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Announcements

• Read Chapter 4

• Exam 1 is Thursday October 10 during class; 

closed book, closed notes.  One 8.5 by 11 inch note 

sheet and calculators allowed.  
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PID Controllers

• Governors and exciters often use proportional-integral-

derivative (PID) controllers

– Developed in 1890’s for automatic ship steering by observing 

the behavior of experienced helmsman

• PIDs combine

– Proportional gain, which produces an output value that is 

proportional to the current error

– Integral gain, which produces an output value that varies with 

the integral of the error, eventually driving the error to zero

– Derivative gain, which acts to predict the system behavior.  

This can enhance system stability, but it can be quite 

susceptible to noise
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PID Controller Characteristics 

• Four key characteristics 

of control response are 

1) rise time, 2) overshoot,

3) settling time and 

4) steady-state errors

Image source: Figure F.1, IEEE Std 1207-2011
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PID Example: Car Cruise Control

• Say we wish to implement cruise control on a car by 

controlling the throttle position

– Assume force is proportional to throttle position

– Error is difference between actual speed and desired speed

• With just proportional control we would never achieve 

the desired speed because with zero error the throttle 

position would be at zero 

• The integral term will make sure we stay at the desired 

point

• With derivative control we can improve control, but as 

noted it can be sensitive to noise
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HYG3

• The HYG3 models has a PID or a double derivative 

Looks more

complicated

than it is

since 

depending

on cflag

only one of

the upper

paths is

used

About 15% of current WECC governors at HYG3 
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Tuning PID Controllers

• Tuning PID controllers can be difficult, and there is no 

single best method

– Conceptually simple since there are just three parameters, but 

there can be conflicting objectives (rise time, overshoot, setting 

time, error)

• One common approach is the Ziegler-Nichols method

– First set KI and KD to zero, and increase KP until the response 

to a unit step starts to oscillate (marginally stable); define this 

value as Ku and the oscillation period at Tu

– For a P controller set Kp = 0.5Ku

– For a PI set KP = 0.45 Ku and KI = 1.2* Kp/Tu

– For a PID set KP=0.6 Ku, KI=2* Kp/Tu, KD=KpTu/8
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Tuning PID Controller Example

• Use the four bus case  with infinite bus replaced by 

load, and gen 4 has a HYG3 governor with cflag > 0; 

tune KP, KI and KD for full load to respond to a 10% 

drop in load (K2, KI, K1 in the model; assume Tf=0.1)

slack

Bus 1 Bus 2

Bus 3

  0.87 Deg  6.77 Deg

Bus 4

 11.59 Deg

  4.81 Deg

 1.078 pu 1.080 pu 1.084 pu

1.0971 pu

  90 MW

  10 MW

Case name: B4_PIDTuning
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Tuning PID Controller Example

• Based on testing, Ku is about 9.5 and Tu is 6.4 seconds 

• Using Ziegler-Nichols a good P value 4.75, is good PI 

values are KP = 4.3 and KI = 0.8, while good PID 

values are KP = 5.7, KI = 1.78, KD=4.56

Further details on 

tuning are covered in 

IEEE Std. 1207-2011 
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Tuning PID Controller Example

• Figure shows the Ziegler-Nichols for a P, PI and PID 

controls.  Note, this is for stand-alone, not 

interconnected operation
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Example KI and KP Values 

• Figure shows example KI and KP values from an 

actual system case

About 60%

of the models

also had a

derivative term

with an average

value of 2.8,

and an average

TD of 0.04 sec
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Non-windup Limits

• An important open question is whether the governor PI 

controllers should be modeled with non-windup limits

– Currently models show no limit, but transient stability 

verification seems to indicate limits are being enforced

• This could be an issue if frequency goes low, causing 

governor PI to "windup" and then goes high (such as in 

an islanding situation)

– How fast governor backs down depends on whether the limit 

winds up 
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PI Non-windup Limits

• There is not a unique way to handle PI non-windup 

limits; the below shows two approaches from IEEE Std

421.5
Another 

common

approach

is to cap the

output and

put a non-

windup limit

on the 

integrator
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PI Limit Problems with Actual 
Hydro Models

• A recent research project comparing transient 

stability packages found there were significant 

differences between hydro model implementations 

with respect to how PI limits were modeled

– One package modeled limits but did not document them, 

another did not model them; limits were recommended

at WECC MVWG in May 2014
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PIDGOV Model Results

• Below graph compares the Pmech response for a two 

bus system for a frequency change, between three 

transient stability packages
Packages

A and B

both say they

have no

governor

limits, but 

B seems to;

