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Announcements

• Read Chapters 3 and 8 from the book

• Homework 5 is due on Thursday November 14
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Power System Voltage Stability

• Voltage Stability:  The ability to maintain system 

voltage so that both power and voltage are controllable.  

System voltage responds as expected (i.e., an increase in 

load causes proportional decrease in voltage).  

• Voltage Instability:  Inability to maintain system 

voltage.  System voltage and/or power become 

uncontrollable.  System voltage does not respond as 

expected.  

• Voltage Collapse:  Process by which voltage instability 

leads to unacceptably low voltages in a significant 

portion of the system.  Typically results in loss of 

system load.  
2
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Voltage Stability

• Two good references are 

– P. Kundur, et. al., “Definitions and Classification of 

Power System Stability,” IEEE Trans. on Power Systems, 

pp. 1387-1401, August 2004.  

– T. Van Cutsem, “Voltage Instability: Phenomena, 

Countermeasures, and Analysis Methods,” Proc. IEEE, 

February 2000, pp. 208-227.

• Classified by either size of disturbance or duration

– Small or large disturbance: small disturbance is just 

perturbations about an equilibrium point (power flow)

– Short-term (several seconds) or long-term (many seconds 

to minutes) (covered in ECEN 667)
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Small Disturbance Voltage Stability

• Small disturbance voltage stability can be assessed 

using a power flow (maximum loadability)

• Depending on the assumed load model, the power 

flow can have multiple (or no) solutions

• PV curve is created by plotting power versus voltage
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Small Disturbance Voltage Stability

• Question: how do the power flow solutions vary as 

the load is changed?

• A Solution: Calculate a series of power flow 

solutions for various load levels and see how they 

change

• Power flow Jacobian
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Maximum Loadability When Power 
Flow Jacobian is Singular

• An important paper considering this was by Sauer and 

Pai from IEEE  Trans. Power Systems in Nov 1990, 

“Power system steady-state stability and the load-flow 

Jacobian”

• Other earlier papers were looking at the characteristics 

of multiple power flow solutions

• Work with the power flow optimal multiplier around 

the same time had shown that optimal multiplier goes 

to zero as the power flow Jacobian becomes singular 

• The power flow Jacobian depends on the assumed load 

model (we’ll see the impact in a few slides)

6
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Relationship Between Stability and 
Power Flow Jacobian

• The Sauer/Pai paper related system stability to the 

power flow Jacobian by noting the system dynamics 

could be written as a set of differential algebraic 

equations 
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Relationship Between Stability and 
Power Flow Jacobian

• Then

• What Sauer and Pai show is if g/  y is singular then 

the system is unstable; if g/  y is nonsingular then 

the system may or may not be stable

• Hence it provides an upper bound on stability
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Bifurcations

• In general, bifurcation is the division of something into 

two branches or parts

• For a dynamic system, a bifurcation occurs when small 

changes in a parameter cause a new quality of motion 

of the dynamic system

• Two types of bifurcation are considered for voltage 

stability

– Saddle node bifurcation is the disappearance of an equilibrium 

point for parameter variation; for voltage stability it is two 

power flow solutions coalescing with parameter variation

– Hopf bifurcation is cause by two eigenvalues crossing into the 

right-half plane
9
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PV and QV Curves

• PV curves can be traced by plotting the voltage as the 

real power is increased; QV curves as reactive power is 

increased

– At least for the upper portion of the curve

• Two bus example PV and QV curves

10
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Small Disturbance Voltage Collapse 

• At constant frequency (e.g., 60 Hz) the complex power 

transferred down a transmission line is S=VI*

– V is phasor voltage, I is phasor current

– This is the reason for using a high voltage grid

• Line real power losses are given by RI2 and reactive 

power losses by XI2

– R is the line’s resistance, and X its reactance; for a high 

voltage line X >> R

• Increased reactive power tends to drive down the 

voltage, which increases the current, which further 

increases the reactive power losses

11
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PowerWorld Two Bus Example
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loads at low voltages; 
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to disable this 
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Power Flow Region of Convergence

Convergence

regions with

P=100 MW, 

Q=0 Mvar

13



14

Load Parameter Space Representation

• With a constant power model there is a maximum 

loadability surface, S

– Defined as point in which the power flow Jacobian is 

singular

– For the lossless two bus system it can be determined as
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Load Model Impact

• With a static load model regardless of the voltage 

dependency the same PV curve is traced

– But whether a point of maximum loadability exists 

depends on the assumed load model

• If voltage exponent is > 1 then multiple solutions do not exist 

(see B.C. Lesieutre, P.W. Sauer and M.A. Pai “Sufficient

conditions on static load models for network solvability,”NAPS

1992, pp. 262-271)
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ZIP Model Coefficients

• One popular static load model is the ZIP; lots of 

papers on the “correct” amount of each type 

Table 7 from A, Bokhari, et. al., “Experimental Determination of the ZIP Coefficients for Modern Residential, Commercial, and Industrial 

Loads,” IEEE Trans. Power Delivery, June. 2014

Table 1 from M. Diaz-Aguilo, et. al., “Field-Validated Load Model  for the Analysis of CVR in Distribution Secondary Networks: Energy 

