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Announcements

Read Chapters 3 and 8 from the book
Homework 5 is due on Thursday November 14
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Power System Voltage Stability

T

* Voltage Stability: The ability to maintain system
voltage so that both power and voltage are controllable.
System voltage responds as expected (i.e., an increase In
load causes proportional decrease In voltage).

« Voltage Instability: Inability to maintain system
voltage. System voltage and/or power become
uncontrollable. System voltage does not respond as
expected.

* Voltage Collapse: Process by which voltage instability
leads to unacceptably low voltages in a significant
portion of the system. Typically results in loss of
system load.



Voltage Stability

Two good references are

— P. Kundur, et. al., “Definitions and Classification of
Power System Stability,” IEEE Trans. on Power Systems,
pp. 1387-1401, August 2004.

— T. Van Cutsem, “Voltage Instability: Phenomena,

Countermeasures, and Analysis Methods,” Proc. IEEE,
February 2000, pp. 208-227.

Classified by either size of disturbance or duration

— Small or large disturbance: small disturbance is just
perturbations about an equilibrium point (power flow)

— Short-term (several seconds) or long-term (many seconds
to minutes) (covered in ECEN 667)
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Small Disturbance Voltage Stability
T

« Small disturbance voltage stability can be assessed
using a power flow (maximum loadability)

* Depending on the assumed load model, the power
flow can have multiple (or no) solutions

* PV curve is created by plotting power versus voltage

Bus 1 x=0.2 Bus 2
(Slack)

[] x=02 1% Assume V
P —BVsin@=0
Q, +BVcosd-BV? =0

1.0

slack™

Where B is the line susceptance =-10,
V Z0 is the load voltage 4



Small Disturbance Voltage Stability
T

Question: how do the power flow solutions vary as
the load Is changed?

« A Solution: Calculate a series of power flow
solutions for various load levels and see how they

change
* Power flow Jacobian
—BV cosd —Bsing |
J(O,V) = _
—BVsing Bcosd-2BV

detJ(0,V) =VB? 2V cos 6 —cos® @ —sin’ 6)
Singular when (2V cos@—-1)=0



Maximum Loadability When Power
Flow Jacobian is Singular

Al

« An important paper considering this was by Sauer and
Pal from IEEE Trans. Power Systems in Nov 1990,
“Power system steady-state stability and the load-flow

Jacobian”

« Other earlier papers were looking at the characteristics
of multiple power flow solutions

« Work with the power flow optimal multiplier around
the same time had shown that optimal multiplier goes
to zero as the power flow Jacobian becomes singular

* The power flow Jacobian depends on the assumed load
model (we’ll see the impact in a few slides)



Relationship Between Stability and
Power Flow Jacobian

T
» The Sauer/Pal paper related system stability to the
power flow Jacobian by noting the system dynamics
could be written as a set of differential algebraic

equations

x=1(x,y,p)
0=9(X,y,p)
Linearing about and equilibrium gives

- of of |

AX| | OX 0Oy || AX
0| |ag &g | Ay

| OX oY |




Relationship Between Stability and
Power Flow Jacobian

e Then
0g

Assuming — Is nonsingular then

A

-1 N
A — of of|og| dg Ax
OX oy|oy | oX

« What Sauer and Pai show is If g/ 0y 1s singular then
the system is unstable; if g/ 0 y Is nonsingular then
the system may or may not be stable

* Hence It provides an upper bound on stability




Bifurcations
T
* In general, bifurcation is the division of something into
two branches or parts

* For a dynamic system, a bifurcation occurs when small
changes In a parameter cause a new quality of motion
of the dynamic system

« Two types of bifurcation are considered for voltage
stability

— Saddle node bifurcation is the disappearance of an equilibrium
point for parameter variation; for voltage stability it is two
power flow solutions coalescing with parameter variation

— Hopf bifurcation is cause by two eigenvalues crossing into the

right-half plane
9



PV and QV Curves
T

PV curves can be traced by plotting the voltage as the
real power Is increased; QV curves as reactive power Is
Increased

— At least for the upper portion of the curve
Two bus example PV and QV curves
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L e P s S Soal i A
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Small Disturbance Voltage Collapse
T
At constant frequency (e.g., 60 Hz) the complex power
transferred down a transmission line is S=VI”
— V is phasor voltage, I is phasor current
— This is the reason for using a high voltage grid

« Line real power losses are given by RI? and reactive

power losses by XI?