PowerWorld 

can do 

either 

approach
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GGOV1

• GGOV1 is a relatively newer governor model 

introduced in early 2000's by WECC for modeling 

thermal plants

– Existing models greatly under-estimated the frequency drop

– GGOV1 is now the most common WECC governor, used with 

about 40% of the units

• A useful reference is L. Pereira, J. Undrill, D. Kosterev, 

D. Davies, and S. Patterson, "A New Thermal Governor 

Modeling Approach in the WECC," IEEE Transactions 

on Power Systems, May 2003, pp. 819-829
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GGOV1: Selected Figures from 
2003 Paper

Fig. 1. Frequency recordings of the SW 

and NW trips on May 18, 2001. Also 

shown are simulations with existing 

modeling (base case).

Governor model 

verification—950-MW 

Diablo generation trip on June 

3, 2002.

Diablo Canyon is California’s last nuclear plant, with Unit 1 now scheduled to 

shutdown in 2024 and Unit 2 in 2025.
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GGOV1 Block Diagram

GGOV1 and 

the related

GGOV3 are

the most 

common 

governors in 

WECC, with 

more than 

40% in 2019 
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Transient Stability 
Multimachine Simulations

• Next, we'll be putting the models we've covered so far 

together

• Later we'll add in new model types such as stabilizers,  

loads and wind turbines

• By way of history, prior to digital computers, network 

analyzers were used for system stability studies as far 

back as the 1930's (perhaps earlier)

– For example see, J.D. Holm, "Stability Study of A-C Power 

Transmission Systems," AIEE Transactions, vol. 61, 1942, pp. 

893-905

• Digital approaches started appearing in the 1960's
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Transient Stability 
Multimachine Simulations

• The general structure is as a set of differential-

algebraic equations

– Differential equations describe the behavior of the machines 

(and the loads and other dynamic devices)

– Algebraic equations representing the network constraints

In EMTP applications the 

transmission line delays 

decouple the machines; in 

transient stability they are 

assumed to be coupled

together by the algebraic

network equations
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General Form

• The general form of the problem is solving

( , , )

( , )

where  is the vector of the state variables (such

as the generator 's),  is the vector of the algebraic

variables (primarily the bus complex voltages), and 

 is the vector of contr



=

=

x f x y u

0 g x y

x

y

u ols (such as the exciter voltage

setpoints)
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Transient Stability 
General Solution

• General solution approach is

– Solve power flow to determine initial conditions

– Back solve to get initial states, starting with machine 

models, then exciters, governors, stabilizers, loads, etc

– Set t = tstart, time step = Dt, abort = false

– While (t <= tend) and (not abort) Do Begin

• Apply any contingency event

• Solve differential and algebraic equations

• If desired store time step results and check other conditions (that 

might cause the simulation to abort)

• t = t + Dt

– End while
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Algebraic Constraints

• The g vector of algebraic constraints is similar to the 

power flow equations, but usually rather than 

formulating the problem like in the power flow as real 

and reactive power balance equations, it is formulated 

in the current balance form

( , )     or  ( , )

where  is the n  n bus admittance matrix

 ( ),  is the complex vector of 

the bus voltages, and is the complex

vector of the bus current injections

j

= − =



= +

Ι x V YV YV Ι x V 0

Y

Y G B V

I 

Simplest

cases 

can have

I independent

of x and V,

allowing a

direct solution;

otherwise we

need to iterate 
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Why Not Use the 
Power Flow Equations?

• The power flow equations were ultimately derived 

from

I(𝐱, 𝐕) = Y V

• However, the power form was used in the power flow 

primarily because

– For the generators the real power output is known and either 

the voltage setpoint (i.e., if a PV bus) or the reactive power 

output

– In the quasi-steady state power flow time frame the loads can 

often be well approximated as constant power

– The constant frequency assumption requires a slack bus

• These assumptions do not hold for transient stability
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Algebraic Equations for 
Classical Model

• To introduce the coupling between the machine models 

and the network constraints, consider a system 

modeled with just classical generators and impedance 

loads

Image Source: Fig 11.15, Glover, Sarma, Overbye, Power System Analysis and Design, 5th Edition, Cengage Learning, 2011 

In this example

because we are

using the classical

model all values

are on the network

reference frame

We'll extend the figure slightly to include stator resistances, Rs,i
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Algebraic Equations for 
Classical Model

