ECEN 615 Methods of Electric Power Systems Analysis Lecture 20: Voltage Stability

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University <u>overbye@tamu.edu</u> Special Guest Lecturer: Yijing Liu

Announcements

- Read Chapters 3 and 8 from the book
- Homework 5 is due on Thursday November 14

Power System Voltage Stability

- Voltage Stability: The ability to maintain system voltage so that both power and voltage are controllable. System voltage responds as expected (i.e., an increase in load causes proportional decrease in voltage).
- **Voltage Instability**: Inability to maintain system voltage. System voltage and/or power become uncontrollable. System voltage does not respond as expected.
- **Voltage Collapse**: Process by which voltage instability leads to unacceptably low voltages in a significant portion of the system. Typically results in loss of system load.

Voltage Stability

- Two good references are
 - P. Kundur, et. al., "Definitions and Classification of Power System Stability," *IEEE Trans. on Power Systems*, pp. 1387-1401, August 2004.
 - T. Van Cutsem, "Voltage Instability: Phenomena, Countermeasures, and Analysis Methods," *Proc. IEEE*, February 2000, pp. 208-227.
- Classified by either size of disturbance or duration
 - Small or large disturbance: small disturbance is just perturbations about an equilibrium point (power flow)
 - Short-term (several seconds) or long-term (many seconds to minutes) (covered in ECEN 667)

Small Disturbance Voltage Stability

- Small disturbance voltage stability can be assessed using a power flow (maximum loadability)
- Depending on the assumed load model, the power flow can have multiple (or no) solutions
- PV curve is created by plotting power versus voltage

Bus 1
(Slack)

$$x = 0.2$$

 $P_L + j Q_L$
 $P_L + j Q_L$
 $P_L - BV \sin \theta = 0$
Assume $V_{slack} = 1.0$

 $Q_L + BV\cos\theta - BV^2 = 0$

Where B is the line susceptance =-10, $V \angle \theta$ is the load voltage

Small Disturbance Voltage Stability

- Question: how do the power flow solutions vary as the load is changed?
- A Solution: Calculate a series of power flow solutions for various load levels and see how they change
- Power flow Jacobian $\mathbf{J}(\theta, V) = \begin{bmatrix} -BV \cos \theta & -B \sin \theta \\ -BV \sin \theta & B \cos \theta - 2BV \end{bmatrix}$ $\det \mathbf{J}(\theta, V) = VB^{2} \left(2V \cos \theta - \cos^{2} \theta - \sin^{2} \theta \right)$ Singular when $\left(2V \cos \theta - 1 \right) = 0$

Maximum Loadability When Power Flow Jacobian is Singular

- An important paper considering this was by Sauer and Pai from IEEE Trans. Power Systems in Nov 1990, "Power system steady-state stability and the load-flow Jacobian"
- Other earlier papers were looking at the characteristics of multiple power flow solutions
- Work with the power flow optimal multiplier around the same time had shown that optimal multiplier goes to zero as the power flow Jacobian becomes singular
- The power flow Jacobian depends on the assumed load model (we'll see the impact in a few slides)

Relationship Between Stability and Power Flow Jacobian

• The Sauer/Pai paper related system stability to the power flow Jacobian by noting the system dynamics could be written as a set of differential algebraic equations

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{p})$$

$$\mathbf{0} = \mathbf{g}(\mathbf{x}, \mathbf{y}, \mathbf{p})$$

Linearing about and equilibrium gives

$$\begin{bmatrix} \Delta \dot{\mathbf{x}} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} & \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \\ \frac{\partial \mathbf{g}}{\partial \mathbf{x}} & \frac{\partial \mathbf{g}}{\partial \mathbf{y}} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{y} \end{bmatrix}$$

Relationship Between Stability and Power Flow Jacobian

• Then

Assuming $\frac{\partial \mathbf{g}}{\partial \mathbf{y}}$ is nonsingular then $\Delta \dot{\mathbf{x}} = \left[\frac{\partial \mathbf{f}}{\partial \mathbf{x}} - \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \left[\frac{\partial \mathbf{g}}{\partial \mathbf{y}} \right]^{-1} \frac{\partial \mathbf{g}}{\partial \mathbf{x}} \right] \Delta \mathbf{x}$

- What Sauer and Pai show is if ∂g/∂y is singular then the system is unstable; if ∂g/∂y is nonsingular then the system may or may not be stable
- Hence it provides an upper bound on stability

Bifurcations

- In general, bifurcation is the division of something into two branches or parts
- For a dynamic system, a bifurcation occurs when small changes in a parameter cause a new quality of motion of the dynamic system
- Two types of bifurcation are considered for voltage stability
 - Saddle node bifurcation is the disappearance of an equilibrium point for parameter variation; for voltage stability it is two power flow solutions coalescing with parameter variation
 - Hopf bifurcation is cause by two eigenvalues crossing into the right-half plane

