org/sites/default/files/2017-05/3a%20MISO-NASPIWokshop-

Synchrophasor%20Data%20and%20State%20Estimation.pdf
17
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Energy Management Systems 
(EMSs)

• EMSs are now used to control most large scale 

electric grids

• EMSs developed in the 1970’s and 1980’s out of 

SCADA systems

– An EMS usually includes a SCADA system; sometimes 

called a SCADA/EMS

• Having a SE is almost the definition of an EMS.  The 

SE then feeds data to the more advanced functions

• EMSs have evolved as the industry as evolved as the 

industry has evolved, with functionality customized 

for the application (e.g., a reliability coordinator or a 

vertically integrated utility) 18
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NERC Reliability Coordinators

Source: www.nerc.com/pa/rrm/TLR/Pages/Reliability-Coordinators.aspx
19
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EEI Member Companies 
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Electric Coops
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Texas Electric Coops
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ERCOT Control Center with EMS

23Source: www.texastribune.org/2016/05/17/texas-market-forces-driving-shift-coal-study-says/
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ERCOT EMS 

Slide source: ERCOT, D. Penney, J. Mandavilli, M. Henry, “Loss of SCADA, EMS or LCC” 24
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ERCOT EMS
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