• Replace the internal voltages and their impedances by 

their Norton Equivalent

• Current injections at the non-generator buses are zero 

since the constant impedance loads are included in Y

– We'll modify this later when we talk about dynamic loads

• The algebraic constraints are then I – Y V = 0

, , , ,

,i i
i i

s i d i s i d i

E 1
I Y

R jX R jX


= =

 + +
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Swing Equation

• The first two differential equations for any 

synchronous machine correspond to the swing equation

( )

, ,with 

i
i s i

i i i i
Mi Ei i i

s s

Ei de i qi qe i di

d

dt

2H d 2H d
T T D

dt dt

T i i


  

 


 

 

= − = D

D
= = − − D

= −
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Swing Equation Speed Effects

• There is often confusion about these equations because 

of whether speed effects are included

– Recognizing that often   s (which is one per unit), some 

transient stability books have neglected speed effects

• For a rotating machine with a radial torque, 

power = torque times speed

• For a subtransient model

( )

( )( )

( ) ,s d q q d

E d q q

E E d q d q d d q q

E V R jX I E jE j

T I I and

P T E jE I jI E I E I

  

 



     = + + + = − +

 = −

   = = + − = +
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Classical Swing Equation

• Often in an introductory coverage of transient stability 

with the classical model the assumption is     s

so the swing equation for the classical model is given 

as

• We'll use this simplification for our initial example 

( )

( ) ( )with P

i
i s i

i i
Mi Ei i i

s

Ei i i i i i i

d

dt

2H d
P P D

dt

E E V Y


  






 

= − = D

D
= − − D

 =   −

As an example of this initial approach see Anderson and Fouad, Power System Control 

and Stability, 2nd Edition,  Chapter 2
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Numerical Solution

• There are two main approaches for solving

– Partitioned-explicit: Solve the differential and algebraic 

equations separately (alternating between the two) using 

an explicit integration approach 

– Simultaneous-implicit: Solve the differential and 

algebraic equations together using an implicit integration 

approach

( , , )

( , )  

=

=

x f x y u

0 g x y



30

Outline for Next Several Slides

• The next several slides will provide basic coverage 

of the solution process, partitioned explicit, then 

the simultaneous-implicit approach

• We'll start out with a classical model supplying an 

infinite bus, which can be solved by embedded the 

algebraic constraint into the differential equations

We'll start out just solving ( )

and then will extend to solving the full problem of 

( , , )

( , )

=

=

=

x f x

x f x y u

0 g x y
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Classical Swing Equation with 
Embedded Power Balance

• With a classical generator at bus i supplying an infinite 

bus with voltage magnitude Vinf,  we can write the 

problem without algebraic constraints as

( )

.

, inf
,

inf

sin

with P sin

i
i s i i pu s

i pu i
Mi i i i pu

i th

i
Ei i

th

d

dt

d E V1
P D

dt 2H X

E V

X


    


 



= − = D = D

D  
= − − D 

 


= Note we are using 

the per unit speed

approach
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Explicit Integration Methods

• As covered on the first day of class, there are a 

wide variety of explicit integration methods

– We considered Forward Euler, Runge-Kutta, Adams-

Bashforth

• Here we will just consider Euler's, which is easy to 

explain but not too useful, and a second order 

Runge-Kutta, which is commonly used
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Forward Euler

• Recall the Forward Euler approach is approximate

• Error with Euler's varies with the square of the time 

step

d
( ( ))  as 

dt t

Then

( ) ( ) ( ( ))

t

t t t t t

D
= =

D

+ D  + D

x x
x f x

x x f x
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Infinite Bus GENCLS Example 
using the Forward Euler's Method

• Use the four bus system from before, except now gen 4 

is modeled with a classical model with Xd'=0.3, H=3 

and D=0; also we'll reduce to two buses with 

equivalent

line reactance, moving the gen from bus 4 to 1

Infinite Bus

slack

GENCLS

X=0.22

Bus 1

Bus 2

  0.00 Deg 11.59 Deg

 1.000 pu 1.095 pu

In this example Xth = (0.22 + 0.3), with the internal voltage
ത𝐸′1 = 1.281∠23.95° giving E'1=1.281 and 1= 23.95°
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Infinite Bus GENCLS Example

• The associated differential equations for the bus 1 

generator are

• The value of PM1 = 1 is determined from the initial 

conditions, and would stay constant in this simple 

example without a governor

• The value 1= 23.95° is readily verified as an 

equilibrium point (which is 0.418 radians) 

,

, .
sin

.