- R is the line’s resistance, and X its reactance; for a high
voltage line X >> R

* Increased reactive power tends to drive down the

voltage, which increases the current, which further

Increases the reactive power losses
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PowerWorld Two Bus Example

Bus

=
(]

Select option category
Power Flow Solution
Environment
Oneline
File Management
Case Information Displays
Message Log
Distributed Computing

Save to Aux

x=0.2

Bus 2

Power Flow Solution

Common Options Advanced Options  sland-Based AGC DC Options General Storage
| Dynamically add fremove slack buses as topology is changed
V] Evaluate Power Flow Solution For Each Island

Define Post Power Flow Solution Actions

Power Flow (Inner) Loop Options

Control (Middle) Loop Options
[IDisable Power Flow Optimal Multipher

[[JDisable Treating Continuous SSs as PV Buses
[ nitialize from Flat Start Values [[] Disable Balancing of Paralk
Minimum Per Unit Voltage for 's as Discrete Controls
Constant Power Loads | 0.700f5 sable Transformer Tap Control if Tap Sens.
Constant Current Loads | 0.500|% is the Wrong Sign (Normally Check This)

Min., Sensitivity for LTC Control 0.0500| %

Pre-Processing
[[JDisable Angle Smoothing

Post-Processing
[[JDisable Angle Rotation Processing

Sharing of generator vars across groups of buses during remote regulation

Allocate across buses using the user-spedified remote regulation percentages
D) Allocate so all generators are at same relative point in their [min .. max] var range
) Allocate across buses using the SUM OF user-spedfied remote regulation percentages

ZBR Threshold 0.000200 -5

Options for Areas on Economic Dispatch

0.933 pu

¥ 1s0imw
50@Mvar

Commercial power flow
software usually auto
converts constant power
loads at low voltages;
set these fields to zero
to disable this
conversion

AlM
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Power Flow Region of Convergence
AlM

®

Convergence
regions with
P=100 MW,

1.00
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Load Parameter Space Representation
T
« With a constant power model there Is a maximum
loadability surface, X

— Defined as point in which the power flow Jacobian is
singular
— For the lossless two bus system it can be determined as

EESOD
P2 1 X Unsolvable region
——L—|—QL +—B :O §250 No power flow solutions
B 4 T

E5200

=

g 150 Solvable region

a) Two power flow solutions

=100

=

S 50

D

o

o

100 200 300 400 500 600
Real power load (MW) 14
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Load Model Impact
T

« With a static load model regardless of the voltage
dependency the same PV curve is traced

— But whether a point of maximum loadability exists
depends on the assumed load model

If voltage exponent is > 1 then multiple solutions do not exist
(see B.C. Lesieutre, P.W. Sauer and M.A. Pai “Sufficient
conditions on static load models for network solvability,”NAPS
1992, pp. 262-271)

>—> >x—=0>i> >—> > Change load to
hus 1 x=0.2. constant impedance;
us .
Bus 2 0.943'P4  hence it becomes a
133 ;MW linear model
44%Mvar
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ZIP Model Coefficients
e
« One popular static load model is the ZIP; lots of

papers on the “correct” amount of each type

TABLE I
LZIP COEFFICIENTS FOR EACH CUSTOMER CLASS

Class Z, I, P, Z, I, P,

Large commercial 47 -(0.53 1. (M 5,300 -8.73 .43

Small commercial 043 -() (i 0,63 4 (W -3, 55 3.59
Besidential 85 -1.12 1.27 109G -18.7% BT
Industrial ] 0 1 0 0 1