PV and QV Curves

- A M
- PV curves can be traced by plotting the voltage as the real power is increased; QV curves as reactive power is increased
 - At least for the upper portion of the curve
- Two bus example PV and QV curves

Small Disturbance Voltage Collapse

- At constant frequency (e.g., 60 Hz) the complex power transferred down a transmission line is S=VI*
 - V is phasor voltage, I is phasor current
 - This is the reason for using a high voltage grid
- Line real power losses are given by RI² and reactive power losses by XI²
 - R is the line's resistance, and X its reactance; for a high voltage line X >> R
- Increased reactive power tends to drive down the voltage, which increases the current, which further increases the reactive power losses

PowerWorld Two Bus Example

12

Power Flow Region of Convergence

Load Parameter Space Representation

- With a constant power model there is a maximum loadability surface, Σ
 - Defined as point in which the power flow Jacobian is singular
 - For the lossless two bus system it can be determined as

Load Model Impact

- A M
- With a static load model regardless of the voltage dependency the same PV curve is traced
 - But whether a point of maximum loadability exists depends on the assumed load model
 - If voltage exponent is > 1 then multiple solutions do not exist (see B.C. Lesieutre, P.W. Sauer and M.A. Pai "Sufficient conditions on static load models for network solvability,"NAPS 1992, pp. 262-271)

Change load to constant impedance; hence it becomes a linear model

ZIP Model Coefficients

A]M

• One popular static load model is the ZIP; lots of papers on the "correct" amount of each type

Class	Z_p	I_p	P_p	Z_{g}	I_q	P_{g}
Large commercial	0.47	-0.53	1.06	5.30	-8.73	4.43
Small commercial	0.43	-0.06	0.63	4.06	-6.65	3.59
Residential	0.85	-1.12	1.27	10.96	-18.73	8.77
Industrial	0	0	1	0	0	1

TABLE I ZIP COEFFICIENTS FOR EACH CUSTOMER CLASS

TABLE VII

ACTIVE AND REACTIVE ZIP MODEL. FIRST HALF OF THE ZIPS WITH 100-V CUTOFF VOLTAGE. SECOND HALF REPORTS THE ZIPS WITH ACTUAL CUTOFF VOLTAGE

Equipment/ component	No. tested	V_{cut}	V_{\circ}	P_{o}	Q_{\circ}	Z_p	I_{P}	P_{P}	Z_q	I_q	P_{q}
Air compressor 1 Ph	1	100	120	1109.01	487.08	0.71	0.46	-0.17	-1.33	4.04	-1.71
Air compressor 3 Ph	1	174	208	1168.54	844.71	0.24	-0.23	0.99	4.79	-7.61	3.82
Air conditioner	2	100	120	496.33	125.94	1.17	-1.83	1.66	15.68	-27.15	12.47
CFL bulb	2	100	120	25.65	37.52	0.81	-1.03	1.22	0.86	-0.82	0.96
Coffeemaker	1	100	120	1413.04	13.32	0.13	1.62	-0.75	3.89	-6	3.11
Copier	1	100	120	944.23	84.57	0.87	-0.21	0.34	2.14	-3.67	2.53
Electronic ballast	3	100	120	59.02	5.06	0.22	-0.5	1.28	9.64	-21.59	12.95
Elevator	3	174	208	1381.17	1008.3	0.4	-0.72	1.32	3.76	-5.74	2.98
Fan	2	100	120	163.25	83.28	-0.47	1.71	-0.24	2.34	-3.12	1.78
Game consol	3	100	120	60.65	67.61	-0.63	1.23	0.4	0.76	-0.93	1.17
Halogen	3	100	120	97.36	0.84	0.46	0.64	-0.1	4.26	-6.62	3.36
High pressure sodium HID	4	100	120	276.09	52.65	0.09	0.7	0.21	16.6	-28.77	13.17
Incandescent light	2	100	120	87.16	0.85	0.47	0.63	-0.1	0.55	0.38	0.07
Induction light	1	100	120	44.5	4.8	2.96	-6.04	4.08	1.48	-1.29	0.81
Lanton charger		100	120	35.94	71.64	-0.28	0.5	0.78	-0.37	1.24	0.13

Table 1 from M. Diaz-Aguilo, et. al., "Field-Validated Load Model for the Analysis of CVR in Distribution Secondary Networks: Energy Conservation," IEEE Trans. Power Delivery, Oct. 2013

 Table 7 from A, Bokhari, et. al., "Experimental Determination of the ZIP Coefficients for Modern Residential, Commercial, and Industrial Loads," IEEE Trans. Power Delivery, June. 2014