Conservation,” IEEE Trans. Power Delivery, Oct. 2013
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Application: Conservation Voltage 
Reduction (CVR)

• If the “steady-state” load has a true dependence on 

voltage, then a change (usually a reduction) in the 

voltage should result in a total decrease in energy 

consumption

• If an “optimal” voltage could be determined, then this 

could result in a net energy savings

• Some challenges are 1) the voltage profile across a 

feeder is not constant, 2) the load composition is 

constantly changing, 3) a decrease in power 

consumption might result in a decrease in useable 

output from the load, and 4) loads are dynamic and an 

initial decrease might be balanced by a later increase  17
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Determining a Metric to Voltage 
Collapse

• The goal of much of the voltage stability work was to 

determine an easy to calculate metric (or metrics) of 

the current operating point to voltage collapse

– PV and QV curves (or some combination) can determine such 

a metric along a particular path

– Goal was to have a path independent metric.  The closest 

boundary point was considered,

but this could be quite misleading

if the system was not going to 

move in that direction

– Any linearization about the current operating point (i.e., the 

Jacobian) does not consider important nonlinearities like 

generators hitting their reactive power limits  
18
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Determining a Metric to Voltage 
Collapse

• A paper by Dobson in 1992 (see below) noted that at a 

saddle node bifurcation, in which the power flow 

Jacobian is singular, that

– The right eigenvector associated with the Jacobian zero 

eigenvalue tells the direction in state space of the voltage 

collapse 

– The left eigenvector associated with the Jacobian zero 

eigenvalue gives the normal in parameter space to the 

boundary S.  This can then be used to estimate the minimum 

distance in parameter space to bifurcation.   

I. Dobson, “Observations on the Geometry of Saddle Node Bifurcation and Voltage Collapse in Electrical Power

Systems,” IEEE Trans. Circuits and Systems, March 1992 19
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Determining a Metric to Voltage 
Collapse Example

• For the previous two bus example we had 
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Determining a Metric to Voltage 
Collapse Example

• Calculating the right and left eigenvectors 

associated with the zero eigenvalue we get
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Quantifying Power Flow 
Unsolvability

• Since lack of power flow convergence can be a major 

problem, it would be nice to have a measure to 

quantify the degree of unsolvability of a power flow

– And then figure out the best way to restore solvabiblity

• T.J. Overbye, “A Power Flow Measure for Unsolvable 

Cases,” IEEE Trans. Power Systems, August 1994
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Quantifying Power Flow Unsolvability

• To setup the problem, first consider the power flow 

iteration without and with the optimal multiplier
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Quantifying Power Flow 
Unsolvability

24
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Quantifying Power Flow Unsolvability

• However, when there is no solution the standard 

power flow would diverge.  But the approach with the 

optimal multiplier tends to point in the direction of 

minimizing F(xk+1).  That is,
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Quantifying Power Flow Unsolvability

• The only way we cannot reduce the cost function 

some would be if the two directions were 

perpendicular, hence with a zero dot product.  So
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Quantifying Power Flow Unsolvability

27
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Quantifying Power Flow Unsolvability

• The left eigenvector associated with the zero 

eigenvalue of the Jacobian (defined as wi*) is 

perpendicular to S (as noted in the early 1992 Dobson 

paper)

• We can get the closest point on the S just by iterating, 

updating the S Vector as

(here S is the initial power injection, xi* a boundary 

solution)

• Converges when 

1 i* i* i* =  + [( ( ) - ) ] i S S f x S w w

28

i*( ( ) - )i f x S



29

Challenges

• The key issues is actual power systems are quite 

complex, with many nonlinearities.  For example, 

generators hitting reactive power limits, switched 

shunts, LTCs, phase shifters, etc.

• Practically people would like to know how far some 

system parameters can be changed before running into 

some sort of limit violation, or maximum loadability.

– The system is changing in a particular direction, such as a 

power transfer; this often includes contingency analysis

• Line limits and voltage magnitudes are considered

– Lower voltage lines tend to be thermally constrained

• Solution is to just to trace out the PV or QV curves 29
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PV and QV Analysis in PowerWorld

• Requires setting up what is known in PowerWorld as 

an injection group

– An injection group specifies a set of objects, such as 

generators and loads, that can inject or absorb  power

– Injection groups can be defined by selecting Case 

Information, Aggregation, Injection Groups

• The PV and/or QV analysis then varies the injections 

in the injection group, tracing out the PV curve

• This allows optional consideration of contingencies

• The PV tool can be displayed by selecting Add-Ons, 

PV

30
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PV and QV Analysis in 
PowerWorld: Two Bus Example

• Setup page defines the source and sink and step size

31



32

PV and QV Analysis in 
PowerWorld: Two Bus Example

• The PV Results Page does the actual solution

– Plots can be defined to show the results 

– Other Actions, Restore initial state restores the pre-study state
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Click the Run button

to run the PV analysis;

Check the Restore

Initial State on 

Completion of Run to

restore the pre-PV

state (by default it is

not restored)
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PV and QV Analysis in 
PowerWorld: Two Bus Example

33
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PV and QV Analysis in 
PowerWorld: 37 Bus Example
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Usually other limits also need to be considered in

doing a realistic PV analysis 