TABLE “WIl
ACTIVE AanND REACTIVE ZIF MoDeElL., FIRST HaAalrF oF THE ZIFS WitTH O-% CuUToFF WOl TAadsE
SECoND Hal F REPRPMOETS THE ZIFS WITH ACTUAL CUTOFEF Wil TaasE

Pl

Equiprmenty cas gt vesved || g— Fa F [ . = I o £ Fa -
HAir cormpres sar 1 Fh ] P L ] o= 8] L B Rk 4= TO0H L Rry | O -0 17 =133 =l -1.71
Sir rnpncs-sar 3 Fh I 4 2 L IG5 =47 L e 023 LER, = ==l 3 HE
A i corned IS Boner =z 1M e 1] St S 125,54 1L.17 -1.83 1.6w% 15.68 -ZET.05 1247
CFL.buln x L L ] [ o= 8] E5.55 aT.==2 DEl =1.03 1. E2 . = L] (W=
Lo e rmaber L LL ] 124 1413 04 13.32 013 .62 -O.7FS R -5 311
Coypicr [ L LN [ - 1 i 3 =4, 57 oaT 21 [ R = | =. 14 o F 53
Electronic allast =2 LLE ] = 3] =02 S D =2r =05 1.ZH s =F] Sk 1L oe=
Elicw g 3 1+ 20 128117 LOHE=_ 3 04 e 1.== 3. TH =5. T4 e
Fan ] LT k) = 1] 153,25 =5, N AT (e | e 1 e | “ELLZ 1.9%
e cornesol 2 HEHD 1= (=4 [ =) | LN .= (ER k. T L] L-.17F
Hakogem 3 N [ e )] L= = [ 0= ] (R [a =11 =35 B 3 5
High pressune sodism FITD 4 L k) = 1) et ] o] R ) T 21 106585 _IR.TT 1E17
Imcandescent light = NI L2E =TS 0REs a7 [N et -1, 1 L=5 5K (ER Y g
Imalworsomn ez [ ] L L ] 1= a5 .= el = ] .0H 1.5 -1.29 (R |
I amncoen charoesr [ L b 12 TR g T2 A [ TH 43T 1.2 13

Table 1 from M. Diaz-Aguilo, et. al., “Field-Validated Load Model for the Analysis of CVR in Distribution Secondary Networks: Energy
Conservation,” IEEE Trans. Power Delivery, Oct. 2013

Table 7 from A, Bokhari, et. al., “Experimental Determination of the ZIP Coefficients for Modern Residential, Commercial, and Industrial
Loads,” IEEE Trans. Power Delivery, June. 2014



Application: Conservation Voltage
Reduction (CVR)

* If the “steady-state” load has a true dependence on
voltage, then a change (usually a reduction) in the
voltage should result in a total decrease in energy
consumption

o

* If an “optimal” voltage could be determined, then this
could result in a net energy savings

« Some challenges are 1) the voltage profile across a
feeder Is not constant, 2) the load composition is
constantly changing, 3) a decrease In power
consumption might result in a decrease in useable
output from the load, and 4) loads are dynamic and an
Initial decrease might be balanced by a later increase -



Determining a Metric to Voltage
Collapse

Alw
« The goal of much of the voltage stability work was to
determine an easy to calculate metric (or metrics) of

the current operating point to voltage collapse

- PV and QV curves (or some combination) can determine such
a metric along a particular path

— Goal was to have a path independent metric. The closest

boundary point was considered, =
but this could be quite Misleading .. e

if the system was not going to g

move in that direction £

0 100 200 300 400 500 600
Real power load (MW)

— Any linearization about the current operating point (i.e., the
Jacobian) does not consider important nonlinearities like

generators hitting their reactive power limits 5



Determining a Metric to Voltage
Collapse

T
« A paper by Dobson in 1992 (see below) noted that at a
saddle node bifurcation, in which the power flow

Jacobian is singular, that

— The right eigenvector associated with the Jacobian zero
eigenvalue tells the direction in state space of the voltage
collapse

— The left eigenvector associated with the Jacobian zero
eigenvalue gives the normal in parameter space to the
boundary 2. This can then be used to estimate the minimum
distance in parameter space to bifurcation.