 16

Application: Conservation Voltage Reduction (CVR)

- If the "steady-state" load has a true dependence on voltage, then a change (usually a reduction) in the voltage should result in a total decrease in energy consumption
- If an "optimal" voltage could be determined, then this could result in a net energy savings
- Some challenges are 1) the voltage profile across a feeder is not constant, 2) the load composition is constantly changing, 3) a decrease in power consumption might result in a decrease in useable output from the load, and 4) loads are dynamic and an initial decrease might be balanced by a later increase

Determining a Metric to Voltage Collapse

- The goal of much of the voltage stability work was to determine an easy to calculate metric (or metrics) of the current operating point to voltage collapse
 - PV and QV curves (or some combination) can determine such a metric along a particular path
 - Goal was to have a path independent metric. The closest boundary point was considered, but this could be quite misleading if the system was not going to move in that direction

- Any linearization about the current operating point (i.e., the Jacobian) does not consider important nonlinearities like generators hitting their reactive power limits

Determining a Metric to Voltage Collapse

- A paper by Dobson in 1992 (see below) noted that at a saddle node bifurcation, in which the power flow Jacobian is singular, that
 - The right eigenvector associated with the Jacobian zero eigenvalue tells the direction in state space of the voltage collapse
 - The left eigenvector associated with the Jacobian zero eigenvalue gives the normal in parameter space to the boundary Σ. This can then be used to estimate the minimum distance in parameter space to bifurcation.

Determining a Metric to Voltage Collapse Example

A M

• For the previous two bus example we had

Determining a Metric to Voltage Collapse Example

• Calculating the right and left eigenvectors associated with the zero eigenvalue we get

$$\mathbf{J} = \begin{bmatrix} 5 & -5.528 \\ -3.317 & 3.667 \end{bmatrix}$$
$$\mathbf{v} = \begin{bmatrix} 0.742 \\ 0.671 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 0.553 \\ 0.833 \end{bmatrix}$$

- A M
- Since lack of power flow convergence can be a major problem, it would be nice to have a measure to quantify the degree of unsolvability of a power flow
 And then figure out the best way to restore solvability
- T.J. Overbye, "A Power Flow Measure for Unsolvable Cases," IEEE Trans. Power Systems, August 1994

Figure 1 : Power Flow Security Regions

• To setup the problem, first consider the power flow iteration without and with the optimal multiplier

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \Delta \mathbf{x}^k$$
$$\Delta \mathbf{x}^k = -\mathbf{J}(\mathbf{x}^k)^{-1} \left(\mathbf{f}(\mathbf{x}^k) - \mathbf{S} \right)$$

With the optimal multiplier we are minimizing

$$\mathbf{F}(\mathbf{x}^{k+1}) = \frac{1}{2} \left(\mathbf{f}(\mathbf{x}^k) + \mu \Delta \mathbf{x}^k - \mathbf{S} \right)^T \left(\mathbf{f}(\mathbf{x}^k) + \mu \Delta \mathbf{x}^k - \mathbf{S} \right)$$

When there is a solution $\mu \rightarrow 1$ and the cost function goes to zero

$$\det(\mathbf{J}) = \mathbf{B}_{12} \left(\mathbf{B}_{12} + 2\mathbf{e}\mathbf{B}_{22} \right) = 0 \tag{12}$$

Here, where $B_{12} = -B_{22}$, the solution of (12) is e = 0.5. Substituting this solution for e into (10b) and using (10a) to solve for the f component of the bus 2 voltage, one gets Σ to be the set of all points where

$$\frac{\mathbf{P}^2}{\mathbf{B}_{12}} + \mathbf{Q} - \frac{1}{4}\mathbf{B}_{12} = 0 \tag{13}$$

• Figure 2 : Solvable and Unsolvable Regions in Parameter Space

 However, when there is no solution the standard power flow would diverge. But the approach with the optimal multiplier tends to point in the direction of minimizing F(x^{k+1}). That is,

$$\nabla F(\mathbf{x}^k) = \left[\mathbf{f}(\mathbf{x}^k) - \mathbf{S}\right]^T \mathbf{J}(\mathbf{x}^k)$$

Also

$$\Delta \mathbf{x}^{k} = -\mathbf{J}(\mathbf{x}^{k})^{-1} \left[\mathbf{f}(\mathbf{x}^{k}) - \mathbf{S} \right]$$

where how far to move in this direction is limited by μ .