1
1 pu s

1 pu

1

d

dt

d 1 1 281
1

dt 2 3 0 52


 




= D

D  
= − 
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Infinite Bus GENCLS Example

• Assume a solid three phase fault is applied at the 

generator terminal, reducing PE1 to zero during the 

fault, and then the fault is self-cleared at time Tclear
, 

resulting in the post-fault system being identical to 

the pre-fault system 

– During the fault-on time the equations reduce to 

( )

,

,

1
1 pu s

1 pu

d

dt

d 1
1 0

dt 2 3


 



= D

D
= −



That is, with a solid fault 

on the terminal of the 

generator, during

the fault PE1 = 0
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Euler's Solution

• The initial value of x is

• Assuming a time step Dt = 0.02 seconds, and a Tclear of 

0.1 seconds, then using Euler's

• Iteration continues until t = Tclear

( ) .
( )

( )pu

0 0 418
0

0 0





   
= =   

  
x

. .
( . ) .

. .

0 418 0 0 418
0 02 0 02

0 0 1667 0 00333

     
= + =     
     

x

Note Euler's 

assumes

 stays constant 

during the first

time step
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Euler's Solution

• At t = Tclear the fault is self-cleared, with the 

equations changing to 

• The integration continues using the new equations

.
sin

.

pu s

pu

d

dt

d 1 1 281
1

dt 6 0 52


 




= D

D  
= − 
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Euler's Solution Results (Dt=0.02)

• The below table gives the results using Dt = 0.02 for 

the beginning time steps
Time Gen 1  Rotor Angle, Degrees Gen 1 Speed (Hz)

0 23.9462 60

0.02 23.9462 60.2

0.04 25.3862 60.4

0.06 28.2662 60.6

0.08 32.5862 60.8

0.1 38.3462 61

0.1 38.3462 61

0.12 45.5462 60.8943

0.14 51.9851 60.7425

0.16 57.3314 60.5543

0.18 61.3226 60.3395

0.2 63.7672 60.1072

0.22 64.5391 59.8652

0.24 63.5686 59.6203

0.26 60.8348 59.3791

0.28 56.3641 59.1488

This is saved as

PowerWorld case 

B2_CLS_Infinite.

The integration

method is set to 

Euler's on the 

Transient Stability,

Options, Power 

System Model page
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Generator 1 Delta: Euler's

• The below graph shows the generator angle for varying 

values of Dt; numerical instability is clearly seen
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Second Order Runge-Kutta

• Runge-Kutta methods improve on Euler's method by 

evaluating f(x) at selected points over the time step

• One approach is a second order method (RK2) in which

• That is, k1 is what we get from Euler's; k2 improves on 

this by reevaluating at the estimated end of the time step

• Error varies with the cubic of the time ste

( ) ( ) ( )

( )( )
( )( )

1 2

1

2 1

1
                

2

where   

    

       

t t t

t t

t t +

+ D = + +

= D

= D

x x k k

k f x

k f x k

This is also known 

as Heun's method 

or as the Improved

Euler's or Modified

Euler's Method 
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Second Order Runge-Kutta (RK2)

• Again assuming a time step Dt = 0.02 seconds, and a 

Tclear of 0.1 seconds, then using Heun's approach

( )

( ) .
( )

( )

.
. , ( )

. . .

. .
.

. .

. .
( . )

.

pu

1 1

2

1 2

0 0 418
0

0 0

0 0 0 418
0 02 0

0 1667 0 00333 0 00333

1 257 0 0251
0 02

0 1667 0 00333

0 418 0 4311
0 020

0 0 003332





   
= =   D   

     
= = + =     

     

   
= =   

   

   
= + + =   
   

x

k x k

k

x k k
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RK2 Solution Results (Dt=0.02)

• The below table gives the results using Dt = 0.02 for 

the beginning time steps
Time Gen 1  Rotor Angle, Degrees Gen 1 Speed (Hz)

0 23.9462 60

0.02 24.6662 60.2

0.04 26.8262 60.4

0.06 30.4262 60.6

0.08 35.4662 60.8

0.1 41.9462 61

0.1 41.9462 61

0.12 48.6805 60.849

0.14 54.1807 60.6626

0.16 58.233 60.4517

0.18 60.6974 60.2258

0.2 61.4961 59.9927

0.22 60.605 59.7598

0.24 58.0502 59.5343

0.26 53.9116 59.3241

0.28 48.3318 59.139

This is saved as

PowerWorld case 

B2_CLS_Infinite.

The integration

method should be

changed to Second

Order Runge-Kutta on 

the Transient Stability, 

Options, Power System 

Model page
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Generator 1 Delta: RK2

• The below graph shows the generator angle for varying 

values of Dt; much better than Euler's but still the 

beginning of numerical instability with larger values of 

Dt