I. Dobson, “Observations on the Geometry of Saddle Node Bifurcation and Voltage Collapse in Electrical Power
Systems,” IEEE Trans. Circuits and Systems, March 1992 19



Determining a Metric to Voltage
Collapse Example T

* For the previous two bus example we had

w
o
=]

I:)L o BV Sin H — O gm’ ﬂgspot;‘\':ebrlmflgfm?isﬁutions
Q, +BVcosd—-BV?=0 .
% T:'n}:: apt::r:%llg:‘u solutions
—BV cosé —Bsinéd g 100
‘] ((E),\N/ ) — - ?é 50
—-BVsing Bcosd-2BV | &

100 200 300 400 500 600
Real power load (MW)

o

Singular when (2V cos@-1)=0
So consider B=-10, V =0.6, 8 =-33.56°, then P, = 3.317, Q, =1.400

5 5 5528
| -3.317 3.667

20



Determining a Metric to Voltage
Collapse Example

« Calculating the right and left eigenvectors
assoclated with the zero eigenvalue we get

;_ 5 —5.528
| -3.317 3.667
0.742 | 0.553
V = ’W —
10.671 | 10.833




Quantifying Power Flow

Unsolvability T
« Since lack of power flow convergence can be a major
problem, it would be nice to have a measure to
quantify the degree of unsolvability of a power flow

— And then figure out the best way to restore solvabiblity

* T.J. Overbye, “A Power Flow Measure for Unsolvable
Cases,” IEEE Trans. Power Systems, August 1994

Unsolvable

Region

Boundary X

Figure 1 : Power Flow Security Regions 29



Quantifying Power Flow Unsolvability

Al
« To setup the problem, first consider the power flow
Iteration without and with the optimal multiplier

X =x" + Ax"

Ax =-J(x)™ (f(xk) — S)

With the optimal multiplier we are minimizing
F(x*™) = %(f(xk) + uAX® — s)T (f(xk) + uAX® — s)

When there iIs a solution ¢z — 1 and the cost function
goes to zero

23



Quantifying Power Flow

Unsolvability

dCt(J) = B12 (B12 + 26B22) = 0 (12)

Here, where B, = -B,,, the solution of (12) is e = 0.5. Substituting this
solution for ¢ into (10b) and using (10a) to solve for the f component of
the bus 2 voltage, one gets X to be the set of all points where

p2 1
B12 + Q - 4B12 =0 (13)
300 |
Unsolvable region

250 | = No power flow solutions

200 |
150

100 |

Reactive power load (Q) in Mvar

50 — Solvable region
- Two power flow solutions

O:lLLIJ a1 1 a4

0 100 200 300 400 500 600
Real power load (F) in MW

* Figure 2 : Solvable and Unsolvable Regions in Parameter Space

Bus 2 - f component of voltage

Bus 2 - ¢ component of voltage

Figure 3a : Two Bus Cost Contours - Eoad of 200 MW and 100 Mvar

Bus 2 - f component of voltage

Bus 2 - e component of voltage

Figure 3b : Two Bus Cost Contours - Load of 300 MW and 150 Mvar

Bus 2 - f component of voltage

Bus 2 - e component of voltage

Figure 3c : Two Bus Cost Contours - Load of 400 MW and 200 Mvar

A
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Quantifying Power Flow Unsolvability

Alw
« However, when there Is no solution the standard

power flow would diverge. But the approach with the
optimal multiplier tends to point in the direction of
minimizing F(x**1). That is,

VF(x) = [f(x) -S| I(x")

Also

AX = - J(X ) F(X) - S |

where how far to move in this direction is

limited by L.