The only way we cannot reduce the cost function some would be if the two directions were perpendicular, hence with a zero dot product. So $\frac{\nabla F(\mathbf{x}^k) \cdot \Delta \mathbf{x}^k}{\|\mathbf{x}^k\|} = \frac{\left[\mathbf{f}(\mathbf{x}^k) - \mathbf{S} \right]^T \mathbf{J}(\mathbf{x}^k) \mathbf{J}(\mathbf{x}^k)^{-1} \left[\mathbf{f}(\mathbf{x}^k) - \mathbf{S} \right]}{\|\mathbf{x}^k\|}$ $=\frac{\left[\mathbf{f}(\mathbf{x}^{k})-\mathbf{S}\right]^{T}\left[\mathbf{f}(\mathbf{x}^{k})-\mathbf{S}\right]}{\|\mathbf{x}^{k}\|}$

(provided the Jacobian is not singular). As we approach singularity this goes to zero. Hence we converge to a point on the boundary Σ , but not necessarily at the closest boundary point.

If Σ were flat then **w** is parallel to \mathbf{w}^{m}

Figure 7b : PV Bus Cost Contours - Infeasible load of 1100 MW

- The left eigenvector associated with the zero eigenvalue of the Jacobian (defined as w^{i*}) is perpendicular to Σ (as noted in the early 1992 Dobson paper)
- We can get the closest point on the Σ just by iterating, updating the **S** Vector as

$$\mathbf{S}^{i+1} = \mathbf{S} + [(\mathbf{f}(\mathbf{x}^{i^*}) - \mathbf{S}) \cdot \mathbf{w}^{i^*}] \mathbf{w}^{i^*}$$

(here S is the initial power injection, \mathbf{x}^{i^*} a boundary solution)

• Converges when $\|(\mathbf{f}(\mathbf{x}^{i^*}) - \mathbf{S}^i)\| < \varepsilon$

Challenges

29

- The key issues is actual power systems are quite complex, with many nonlinearities. For example, generators hitting reactive power limits, switched shunts, LTCs, phase shifters, etc.
- Practically people would like to know how far some system parameters can be changed before running into some sort of limit violation, or maximum loadability.
 - The system is changing in a particular direction, such as a power transfer; this often includes contingency analysis
- Line limits and voltage magnitudes are considered
 Lower voltage lines tend to be thermally constrained
- Solution is to just to trace out the PV or QV curves

PV and QV Analysis in PowerWorld

- Requires setting up what is known in PowerWorld as an injection group
 - An injection group specifies a set of objects, such as generators and loads, that can inject or absorb power
 - Injection groups can be defined by selecting Case
 Information, Aggregation, Injection Groups
- The PV and/or QV analysis then varies the injections in the injection group, tracing out the PV curve
- This allows optional consideration of contingencies
- The PV tool can be displayed by selecting Add-Ons,
 PV

PV and QV Analysis in PowerWorld: Two Bus Example

• Setup page defines the source and sink and step size

PV CURVES		_ = ×
✓ Setup Common Options Ormon Options Injection Group Ramp Interface Ramping Or Advanced Options Quantities to track Unit violations PV output QV setup Vestup Vestup	Ramping Method Transfer power betwe Injection Group Source/Sink Source G Interface MW Flow Sink Lc Common Options Injection Group Ramping Options Interface Ram	een the following two injection groups: Gen
> - PV RESUIS ✓ - Plots - Plot Designer > - Plot Definition Grids	Critical Scenarios Stop after finding at least Base Case and Contingencies Skip contingencies Ranage contingency list Run base case to completion Base Case Solution Options	
	Vary the transfer as follows: Initial Step Size (MW): 10.00 ↔ Minimimum Step Size (MW): 2.00 ↔ When convergence fails, reduce step by a factor of Stop when transfer exceeds 0.00 ↔	
Save Auxiliary Load Au	iliary Launch QV curve tool	? Help

PV and QV Analysis in PowerWorld: Two Bus Example

- The PV Results Page does the actual solution
 - Plots can be defined to show the results
 - Other Actions, Restore initial state restores the pre-study state

Setup Quantities to track Limit violations PV output	PV Results Run Stop Restore Initial State on Completion of Run	Click the Run button		
QV setup > -PV Results > -Plots	Base case could not be solved Present nominal shift 0.000 Present step size Source Found 1 limiting case. Sink	to run the PV analysis;		
	Overview Legacy Plots Track Limits Image: Second seco	Check the Restore		
	1 base case YES Reached Nose 297.00 297.04 -297.00 0	Initial State on		
		Completion of Run to		
		restore the pre-PV		
Save Auxiliary Load A	Auxiliary Launch QV curve tool ? Help	state (by default it is		
		not restored)		

PV and QV Analysis in PowerWorld: Two Bus Example

PV and QV Analysis in PowerWorld: 37 Bus Example

Usually other limits also need to be considered in doing a realistic PV analysis