25



Quantifying Power Flow Unsolvability

Al
« The only way we cannot reduce the cost function
some would be if the two directions were

perpendicular, hence with a zero dot product. So
VF(x)-ax = [f(x) -] I(x*)I(x*) 2 [f(x") - S]
| |
= [f(<) - S] [f(x) - S ]
|
(provided the Jacobian is not singular). As we approach singularity

this goes to zero. Hence we converge to a point on the boundary
%, but not necessarilty at the closest boundary point.

26



Quantifying Power Flow Unsolvability

7

Figure 6 : Feasible and Infeasible Regions in Parameter Space

125 |

100 |
 Solvable region

225 16
3 B
. i Unsolvable region g 14 -
8 200 ? 2 Solvable region
i + % 12 f Two power flow solutions
=} =
.- L & 1
a 175 _§' Unsolvable region
N [ -~ No power flow solutions
-3 L 2 0.8
1]
= 150 " , A ‘
Y] F 800 9200 1000 1100 1200
§ Real power load (P) in MW
o
[
-

f(x") b1

1 n 1 UV I T Y S

]

75 1 L I
325 350 375 400 425 450 475

Real power load (P) in MW

Bus 2 - f component of voltage

Figure 5 : Parameter Space Relationships

.06 -0.4 -0.2 o 0.2 2
Bus 2 - ¢ component of voltage

Figure 7a : PV Bus Cost Contours - Feasible load of 900 MW

If X were flat then w Is o

parallel to w™m £ o]
“g- -1
F

Bus 2 - e component of voltage

Figure 7b : PV Bus Cost Contours - Infeasible load of 1100 MW
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Quantifying Power Flow Unsolvability

Alw
« The left eigenvector associated with the zero
eigenvalue of the Jacobian (defined as w'™) is

perpendicular to Z (as noted in the early 1992 Dobson
paper)

* We can get the closest point on the X just by Iterating,
updating the S Vector as

S =S+ [f(X")-S) -wlw"
(here S is the initial power injection, X a boundary
solution)

» Converges when |(f(x") - §')[ < &

28



Challenges
T
The key issues Is actual power systems are quite
complex, with many nonlinearities. For example,
generators hitting reactive power limits, switched
shunts, LTCs, phase shifters, etc.

Practically people would like to know how far some
system parameters can be changed before running into
some sort of limit violation, or maximum loadability.

— The system is changing in a particular direction, such as a
power transfer; this often includes contingency analysis

* Line limits and voltage magnitudes are considered
— Lower voltage lines tend to be thermally constrained

« Solution is to just to trace out the PV or QV curves g



PV and QV Analysis in PowerWorld
T

Requires setting up what is known in PowerWorld as

an injection group

— An injection group specifies a set of objects, such as
generators and loads, that can inject or absorb power

— Injection groups can be defined by selecting Case
Information, Aggregation, Injection Groups

The PV and/or QV analysis then varies the injections
In the injection group, tracing out the PV curve

This allows optional consideration of contingencies

The PV tool can be displayed by selecting Add-Ons,
PV

30



PV and QV Analysis In

PowerWorld: Two Bus Example o

®

Setup page defines the source and sink and step size

/ CURVES - o IE3

- Setup Setup

Injection Group Ramp Transfer power between the following two injection groups:

Ramping Method
Interface Ramping Of

Injection Group Source /Sink Source Gen >
Advanced Options ®m P /5 | ‘ View f Define Injection Groups
- Quantities to track Onterface MW Flow Sink |Lnad v ‘
Limit violations
-~ PV output
PQ::emﬁs Common Options  Injection Group Ramping Options  Interface Ramping Options ~ Advanced Options
esul
§ + -Plots
1 ! Critical Scenarios
i-- Plot Designer .

Stop after finding at leas! critical scenarios

Plot Definition Grids

Base Case and Contingencies

Skip contingencies

[JRun base case to completion Base Case Solution Options ...

Vary the transfer as follows:
Initial Step Size (MW):

Minimimum Step Size (MW):
When convergence fails,
reduce step by a factor of

[[15top when transfer exceeds

< >

Save Auxiliary ... | |Load Auxiliary ... Launch QW curve tool ... ? Help ﬁ Close
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PV and QV Analysis In
PowerWorld: Two Bus Example T

* The PV Results Page does the actual solution

— Plots can be defined to show the results
— Other Actions, Restore initial state restores the pre-study state

‘- Limit violations
PV output

EEEEEEEEE

Click the Run button

Stop Resmrs Initi
could not be sokeed
nnnnnnnnnnnnnnnnnnn 000 MW Load TMY
e[| e 000 e
n IZe
Si | 0 ||0.00
nnnnnnnnnnnnnnnnnn
Overview  |egacy Plots  Track Limi its
By Al 8 % s+ B~
ached Nos

Scenario

to run the PV analysis;

0
0.00 Other actions >>
“E %x';u, - %v SA%'}E; i)+ B | Options *
Max Shift | Max Export | Maxlmport| # Viol |\ﬂ eC e eS O I e

Critical Reason

aaaaaaaaa

7 belp

Initial State on
Completion of Run to
restore the pre-PV
state (by default it is

not restored)
32



PV and QV Analysis In
PowerWorld: Two Bus Example

A

0.92-5
0.9-5
0.88—5
o.ss-f
0.84—5
0.82—5

0.8

Bus 2 Voltage (pu)

0.78 1
0.76 -
0.74 1

0.72

0.7
0.68 -| T T T T T T T T T T T T T T T T T T T T T T T
150 200 250 300 350 400
Bus 2 Real Power Load (MW)

L — base case, PU Volt, Bus 2
m
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PV and QV Analysis In
PowerWorld: 37 Bus Example

Total Losses: 99.11 M
Load Scalar:1.00

<<
J OAK138

38 MW
LT 143 Mvar

0.99 pu L 40AK345

Voltage\Per Un i

e 1.000 pu

0.95 pu =g BUCKEYE69

A 26 MW
209% 10 Mvar
s

0.97 pu APPLE69

-0.900 pu

ASHI3S 15% MAPLE69
2MwW
MV ORANGE69 S oom |
-0.800 pu Locustes [+
WALNUT69 66 MW 67% “G‘; 0.9
P 227 MW 46 Mvar 2Mw - =
58%
- 26.0 Mvar —) el o 18w 2
= 0.0yMvar : o 088
0.95 pu A [\
(— 11.5Mvar = 130 M g
0384
! @
o] 2 082
0.787 pu % 05 S \\
0.78 pu \sp MAPLEG9 = N \
POPLARG9 126 MW 078
X 8 Mvar 076 \\\ \
89 MW 071 SN
7 Mvar SPRUCEG9 N
\
0.82 pu 072 \\
5 3
14% Sy —<—™ p—S12Mvar  60Mvar [ 210 07 A
14 Mv; )
163mvar | _ os3pu N 0.92 pu CHE -
3 12 091 . REDBUD69 o 0 20 40 &0 80 100 120
0.90 pu AN [ PEACH69 EELTES Total Area Load (MW)
h T 25w 1oMw 16MW /N .
208MwW () ) 17 Mval 5 Mvar Ol 69% —*
40 Mvar ) : ‘ P e 0.93 pu
o PEACH138 0.93 pu Lemongy 093 P!
0.93 pu TULIP138 3
B, 09812|§tap 73%
56%
A 0.94 pu LEMON138

Usually other limits also need to be considered in
doing a realistic PV analysis

®

34



